Skip to main content

Sphingosine 1-Phosphate Metabolism and Signaling

  • Chapter
  • First Online:
Sphingolipid Metabolism and Metabolic Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1372))

Abstract

Sphingosine 1-phosphate (S1P) is a well-defined bioactive lipid molecule derived from membrane sphingolipid metabolism. In the past decades, a series of key enzymes involved in generation of S1P have been identified and characterized in detail, as well as enzymes degrading S1P. S1P requires transporter to cross the plasma membrane and carrier to deliver to its cognate receptors and therefore transduces signaling in autocrine, paracrine, or endocrine fashions. The essential roles in regulation of development, metabolism, inflammation, and many other aspects of life are mainly executed when S1P binds to receptors provoking the downstream signaling cascades in distinct cells. This chapter will review the synthesis, degradation, transportation, and signaling of S1P and try to provide a comprehensive view of the biology of S1P, evoking new enthusiasms and ideas into the field of the fascinating S1P.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blaho, V. A., & Hla, T. (2011). Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chemical Reviews, 111, 6299–6320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Engelbrecht, E., MacRae, C. A., & Hla, T. (2021). Lysolipids in vascular development, biology, and disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 41, 564–584.

    Article  CAS  PubMed  Google Scholar 

  3. Melendez, A. J., Carlos-Dias, E., Gosink, M., Allen, J. M., & Takacs, L. (2000). Human sphingosine kinase: Molecular cloning, functional characterization and tissue distribution. Gene, 251, 19–26.

    Article  CAS  PubMed  Google Scholar 

  4. Nava, V. E., Lacana, E., Poulton, S., Liu, H., Sugiura, M., Kono, K., Milstien, S., Kohama, T., & Spiegel, S. (2000). Functional characterization of human sphingosine kinase-1. FEBS Letters, 473, 81–84.

    Article  CAS  PubMed  Google Scholar 

  5. Pitson, S. M., D’andrea, R. J., Vandeleur, L., Moretti, P. A., Xia, P., Gamble, J. R., Vadas, M. A., & Wattenberg, B. W. (2000). Human sphingosine kinase: Purification, molecular cloning and characterization of the native and recombinant enzymes. The Biochemical Journal, 350(Pt 2), 429–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, H., Sugiura, M., Nava, V. E., Edsall, L. C., Kono, K., Poulton, S., Milstien, S., Kohama, T., & Spiegel, S. (2000). Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. The Journal of Biological Chemistry, 275, 19513–19520.

    Article  CAS  PubMed  Google Scholar 

  7. Kohama, T., Olivera, A., Edsall, L., Nagiec, M. M., Dickson, R., & Spiegel, S. (1998). Molecular cloning and functional characterization of murine sphingosine kinase. The Journal of Biological Chemistry, 273, 23722–23728.

    Article  CAS  PubMed  Google Scholar 

  8. Alemany, R., van Koppen, C. J., Danneberg, K., Ter Braak, M., Heringdorf, M. Z., & D. (2007). Regulation and functional roles of sphingosine kinases. Naunyn-Schmiedeberg’s Archives of Pharmacology, 374, 413–428.

    Article  CAS  PubMed  Google Scholar 

  9. Yokota, S., Taniguchi, Y., Kihara, A., Mitsutake, S., & Igarashi, Y. (2004). Asp177 in C4 domain of mouse sphingosine kinase 1a is important for the sphingosine recognition. FEBS Letters, 578, 106–110.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Z., Min, X., Xiao, S. H., Johnstone, S., Romanow, W., Meininger, D., Xu, H., Liu, J., Dai, J., An, S., Thibault, S., & Walker, N. (2013). Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure, 21, 798–809.

    Article  CAS  PubMed  Google Scholar 

  11. Berdyshev, E. V., Gorshkova, I. A., Usatyuk, P., Zhao, Y., Saatian, B., Hubbard, W., & Natarajan, V. (2006). De novo biosynthesis of dihydrosphingosine-1-phosphate by sphingosine kinase 1 in mammalian cells. Cellular Signalling, 18, 1779–1792.

    Article  CAS  PubMed  Google Scholar 

  12. Kharel, Y., Lee, S., Snyder, A. H., Sheasley-O’neill, S. L., Morris, M. A., Setiady, Y., Zhu, R., Zigler, M. A., Burcin, T. L., Ley, K., Tung, K. S. K., Engelhard, V. H., Macdonald, T. L., Pearson-White, S., & Lynch, K. R. (2005). Sphingosine kinase 2 is required for modulation of lymphocyte traffic by FTY720. The Journal of Biological Chemistry, 280, 36865–36872.

    Article  CAS  PubMed  Google Scholar 

  13. Don, A. S., Martinez-Lamenca, C., Webb, W. R., Proia, R. L., Roberts, E., & Rosen, H. (2007). Essential requirement for sphingosine kinase 2 in a sphingolipid apoptosis pathway activated by FTY720 analogues. The Journal of Biological Chemistry, 282, 15833–15842.

    Article  CAS  PubMed  Google Scholar 

  14. Billich, A., Bornancin, F., Devay, P., Mechtcheriakova, D., Urtz, N., & Baumruker, T. (2003). Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. The Journal of Biological Chemistry, 278, 47408–47415.

    Article  CAS  PubMed  Google Scholar 

  15. Paugh, S. W., Payne, S. G., Barbour, S. E., Milstien, S., & Spiegel, S. (2003). The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Letters, 554, 189–193.

    Article  CAS  PubMed  Google Scholar 

  16. Hengst, J. A., Guilford, J. M., Fox, T. E., Wang, X., Conroy, E. J., & Yun, J. K. (2009). Sphingosine kinase 1 localized to the plasma membrane lipid raft microdomain overcomes serum deprivation induced growth inhibition. Archives of Biochemistry and Biophysics, 492, 62–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kusner, D. J., Thompson, C. R., Melrose, N. A., Pitson, S. M., Obeid, L. M., & Iyer, S. S. (2007). The localization and activity of sphingosine kinase 1 are coordinately regulated with actin cytoskeletal dynamics in macrophages. The Journal of Biological Chemistry, 282, 23147–23162.

    Article  CAS  PubMed  Google Scholar 

  18. Thompson, C. R., Iyer, S. S., Melrose, N., VanOosten, R., Johnson, K., Pitson, S. M., Obeid, L. M., & Kusner, D. J. (2005). Sphingosine kinase 1 (SK1) is recruited to nascent phagosomes in human macrophages: Inhibition of SK1 translocation by Mycobacterium tuberculosis. Journal of Immunology, 174, 3551–3561.

    Article  CAS  Google Scholar 

  19. Pitson, S. M., Moretti, P. A., Zebol, J. R., Lynn, H. E., Xia, P., Vadas, M. A., & Wattenberg, B. W. (2003). Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. The EMBO Journal, 22, 5491–5500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jarman, K. E., Moretti, P. A., Zebol, J. R., & Pitson, S. M. (2010). Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. The Journal of Biological Chemistry, 285, 483–492.

    Article  CAS  PubMed  Google Scholar 

  21. Igarashi, N., Okada, T., Hayashi, S., Fujita, T., Jahangeer, S., & Nakamura, S. (2003). Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. The Journal of Biological Chemistry, 278, 46832–46839.

    Article  CAS  PubMed  Google Scholar 

  22. Ding, G., Sonoda, H., Yu, H., Kajimoto, T., Goparaju, S. K., Jahangeer, S., Okada, T., & Nakamura, S. I. (2007). Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. The Journal of Biological Chemistry, 282, 27493–27502.

    Article  CAS  PubMed  Google Scholar 

  23. Hait, N. C., Allegood, J., Maceyka, M., Strub, G. M., Harikumar, K. B., Singh, S. K., Luo, C., Marmorstein, R., Kordula, T., Milstien, S., & Spiegel, S. (2009). Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science, 325, 1254–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Strub, G. M., Paillard, M., Liang, J., Gomez, L., Allegood, J. C., Hait, N. C., Maceyka, M., Price, M. M., Chen, Q., Simpson, D. C., Kordula, T., Milstien, S., Lesnefsky, E. J., & Spiegel, S. (2011). Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. The FASEB Journal, 25, 600–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maceyka, M., Sankala, H., Hait, N. C., Le Stunff, H., Liu, H., Toman, R., Collier, C., Zhang, M., Satin, L. S., Merrill, A. H., Jr., Milstien, S., & Spiegel, S. (2005). SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. The Journal of Biological Chemistry, 280, 37118–37129.

    Article  CAS  PubMed  Google Scholar 

  26. Weigert, A., Cremer, S., Schmidt, M. V., von Knethen, A., Angioni, C., Geisslinger, G., & Brüne, B. (2010). Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood, 115, 3531–3540.

    Article  CAS  PubMed  Google Scholar 

  27. Allende, M. L., Sasaki, T., Kawai, H., Olivera, A., Mi, Y., van Echten-Deckert, G., Hajdu, R., Rosenbach, M., Keohane, C. A., Mandala, S., Spiegel, S., & Proia, R. L. (2004). Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. The Journal of Biological Chemistry, 279, 52487–52492.

    Article  CAS  PubMed  Google Scholar 

  28. Mizugishi, K., Yamashita, T., Olivera, A., Miller, G. F., Spiegel, S., & Proia, R. L. (2005). Essential role for sphingosine kinases in neural and vascular development. Molecular and Cellular Biology, 25, 11113–11121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feuerborn, R., Besser, M., Poti, F., Burkhardt, R., Weissen-Plenz, G., Ceglarek, U., Simoni, M., Proia, R. L., Freise, H., & Nofer, J. R. (2018). Elevating endogenous sphingosine-1-phosphate (S1P) levels improves endothelial function and ameliorates atherosclerosis in low density lipoprotein receptor-deficient (LDL-R−/−) mice. Thrombosis and Haemostasis, 118, 1470–1480.

    Article  PubMed  Google Scholar 

  30. Zemann, B., Kinzel, B., Muller, M., Reuschel, R., Mechtcheriakova, D., Urtz, N., Bornancin, F., Baumruker, T., & Billich, A. (2006). Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood, 107, 1454–1458.

    Article  CAS  PubMed  Google Scholar 

  31. Michaud, J., Kohno, M., Proia, R. L., & Hla, T. (2006). Normal acute and chronic inflammatory responses in sphingosine kinase 1 knockout mice. FEBS Letters, 580, 4607–4612.

    Article  CAS  PubMed  Google Scholar 

  32. Grin’kina, N. M., Karnabi, E. E., Damania, D., Wadgaonkar, S., Muslimov, I. A., & Wadgaonkar, R. (2012). Sphingosine kinase 1 deficiency exacerbates LPS-induced neuroinflammation. PLoS One, 7, e36475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Galvani, S., Sanson, M., Blaho, V. A., Swendeman, S. L., Obinata, H., Conger, H., Dahlback, B., Kono, M., Proia, R. L., Smith, J. D., & Hla, T. (2015). HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Science Signaling, 8, ra79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pyne, S., Kong, K. C., & Darroch, P. I. (2004). Lysophosphatidic acid and sphingosine 1-phosphate biology: The role of lipid phosphate phosphatases. Seminars in Cell & Developmental Biology, 15, 491–501.

    Article  CAS  Google Scholar 

  35. Zhou, J., & Saba, J. D. (1998). Identification of the first mammalian sphingosine phosphate lyase gene and its functional expression in yeast. Biochemical and Biophysical Research Communications, 242, 502–507.

    Article  CAS  PubMed  Google Scholar 

  36. Tang, X., Benesch, M. G., & Brindley, D. N. (2015). Lipid phosphate phosphatases and their roles in mammalian physiology and pathology. Journal of Lipid Research, 56, 2048–2060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Giussani, P., Maceyka, M., Le Stunff, H., Mikami, A., Lepine, S., Wang, E., Kelly, S., Merrill, A. H., Jr., Milstien, S., & Spiegel, S. (2006). Sphingosine-1-phosphate phosphohydrolase regulates endoplasmic reticulum-to-golgi trafficking of ceramide. Molecular and Cellular Biology, 26, 5055–5069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Le Stunff, H., Giussani, P., Maceyka, M., Lepine, S., Milstien, S., & Spiegel, S. (2007). Recycling of sphingosine is regulated by the concerted actions of sphingosine-1-phosphate phosphohydrolase 1 and sphingosine kinase 2. The Journal of Biological Chemistry, 282, 34372–34380.

    Article  PubMed  Google Scholar 

  39. Le Stunff, H., Galve-Roperh, I., Peterson, C., Milstien, S., & Spiegel, S. (2002). Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. The Journal of Cell Biology, 158, 1039–1049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Johnson, K. R., Johnson, K. Y., Becker, K. P., Bielawski, J., Mao, C., & Obeid, L. M. (2003). Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. The Journal of Biological Chemistry, 278, 34541–34547.

    Article  CAS  PubMed  Google Scholar 

  41. Allende, M. L., Sipe, L. M., Tuymetova, G., Wilson-Henjum, K. L., Chen, W., & Proia, R. L. (2013). Sphingosine-1-phosphate phosphatase 1 regulates keratinocyte differentiation and epidermal homeostasis. The Journal of Biological Chemistry, 288, 18381–18391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taguchi, Y., Allende, M. L., Mizukami, H., Cook, E. K., Gavrilova, O., Tuymetova, G., Clarke, B. A., Chen, W., Olivera, A., & Proia, R. L. (2016). Sphingosine-1-phosphate phosphatase 2 regulates pancreatic islet β-cell endoplasmic reticulum stress and proliferation. The Journal of Biological Chemistry, 291, 12029–12038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stoffel, W., LeKim, D., & Sticht, G. (1969). Distribution and properties of dihydrosphingosine-1-phosphate aldolase (sphinganine-1-phosphate alkanal-lyase). Hoppe-Seyler’s Zeitschrift für Physiologische Chemie, 350, 1233–1241.

    Article  CAS  PubMed  Google Scholar 

  44. Bourquin, F., Riezman, H., Capitani, G., & Grutter, M. G. (2010). Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism. Structure, 18, 1054–1065.

    Article  CAS  PubMed  Google Scholar 

  45. Borowsky, A. D., Bandhuvula, P., Kumar, A., Yoshinaga, Y., Nefedov, M., Fong, L. G., Zhang, M., Baridon, B., Dillard, L., de Jong, P., Young, S. G., West, D. B., & Saba, J. D. (2012). Sphingosine-1-phosphate lyase expression in embryonic and adult murine tissues. Journal of Lipid Research, 53, 1920–1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schwab, S. R., Pereira, J. P., Matloubian, M., Xu, Y., Huang, Y., & Cyster, J. G. (2005). Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science, 309, 1735–1739.

    Article  CAS  PubMed  Google Scholar 

  47. Saba, J. D. (2019). Fifty years of lyase and a moment of truth: Sphingosine phosphate lyase from discovery to disease. Journal of Lipid Research, 60, 456–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmahl, J., Raymond, C. S., & Soriano, P. (2007). PDGF signaling specificity is mediated through multiple immediate early genes. Nature Genetics, 39, 52–60.

    Article  CAS  PubMed  Google Scholar 

  49. Weber, C., Krueger, A., Munk, A., Bode, C., Van Veldhoven, P. P., & Graler, M. H. (2009). Discontinued postnatal thymocyte development in sphingosine 1-phosphate-lyase-deficient mice. Journal of Immunology, 183, 4292–4301.

    Article  CAS  Google Scholar 

  50. Vogel, P., Donoviel, M. S., Read, R., Hansen, G. M., Hazlewood, J., Anderson, S. J., Sun, W., Swaffield, J., & Oravecz, T. (2009). Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PLoS One, 4, e4112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Allende, M. L., Bektas, M., Lee, B. G., Bonifacino, E., Kang, J., Tuymetova, G., Chen, W., Saba, J. D., & Proia, R. L. (2011). Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. The Journal of Biological Chemistry, 286, 7348–7358.

    Article  CAS  PubMed  Google Scholar 

  52. Bektas, M., Allende, M. L., Lee, B. G., Chen, W., Amar, M. J., Remaley, A. T., Saba, J. D., & Proia, R. L. (2010). Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. The Journal of Biological Chemistry, 285, 10880–10889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hagen, N., Van Veldhoven, P. P., Proia, R. L., Park, H., Merrill, A. H., & van Echten-Deckert, G. (2009). Subcellular origin of sphingosine 1-phosphate is essential for its toxic effect in lyase-deficient neurons. The Journal of Biological Chemistry, 284, 11346–11353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Degagne, E., Pandurangan, A., Bandhuvula, P., Kumar, A., Eltanawy, A., Zhang, M., Yoshinaga, Y., Nefedov, M., de Jong, P. J., Fong, L. G., Young, S. G., Bittman, R., Ahmedi, Y., & Saba, J. D. (2014). Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs. The Journal of Clinical Investigation, 124, 5368–5384.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Morgan, A. R., Turic, D., Jehu, L., Hamilton, G., Hollingworth, P., Moskvina, V., Jones, L., Lovestone, S., Brayne, C., Rubinsztein, D. C., Lawlor, B., Gill, M., O’Donovan, M. C., Owen, M. J., & Williams, J. (2007). Association studies of 23 positional/functional candidate genes on chromosome 10 in late-onset Alzheimer’s disease. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 144B, 762–770.

    Article  CAS  Google Scholar 

  56. Hla, T., Venkataraman, K., & Michaud, J. (2008). The vascular S1P gradient-cellular sources and biological significance. Biochimica et Biophysica Acta, 1781, 477–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fukuhara, S., Simmons, S., Kawamura, S., Inoue, A., Orba, Y., Tokudome, T., Sunden, Y., Arai, Y., Moriwaki, K., Ishida, J., Uemura, A., Kiyonari, H., Abe, T., Fukamizu, A., Hirashima, M., Sawa, H., Aoki, J., Ishii, M., & Mochizuki, N. (2012). The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. The Journal of Clinical Investigation, 122, 1416–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hisano, Y., Kobayashi, N., Yamaguchi, A., & Nishi, T. (2012). Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLoS One, 7, e38941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nijnik, A., Clare, S., Hale, C., Chen, J., Raisen, C., Mottram, L., Lucas, M., Estabel, J., Ryder, E., Adissu, H., Sanger Mouse Genetics Project, Adams, N. C., Ramirez-Solis, R., White, J. K., Steel, K. P., Dougan, G., & Hancock, R. E. (2012). The role of sphingosine-1-phosphate transporter Spns2 in immune system function. Journal of Immunology, 189, 102–111.

    Article  CAS  Google Scholar 

  60. Mendoza, A., Breart, B., Ramos-Perez, W. D., Pitt, L. A., Gobert, M., Sunkara, M., Lafaille, J. J., Morris, A. J., & Schwab, S. R. (2012). The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate. Cell Reports, 2, 1104–1110.

    Article  CAS  PubMed  Google Scholar 

  61. Mendoza, A., Fang, V., Chen, C., Serasinghe, M., Verma, A., Muller, J., Chaluvadi, V. S., Dustin, M. L., Hla, T., Elemento, O., Chipuk, J. E., & Schwab, S. R. (2017). Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature, 546, 158–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fang, V., Chaluvadi, V. S., Ramos-Perez, W. D., Mendoza, A., Baeyens, A., Rivera, R., Chun, J., Cammer, M., & Schwab, S. R. (2017). Gradients of the signaling lipid S1P in lymph nodes position natural killer cells and regulate their interferon-gamma response. Nature Immunology, 18, 15–25.

    Article  CAS  PubMed  Google Scholar 

  63. Wang, Z., Zheng, Y., Wang, F., Zhong, J., Zhao, T., Xie, Q., Zhu, T., Ma, F., Tang, Q., Zhou, B., & Zhu, J. (2020). Mfsd2a and Spns2 are essential for sphingosine-1-phosphate transport in the formation and maintenance of the blood-brain barrier. Science Advances, 6, eaay8627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vu, T. M., Ishizu, A. N., Foo, J. C., Toh, X. R., Zhang, F., Whee, D. M., Torta, F., Cazenave-Gassiot, A., Matsumura, T., Kim, S., Toh, S. E. S., Suda, T., Silver, D. L., Wenk, M. R., & Nguyen, L. N. (2017). Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets. Nature, 550, 524–528.

    Article  CAS  PubMed  Google Scholar 

  65. Chandrakanthan, M., Nguyen, T. Q., Hasan, Z., Muralidharan, S., Vu, T. M., Li, A. W. L., Le, U. T. N., Ha, H. T. T., Baik, S.-H., Tan, S. H., Foo, J. C., Wenk, M. R., Cazenave-Gassiot, A., Torta, F., Ong, W. Y., Chan, M. Y. Y., & Nguyen, L. N. (2021). Deletion of Mfsd2b impairs thrombotic functions of platelets. Nature Communications, 12, 2286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Okuniewska, M., Fang, V., Baeyens, A., Raghavan, V., Lee, J. Y., Littman, D. R., & Schwab, S. R. (2021). SPNS2 enables T cell egress from lymph nodes during an immune response. Cell Reports, 36, 109368.

    Article  CAS  PubMed  Google Scholar 

  67. Kawahara, A., Nishi, T., Hisano, Y., Fukui, H., Yamaguchi, A., & Mochizuki, N. (2009). The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science, 323, 524–527.

    Article  CAS  PubMed  Google Scholar 

  68. Kobayashi, N., Kawasaki-Nishi, S., Otsuka, M., Hisano, Y., Yamaguchi, A., & Nishi, T. (2018). MFSD2B is a sphingosine 1-phosphate transporter in erythroid cells. Scientific Reports, 8, 4969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Cater, R. J., Chua, G. L., Erramilli, S. K., Keener, J. E., Choy, B. C., Tokarz, P., Chin, C. F., Quek, D. Q. Y., Kloss, B., Pepe, J. G., Parisi, G., Wong, B. H., Clarke, O. B., Marty, M. T., Kossiakoff, A. A., Khelashvili, G., Silver, D. L., & Mancia, F. (2021). Structural basis of omega-3 fatty acid transport across the blood-brain barrier. Nature, 595, 315–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wood, C. A. P., Zhang, J., Aydin, D., Xu, Y., Andreone, B. J., Langen, U. H., Dror, R. O., Gu, C., & Feng, L. (2021). Structure and mechanism of blood-brain-barrier lipid transporter MFSD2A. Nature, 596, 444–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Murata, N., Sato, K., Kon, J., Tomura, H., Yanagita, M., Kuwabara, A., Ui, M., & Okajima, F. (2000). Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. The Biochemical Journal, 352(Pt 3), 809–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Obinata, H., Kuo, A., Wada, Y., Swendeman, S., Liu, C. H., Blaho, V. A., Nagumo, R., Satoh, K., Izumi, T., & Hla, T. (2019). Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. Journal of Lipid Research, 60, 1912–1921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Christoffersen, C., Obinata, H., Kumaraswamy, S. B., Galvani, S., Ahnstrom, J., Sevvana, M., Egerer-Sieber, C., Muller, Y. A., Hla, T., Nielsen, L. B., & Dahlback, B. (2011). Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proceedings of the National Academy of Sciences of the United States of America, 108, 9613–9618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu, M., Seo, J., Allegood, J., Bi, X., Zhu, X., Boudyguina, E., Gebre, A. K., Avni, D., Shah, D., Sorci-Thomas, M. G., Thomas, M. J., Shelness, G. S., Spiegel, S., & Parks, J. S. (2014). Hepatic apolipoprotein M (apoM) overexpression stimulates formation of larger apoM/sphingosine 1-phosphate-enriched plasma high density lipoprotein. The Journal of Biological Chemistry, 289, 2801–2814.

    Article  CAS  PubMed  Google Scholar 

  76. Ruiz, M., Okada, H., & Dahlback, B. (2017). HDL-associated ApoM is anti-apoptotic by delivering sphingosine 1-phosphate to S1P1 & S1P3 receptors on vascular endothelium. Lipids in Health and Disease, 16, 36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Ruiz, M., Frej, C., Holmer, A., Guo, L. J., Tran, S., & Dahlback, B. (2017). High-density lipoprotein-associated Apolipoprotein M limits endothelial inflammation by delivering Sphingosine-1-Phosphate to the Sphingosine-1-Phosphate Receptor 1. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 118–129.

    Article  CAS  PubMed  Google Scholar 

  78. Swendeman, S. L., Xiong, Y., Cantalupo, A., Yuan, H., Burg, N., Hisano, Y., Cartier, A., Liu, C. H., Engelbrecht, E., Blaho, V., Zhang, Y., Yanagida, K., Galvani, S., Obinata, H., Salmon, J. E., Sanchez, T., Di Lorenzo, A., & Hla, T. (2017). An engineered S1P chaperone attenuates hypertension and ischemic injury. Science Signaling, 10(492), eaal2722.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Bode, C., Sensken, S. C., Peest, U., Beutel, G., Thol, F., Levkau, B., Li, Z., Bittman, R., Huang, T., Tolle, M., van der Giet, M., & Graler, M. H. (2010). Erythrocytes serve as a reservoir for cellular and extracellular sphingosine 1-phosphate. Journal of Cellular Biochemistry, 109, 1232–1243.

    CAS  PubMed  Google Scholar 

  80. Kurano, M., & Yatomi, Y. (2018). Sphingosine 1-phosphate and atherosclerosis. Journal of Atherosclerosis and Thrombosis, 25, 16–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chun, J., Hla, T., Lynch, K. R., Spiegel, S., & Moolenaar, W. H. (2010). International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacological Reviews, 62, 579–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Foord, S. M., Bonner, T. I., Neubig, R. R., Rosser, E. M., Pin, J. P., Davenport, A. P., Spedding, M., & Harmar, A. J. (2005). International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacological Reviews, 57, 279–288.

    Article  CAS  PubMed  Google Scholar 

  83. Blaho, V. A., & Hla, T. (2014). An update on the biology of sphingosine 1-phosphate receptors. Journal of Lipid Research, 55, 1596–1608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Means, C. K., & Brown, J. H. (2009). Sphingosine-1-phosphate receptor signalling in the heart. Cardiovascular Research, 82, 193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, C., Kong, Y., Wang, H., Wang, S., Yu, H., Liu, X., Yang, L., Jiang, X., Li, L., & Li, L. (2009). Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. Journal of Hepatology, 50, 1174–1183.

    Article  CAS  PubMed  Google Scholar 

  86. Kono, Y., Nishiuma, T., Nishimura, Y., Kotani, Y., Okada, T., Nakamura, S., & Yokoyama, M. (2007). Sphingosine kinase 1 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-beta1. American Journal of Respiratory Cell and Molecular Biology, 37, 395–404.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, X., Ritter, J. K., & Li, N. (2018). Sphingosine-1-phosphate pathway in renal fibrosis. American Journal of Physiology. Renal Physiology, 315, F752–F756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Engelbrecht, E., Levesque, M. V., He, L., Vanlandewijck, M., Nitzsche, A., Niazi, H., Kuo, A., Singh, S. A., Aikawa, M., Holton, K., Proia, R. L., Kono, M., Pu, W. T., Camerer, E., Betsholtz, C., & Hla, T. (2020). Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. eLife, 9, e52690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ramos-Perez, W. D., Fang, V., Escalante-Alcalde, D., Cammer, M., & Schwab, S. R. (2015). A map of the distribution of sphingosine 1-phosphate in the spleen. Nature Immunology, 16, 1245–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hisano, Y., Kono, M., Cartier, A., Engelbrecht, E., Kano, K., Kawakami, K., Xiong, Y., Piao, W., Galvani, S., Yanagida, K., Kuo, A., Ono, Y., Ishida, S., Aoki, J., Proia, R. L., Bromberg, J. S., Inoue, A., & Hla, T. (2019). Lysolipid receptor cross-talk regulates lymphatic endothelial junctions in lymph nodes. The Journal of Experimental Medicine, 216, 1582–1598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shi, X., Wang, W., Li, J., Wang, T., Lin, Y., Huang, S., Kuver, A., Chen, C., Hla, T., Li, X., & Dai, K. (2019). Sphingosine 1-phosphate receptor 1 regulates cell-surface localization of membrane proteins in endothelial cells. Biochimica et Biophysica Acta—General Subjects, 1863, 1079–1087.

    Article  CAS  PubMed  Google Scholar 

  92. Wang, B., Dong, N., Wu, D., Fang, Y., Chen, J., Lin, Y., Bellusci, S., Zhang, J. S., Dai, K., & Chen, C. (2022). Sphingosine 1-phosphate receptor 1 governs endothelial barrier function and angiogenesis by upregulating endoglin signaling. Annals of Translational Medicine, 10(3), 136. https://doi.org/10.21037/atm-21-6679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hanson, M. A., Roth, C. B., Jo, E., Griffith, M. T., Scott, F. L., Reinhart, G., Desale, H., Clemons, B., Cahalan, S. M., Schuerer, S. C., Sanna, M. G., Han, G. W., Kuhn, P., Rosen, H., & Stevens, R. C. (2012). Crystal structure of a lipid G protein-coupled receptor. Science, 335, 851–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schulze, T., Golfier, S., Tabeling, C., Rabel, K., Graler, M. H., Witzenrath, M., & Lipp, M. (2011). Sphingosine-1-phospate receptor 4 (S1P(4)) deficiency profoundly affects dendritic cell function and TH17-cell differentiation in a murine model. The FASEB Journal, 25, 4024–4036.

    Article  CAS  PubMed  Google Scholar 

  95. Walzer, T., Chiossone, L., Chaix, J., Calver, A., Carozzo, C., Garrigue-Antar, L., Jacques, Y., Baratin, M., Tomasello, E., & Vivier, E. (2007). Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nature Immunology, 8, 1337–1344.

    Article  CAS  PubMed  Google Scholar 

  96. Jaillard, C., Harrison, S., Stankoff, B., Aigrot, M. S., Calver, A. R., Duddy, G., Walsh, F. S., Pangalos, M. N., Arimura, N., Kaibuchi, K., Zalc, B., & Lubetzki, C. (2005). Edg8/S1P5: An oligodendroglial receptor with dual function on process retraction and cell survival. The Journal of Neuroscience, 25, 1459–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Novgorodov, A. S., El-Alwani, M., Bielawski, J., Obeid, L. M., & Gudz, T. I. (2007). Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. The FASEB Journal, 21, 1503–1514.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Beibei Wang (Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University) for initial preparation and selection of reference papers and proofreading of the manuscript. This work is supported by the Natural Science Foundation of Zhejiang Province (LY20C070002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kezhi Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, Y., Dai, K. (2022). Sphingosine 1-Phosphate Metabolism and Signaling. In: Jiang, XC. (eds) Sphingolipid Metabolism and Metabolic Disease. Advances in Experimental Medicine and Biology, vol 1372. Springer, Singapore. https://doi.org/10.1007/978-981-19-0394-6_6

Download citation

Publish with us

Policies and ethics