Skip to main content

Physiological Traits Based Breeding to Achieve Higher Yield in Soybean Crop

  • Chapter
  • First Online:
Developing Climate Resilient Grain and Forage Legumes
  • 348 Accesses

Abstract

Currently, the feeding of 1.39 billion people of India can only be possible by doubling the current agricultural crop production, and this target has been heavily challenged by climate change and the environmental impact on agricultural systems. Soybean (Glycine max L. Merril) is the world’s most important and leading seed legume, contributing to 25% of the global edible oil, about two-thirds of the world’s protein concentrate for livestock feeding. At present, India ranks fifth in the area and production of soybean in the world. The rate of yield increase is not high enough to satisfy global demand for food (Godfray et al. Science (Washington, DC) 327:812–818, 2010). One strategy to increase the rate of genetic progress is the application of trait-based hybridization in breeding programs (Reynolds and Langridge, Curr Opin Plant Biol 31:162–171, 2016). The genetic progress would be attained by improving those physiological traits that theoretically have the highest positive impact on yield. There have been several studies revealing genetic differences in various physiological parameters ranging from pollen germination, canopy temperature, chlorophyll fluorescence, chlorophyll content, and leaf antioxidants. A strong correlation between traits and seed yield showed the possibility that improvements have occurred physiologically while selections were made for seed yield. Osmotic adjustment, accumulation and remobilization of stem reserves, superior photosynthesis, heat- and desiccation-tolerant enzymes, and so on are important physiological traits (PTs) in a breeding program either by direct selection or in the course of a substitute such as molecular markers. The key steps in physiological breeding are (a) crop design, (b) genetic resource exploration, (c) phenotyping mainly in field environments, (d) genetic analysis to enable marker-assisted breeding, (e) hybridization and progeny selection, (f) evaluation of genetic gains via multi-location testing systems, and (g) informatics services underpinning all activities. Thus, the present review urges the need for incorporating physiological breeding strategies into food legumes improvement pipelines; addresses the gap between breeders and physiologists; focuses on physiological traits that are to be targeted; yield gains in food legumes; the impact of abiotic stress and the importance of roots and root phenotyping in food legumes breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anjum SA, Farooq M, Wang LC, Xue LL, Wang SG, Wang L (2011) Gas exchange and chlorophyll synthesis of maize cultivars are enhanced by exogenously-applied glycinebetaine under drought conditions. Plant Soil Environ 577:326–331

    Article  Google Scholar 

  • Ao J, Fu J, Tian J, Yan X, Liao H (2010) Genetic variability for root morph-architecture traits and root growth dynamics as related to phosphorus efficiency in soybean. Funct Plant Biol 37:304–312

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    Article  CAS  PubMed  Google Scholar 

  • Bai H, Purcell LC (2018) Aerial canopy temperature differences between fast- and slow-wilting soya bean genotypes. J Agron Crop Sci 204:243–251

    Article  Google Scholar 

  • Bernard RL (1971) Two major genes for time of flowering and maturity in soybean. Crop Sci 11:242–244

    Article  Google Scholar 

  • Blad BL, Rosenberg NJ (1976) Measurement of crop temperature by leaf thermocouple, infrared thermometry, and remotely sensed thermal imagery. Agron J 68:635–641

    Article  Google Scholar 

  • Blum AJ, Mayer GG (1982) Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat. Field Crops Res 5:137–146

    Article  Google Scholar 

  • Brevedan RE, Egli DB, Leggett JE (1978) Influence of N nutrition on flower and pod abortion and yield of soybeans. Agron J 70:81–84

    Article  Google Scholar 

  • Bueckert RA, Clarke JM (2013) Review: annual crop adaptation to abiotic stress on the Canadian prairies: six case studies. Can J Plant Sci 93:375–385

    Article  Google Scholar 

  • Calviño PA, Sadras VO, Andrade FH (2003) Development, growth and yield of late-sown soybean in the southern Pampas. Eur J Agron 19:265–275

    Article  Google Scholar 

  • Carter TE Jr (1989) Breeding for drought tolerance in soybean: where do we stand? In: Pascale AJ (ed) Proc. World Soybean Conf., IV, Buenos Aires, Argentina. 5–9 March 1989, pp 1001–1008

    Google Scholar 

  • Cermak T, Curtin SJ, Gil-Humanes J, Cegan R, Kono TJY, Konecna E, Belanto JJ, Starker CG, Mathre JW, Greenstein RL (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta N, De B (2004) Antioxidant activity of piper betle L. leaf extract in vitro. Food Chem 88:219–224

    Article  CAS  Google Scholar 

  • De Bruin JL, Pedersen P (2008) Effect of row spacing and seeding rate on soybean yield. Agron J 100:704–710

    Article  Google Scholar 

  • de Felipe M, Gerde JA, Rotundo JL (2016) Soybean genetic gain in maturity groups III to V in Argentina from 1980 to 2015. Crop Sci 56:3066–3077

    Article  Google Scholar 

  • Djanaguiraman M, Prasad PVV (2010) Ethylene production under high temperature stress causes premature leaf senescence in soybean. Funct Plant Biol 37:1071–1084

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Schapaugh WT (2013) High day- or nighttime temperature alters leaf assimilation, reproductive success, and phosphatidic acid of pollen grain in soybean [Glycine max (L.) Merr.]. Crop Sci 53:1594–1604

    Article  Google Scholar 

  • Donald CM, Hamblin J (1976) The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv Agron 28:361–405. https://doi.org/10.1016/S0065-2113(08)60559-3

    Article  Google Scholar 

  • Edmeades GO, McMaster GS, White JW, Campos H (2004) Genomics and the physiologist: ridging the gap between genes and crop response. Field Crops Res 90:5–18

    Article  Google Scholar 

  • Egli DB (2005) Flowering, pod set and reproductive success in soya bean. J Agron Crop Sci 191:283–291

    Article  Google Scholar 

  • Egli DB (2011) Time and the productivity of agronomic and crop stems. Agron J 203:743–750

    Article  Google Scholar 

  • Egli DB, Bruening WP (2002a) Flowering and fruit set dynamics at phloem-isolated nodes in soybean. Field Crop Res 79:9–19

    Article  Google Scholar 

  • Egli DB, Bruening WP (2002b) Synchronous flowering and fruit set at phloem-isolated nodes in Soybean. Crop Sci 42:1535–1540

    Article  Google Scholar 

  • Emmons C, Peterson D (2001) Antioxidant activity and phenolic content of oat as affected by cultivar and location. Crop Sci 41:1676–1681

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res Int 22:4907–4921

    Article  PubMed  Google Scholar 

  • Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99

    Article  PubMed  Google Scholar 

  • Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci 11(1971):929–931

    Article  Google Scholar 

  • Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291

    Article  CAS  PubMed  Google Scholar 

  • Fitter AH (2002) Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 249–259

    Google Scholar 

  • Gahoonia TS, Ali O, Sarker A, Nielsen NE, Rahman MM (2006) Genetic variation in root traits and nutrient acquisition of lentil genotypes. J Plant Nutr 29:643–655

    Article  CAS  Google Scholar 

  • Gai J, Palmer RG, Fehr WR (1984) Bloom and Pod set in determinate and indeterminate soybeans grown in China. Agron J 76:979–984

    Article  Google Scholar 

  • Gao C (2018) The future of CRISPR technologies in agriculture. Nat Rev Mol Cell Biol 19:275–276

    Article  CAS  PubMed  Google Scholar 

  • Gaur PM, Krishnamurthy L, Kashiwagi J (2008) Improving drought-avoidance root traits in chickpea (Cicer arietinum L.)—Current status of research at ICRISAT. Plant Prod Sci 11:3–11

    Article  Google Scholar 

  • Gaur PM, Krishnamurthy L, Kashiwagi J (2015) Improving drought-avoidance root traits in chickpea (Cicer arietinum L)—current status of research at ICIRISAT. Plant Prod Sci 11:3–11

    Article  Google Scholar 

  • Gilbert ME, Medina V (2016) Drought adaptation mechanisms should guide experimental design. Trends Plant Sci 21:639–647

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Hadded L, Lawrence D, Muir JF et al (2010) Food security: the challenge of feeding 9 billion people. Science (Washington, DC) 327:812–818

    Article  CAS  Google Scholar 

  • Graham J, Ratnaparkhe MB, Powell W (2009) Molecular mapping and breeding of physiological traits. In: Kole C, Abbott AG (eds) Principal and practices of plant genomics. Molecular breeding. CRC Press, Boca Raton, FL, pp 217–241

    Google Scholar 

  • Grimaudv F, Renaut J, Dumont E, Sergeant K, Lucau-Danila A, Blervacq AS, Sellier H, Bahrman N, Lejeune-Henaut I, Delbreil B (2013) Exploring chloroplastic changes related to chilling and freezing tolerance during cold acclimation of pea (Pisum sativum L.). J Proteome 80:145–159

    Article  CAS  Google Scholar 

  • Großkinsky DK, Svensgaard J, Christensen S, Roitsch T (2015) Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype. knowledge gap. J Exp Bot 66:5429–5440

    Article  PubMed  Google Scholar 

  • Hall AJ, Richards RA (2013) Prognosis for genetic improvement of yield potential and water- limited yield of major grain crops. Field Crop Res 143:18–33

    Article  Google Scholar 

  • Hansen WR, Shibles R (1978) Seasonal log of the flowering and podding activity of field-grown soybeans. Agron J 70:47–50

    Article  Google Scholar 

  • Harris DS, Schapaugh WT, Kanemasu ET (1984) Genetic diversity in soybeans for leaf canopy temperature and the association of leaf canopy temperature and yield. Crop Sci 24:839–884

    Article  Google Scholar 

  • Heitholt JJ, Egli DB, Leggett JE (1986) Characteristics of reproductive abortion in soybean. Crop Sci 26:589–595

    Article  Google Scholar 

  • Huff A, Dybing CD (1980) Factors affecting shedding of flowers in soybean (Glycine max (L.) Merrill). J Exp Bot 31:751–762

    Article  CAS  Google Scholar 

  • Idso SB (1982) Non water stressed baseline: a key to measuring and interpreting plant water stress. Agric Meteorol 27:59–70

    Article  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1997) Chilling tolerance during emergence of cowpea associated with a dehydrin and slow electrolyte leakage. Crop Sci 37:1270–1277

    Article  Google Scholar 

  • Jackson P, Robertson M, Cooper M, Hammer G (1996) The role of physiological understanding in plant breeding; from a breeding perspective. Field Crops Res 49:11–37

    Article  Google Scholar 

  • Jiang H, Egli DB (1993) Shade induced changes in flower and Pod number and flower and fruit abscission in soybean. Agron J 85:221–225

    Article  Google Scholar 

  • Jiang Y, Bueckert R, Warkentin T, Davis AR (2018) High temperature effects on in vitro pollen germination and seed set in field pea. Can J Plant Sci 98:71–80

    CAS  Google Scholar 

  • Jin J, Liu X, Wang G, Mi L, Shen Z (2010) Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in northeast China. Field Crops Res 115:116–123

    Article  Google Scholar 

  • Jitendra K, Arbind CA, Ramesh KS, Aditya P (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Kakani VG, Prasad PVVP, Craufurd Q, Wheeler TR (2002) Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant Cell Environ 25:1651–1661

    Article  Google Scholar 

  • Kakani VG, Reddy KR, Koti S, Wallace TP, Prasad PVV, Reddy VR (2005) Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot 96:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Han Y, Torres-Jerez I, Wang M, Tang Y, Monteros M, Udvardi M (2011) System responses to long-term drought and re-watering of two contrasting alfalfa varieties Plant. J For Cell Mol Biol 68:871–889

    CAS  Google Scholar 

  • Kang BC, Yun JY, Kim ST, Shin Y, Ryu J, Choi M, Woo JW, Kim JS (2018) Precision genome engineering through adenine base editing in plants. Nat Plants 4:427–431

    Article  CAS  PubMed  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Gaur PM (2008) Rapid screening technique for canopy temperature status and its relevance to drought tolerance improvement in chickpea. J SAT Agric Res 6:105–104

    Google Scholar 

  • Khan HUR, Link W, Hocking TJ, Stoddard FL (2007) Evaluation of physiological traits for improving drought tolerance in faba bean (Vicia faba L.). Plant Soil 292:205–217

    Article  CAS  Google Scholar 

  • Khazaei H, Street K, Bari A, Mackay M, Stoddard FL (2013) The FIGS (focused identification of germplasm strategy) approach identifies traits related to drought adaptation in vicia faba genetic resources. PLoS One 8:e63107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klann TS, Black JB, Chellappan M, Safi A, Song L, Hilton IB, Crawford GE, Reddy TE, Gersbach CA (2017) Crispr-cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol 35:561–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koester RP, Skoneczka JA, Cary TR, Diers BW, Ainsworth EA (2014) Historical gains in soybean (glycine max merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. J Exp Bot 65:3311–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koester RP, Nohl BM, Diers BW, Ainsworth EA (2016) Has photosynthetic capacity increased with 80 years of soybean breeding? An examination of historical soybean cultivars. Plant Cell Environ 39:1058–1067

    Article  CAS  PubMed  Google Scholar 

  • Koti S, Reddy KR, Kakani VG, Zhao D, Reddy VR (2004) Soybean (Glycine max L.) pollen germination characteristics, flower and pollen morphology in response to enhanced ultraviolet-B radiation. Ann Bot 94:855–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai E, Sameshima R (2014) Genotypic differences in soybean yield responses to increasing temperature in a cool climate are related to maturity group. Agric For Meteorol 198:265–272

    Article  Google Scholar 

  • Kumudini S, Hume G, Chu G (2002) Genetic improvement in short season soybeans: II. Nitrogen accumulation, remobilization, partitioning. Crop Sci 42:141–145

    PubMed  Google Scholar 

  • Li M, Li X, Zhou Z, Wu P, Fang M, Pan X, Lin Q, Luo W, Wu G, Li H (2016) Reassessment of the four yield-related genes Gn1a, dep1, GS3, and IPA1 in rice using a CRISPR/Cas9 system Front. Plant Sci 7:377

    Google Scholar 

  • Liang Q, Cheng X, Mei M, Yan X, Liao H (2010) QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot 106:223–234. pmid:20472699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Link W, Balko C, Stoddard FL (2010) Inter hardiness in Faba bean: physiology and breeding. Field Crops Res 115:287–296

    Article  Google Scholar 

  • Liu X, Huang B (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci 40:503–510

    Article  CAS  Google Scholar 

  • Lopes MS, Reynolds MP, Manes Y, Singh RP, Crossa J (2012) Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a "historic" set representing 30 years of breeding. Crop Sci 52:1123–1131

    Article  Google Scholar 

  • Malcolm JH, Jose-Luis A, Robert P, Daniel C, Daniel M, Tianmin S, Jianping Z, Martin AJP (2013) Prospects of doubling global wheat yields. Food Energy Secur 2:34–48

    Article  Google Scholar 

  • Manschadi AM, Hammer GL, Christopher JT, deVoil P (2008) Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303:115–129

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorenes – a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • McKinney NV, Schapaugh WT, Kanemasu ET (1989a) Canopy temperature, seed yield, and vapor-pressure deficit relationships in soybean. Crop Sci 29:1038–1041

    Article  Google Scholar 

  • McKinney NV, Schapaugh WT, Kanemasu ET (1989b) Selection for canopy temperature differential in six populations of soybean. Crop Sci 29:255–259

    Article  Google Scholar 

  • Moffatt JM, Sears RG, Cox TS, Paulsen GM (1990) Wheat high-temperature tolerance during reproductive growth II. genetic-analysis of chlorophyll fluorescence. Crop Sci 30:886–889

    Article  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol 52:561–591. https://doi.org/10.1146/annurev.arplant.52.1.561

    Article  CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Monje O, Bugbee B (1992) Inherent limitations of nondestructive chlorophyll meters: a comparison of two types of meters. Hortic Sci 27(1):69–71

    CAS  Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philos Trans Royal Soc Lond B Biol Sci 281:277–297

    Article  Google Scholar 

  • Morrison MJ, Voldeng HD, Cober ER (1999a) Physiological changes from 58 years of genetics improvement of short-season soybean cultivars in Canada. Agron J 91:685–689

    Article  Google Scholar 

  • Morrison M, Voldeng H, Cober E (1999b) Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agron J 91:685–689

    Article  Google Scholar 

  • Mutava RN, Tuinstra MR, Kofoid MD, Yu J (2011) Characterization of sorghum genotypes for traits related to drought tolerance. Field Crops Res 123:10–18

    Article  Google Scholar 

  • Nerkar YS, Wilson D, Lawes DA (1981) Genetic variation in stomatal characteristics and behaviour, water use and growth of five Vicia faba L. Genotypes under contrasting soil moisture regimes. Euphytica 30:335–345

    Article  Google Scholar 

  • Novoa R, Loomis RS (1981) Nitrogen and plant production. Plant Soil 58:177–204

    Article  CAS  Google Scholar 

  • Oko BFD, Eneji AE, Binang W, Irshad M, Yamamoto S, Honna T, Endo T (2003) Effect of foliar application of urea on reproductive abscission and grain yield of soybean. J Plant Nutr 26:1223–1234

    Article  CAS  Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci U S A 112:8529–8536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry MAJ, Hawkesford MJ (2012) An integrated approach to crop genetic improvement. J Integr Plant Biol 54(4):250–259

    Article  PubMed  Google Scholar 

  • Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851–859

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27:595–607

    CAS  Google Scholar 

  • Puteh AB, Thuzar M, Mondal MMA, Abdullah NAPB, Halim MRA (2013) Soybean [Glycine max (L.) Merrill] seed yield response to high temperature stress during reproductive growth stages. Aust J Crop Sci 7:1472–1479

    Google Scholar 

  • Ray I, Townsend MS, Henning JA (1998) Variation for yield, water-use efficiency and canopy morphology among nine alfalfa germplasms. Crop Sci 38:1386–1390

    Article  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202. https://doi.org/10.1016/j.jplph.2004.01.013

    Article  CAS  Google Scholar 

  • Rehman AU, Malhotra RS, Bett K, Tar’an B, Bueckert R, Warkentin TD (2011) Mapping qtl associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. Crop Sci 51:450–463

    Article  Google Scholar 

  • Reynolds M, Langridge P (2016) Physiological breeding. Curr Opin Plant Biol 31:162–171

    Article  PubMed  Google Scholar 

  • Ries L, Purcell L, Carter TE, Edward JT (2012) Physiological traits contributing to differential canopy wilting in soybean under drought. Crop Sci 52(1):272–281

    Article  Google Scholar 

  • Rotundo JL, Borras L, De Bruin J, Pedersen P (2014) Soybean nitrogen uptake and utilization in Argentina and United States cultivars. Crop Sci 54:1153–1165

    Article  Google Scholar 

  • Saitoh K, Nishimura K, Kuroda T (2004) Comparison of leaf photosynthesis between wild and cultivated types of soybean. Plant Prod Sci 7:277–279

    Article  Google Scholar 

  • Salem MA, Kakani VG, Koti S, Reddy KR (2007) Pollen‐based screening of soybean genotypes for high temperatures. Crop Sci 47:219–231

    Article  Google Scholar 

  • Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A (2008) Nitrogen uptake, faxation and response to fertilizer nitrogen in soybeans: a Review. Field Crop Res 108:1–13

    Article  Google Scholar 

  • Sánchez FJ, Manzanares MA, De Andrés EF, Tenorio JL, Ayerbe L (2001) Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. Eur J Agron 15:57–70

    Article  Google Scholar 

  • Sander JD, Joung JK (2014) Crispr-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santachiara G, Borras L, Rotundo JL (2017a) Physiological processes leading to similar yield in contrasting soybean maturity groups. Agron J 109:158–167

    Article  CAS  Google Scholar 

  • Santachiara G, Borras L, Salvagiotti F, Gerde JA, Rotundo JL (2017b) Relative importance of biological nitrogen fixation and mineral uptake in high yielding soybean cultivars. Plant Soil 418:191–203

    Article  CAS  Google Scholar 

  • Shahid MA, Balal RM, Pervez MA, Abbas T, Ashfaq M, Ghazanfar U, Afzal M, Rashid A, Garcia-Sanchez F, Mattson NS (2012) Differential response of pea (Pisum sativum L.) genotypes to salt stress in relation to the growth, physiological attributes antioxidant activity and organic solutes. Aust J Crop Sci 6:828–838

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221. https://doi.org/10.1007/s10725-005-0002-2

    Article  CAS  Google Scholar 

  • Shimamura S, Nishimura T, Koshiba T, Yamamoto R, Hiraga S, Nakamura T, Komatsu S (2016) Effects of anti-auxins on secondary aerenchyma formation in flooded soybean hypocotyls. Plant Prod Sci 19:154–160

    Article  CAS  Google Scholar 

  • Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis and crop radiation use efficiency: a review. Crop Sci 29:90–98

    Article  Google Scholar 

  • Specht JE, Diers BW, Nelson RL, Francisco J, De Toledo F, Torrison JA, Grassini P (2014) Soybean. In: Smith S, Diers B, Specht J, Carver B (eds) Yield grains in major U.S Field Crop. ASA, CSSA, and SSSA, Madison, WI, pp 311–356

    Google Scholar 

  • Sponchiado BN, White JW, Castillo JA, Jones PG (1989) Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Exp Agric 25:249–257

    Article  Google Scholar 

  • Sthapit BR, Witcombe JR, Wilson JM (1995) Methods of selection for chilling tolerance in nepalese rice by chlorophyll fluorescence analysis. Crop Sci 35:90–94

    Article  Google Scholar 

  • Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186

    Article  Google Scholar 

  • Stones IR, Horton ML (1974) Estimating evapo-transpiration using canopy temperature: field evaluation. Agron J 66:450–455

    Article  Google Scholar 

  • Suhre JJ, Weidenbenner NH, Rowntree SC, Wilson EW, Naeve SL (2014) Soybean yield partitioning changes revealed by genetic gain and seeding rate interactions. Agron J 106:1631–1642. https://doi.org/10.2134/agronj14.0003

    Article  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology. Sinauer Associates Inc., Sunderlands, MA

    Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Schaik PH, Probst AH (1958) Effects of some environmental factors on flower production and reproductive efficiency in soybeans. Agron J 50:192–197

    Article  Google Scholar 

  • Waisel Y, Eshel A, Kafkafi U (2002) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, p 1120

    Google Scholar 

  • Wang C, Wu T, Sun S, Xu R, Ren J, Wu C, Han T (2016) Seventy five years of improvement of yield and agronomic traits of soybean cultivars released in the Yellow-Huai-Hai river valley. Crop Sci 56:2354–2364

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011

    Article  Google Scholar 

  • Xiao YG, Qian ZG, Wu K, Liu JJ, Xia XC (2012) Genetic gains in grain yield and physiological traits of winter wheat in Shandong province, China, from 1969 to 2006. Crop Sci 52:44–56

    Article  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice all rights reserved. Crop Sci 48:391–407

    Article  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of wxp1, a putative medicago truncatula ap2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (medicago sativa). Plant J 42:689–707

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, M., Nagar, S., Singh, A., Satpute, G.K. (2022). Physiological Traits Based Breeding to Achieve Higher Yield in Soybean Crop. In: Jha, U.C., Nayyar, H., Agrawal, S.K., Siddique, K.H.M. (eds) Developing Climate Resilient Grain and Forage Legumes. Springer, Singapore. https://doi.org/10.1007/978-981-16-9848-4_12

Download citation

Publish with us

Policies and ethics