Skip to main content

Lentil Breeding

  • Chapter
  • First Online:
Fundamentals of Field Crop Breeding

Abstract

Lentil (Lens culinaris Medikus) is important rainfed winter season grain legume for diversification of cereal-based cropping system worldwide. The crop originated in Near East and spread to different region establishing in wide range of agro-ecology. Lentil is cultivated in more than 50 countries. Lentil grains are rich sources of protein, prebiotic carbohydrates, micronutrients, and vitamins. Lentil is important staple food in regions with low income. The productivity of lentil is low due to poor seedling vigour, high flower drop, low pod set, poor dry matter accumulation, and susceptibility to biotic and abiotic stresses. Biotic and abiotic stresses induced by climate change pose challenge to lentil cultivation. Discovery of new genes and quantitative trait loci offer opportunity to breeders for improving lentil varieties for higher grain yield, nutritive value, and tolerance to biotic and abiotic stresses. In this chapter, we discuss the present challenges and opportunities for lentil improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A (1995) Variation in some cultural and physiological characters and host/pathogen interaction of Fusarium oxysporum f. sp. lentis, and inheritance of resistance to lentil wilt in Syria. PhD Thesis, Faculty of Agriculture, University of Aleppo, Syria

    Google Scholar 

  • Abbo S, Ladizinsky G (1991) Anatomical aspects of hybrid embryo abortion in the genus lens L. Bot Gaz 152:316–320. https://doi.org/10.1086/337895

    Article  Google Scholar 

  • Abbo S, Ladizinsky G (1994) Genetical aspects of hybrid embryo abortion in the genus Lens L. Heredity 72:193–200

    Google Scholar 

  • Abel GH (1969) Inheritance of the capacity for chloride inclusion and chloride exclusion by soybeans. Crop Sci 9:697–698

    Google Scholar 

  • Abraham R (2015) Lentil (Lens culinaris Medikus) current status and future prospect of production in Ethiopia. Adv Plant Agric Res 2(0004)

    Google Scholar 

  • Agrawal SC, Khare MN, Agrawal PS (1976) Field screening of lentil lines for resistance to rust. Ind Phytopathol 29:208

    Google Scholar 

  • Aldemir S, AteÅŸ D, Temel HY et al (2017) QTLs for iron concentration in seeds of the cultivated lentil (Lens culinaris Medic.) via genotyping by sequencing. Turk J Agric 41:243–255. https://doi.org/10.3906/tar-1610-33

    Article  CAS  Google Scholar 

  • Ali A, Johnson DL (1999) Association of growth habit and anthocyanin pigment with winter hardiness in lentil. Pak J Biol Sci 2:1292–1295

    Google Scholar 

  • Ali M, Dahan R, Mishra JP, Saxena NP (2000) Towards the more efficient use of wáter and nutrients in food legume cropping. In: Knight R (ed) Proc. 3rd Inter. Food Legumes Research Conf, vol 34. Kluwer Academic, Dordrecht, pp 99–105

    Google Scholar 

  • Allahmoradi P, Mansourifar C, Saiedi M et al (2013) Effect of different water deficiency levels on some antioxidants at different growth stages of lentil (Lens culinaris L.). Adv Environ Biol 7:535–543

    CAS  Google Scholar 

  • Al-Quraan NA, Al-Omari HA (2017) GABA accumulation and oxidative damage responses to salt, osmotic and H2O2 treatments in two lentil (Lens culinaris Medik) accessions. Plant Biosyst 151:148–157

    Google Scholar 

  • Al-Quraan NA, Al-Sharbati M, Dababneh Y et al (2014) Effect of temperature, salt and osmotic stresses on seed germination and chlorophyll contents in lentil (Lens culinaris Medik). Acta Hortic 1054:47–54

    Google Scholar 

  • Anjam MS, Ali A, Iqbal SM, Haqqani AM (2005) Evaluation and correlation of economically important traits in exotic germplasm of lentil. Int J Agric Biol 7(6):959–961

    Google Scholar 

  • Ashraf M, Chishti SN (1993) Waterlogging tolerance of some accessions of lentil (Lens culinaris Medic.). Trop Agric 70:60–60

    Google Scholar 

  • Aslam M, Maqbool MA, Zaman QU et al (2017) Comparison of different tolerance indices and PCA biplot analysis for assessment of salinity tolerance in lentil (Lens culinaris) genotypes. Int J Agric Biol 19(3):470–478

    CAS  Google Scholar 

  • Ates D, Sever T, Aldemir S et al (2016) Identification QTLs controlling genes for Se uptake in lentil seeds. PLoS One 11:e0149210

    PubMed  PubMed Central  Google Scholar 

  • Ates D, Aldemir S, Yagmur B et al (2018) QTL mapping of genome regions controlling manganese uptake in lentil seed. G3 8:1409–1416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal R, Priya S, Dikshit HK et al (2021) Growth and antioxidant responses in iron-biofortified lentil under cadmium stress. Toxics 9:182. https://doi.org/10.3390/toxics9080182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrios A, Kahraman A, Aparicio T et al (2007) November. Preliminary identification of QTLS for winter hardiness, frost tolerance and other agronomic characters in lentil (Lens culinaris Medik.) for Castilla y León (SPAIN) region. In: Proceedings of the 6th European conference on gain legumes, Lisbon, pp 12–16

    Google Scholar 

  • Barrios A, Martin-Sanz A, Ramos S et al (2010) Allele-specific differential expression of transcripts potentially involved in cold tolerance QTL in lentil revealed by bulked extremes SuperTag digital gene expression (BE-STDGE) profiling and qRT-PCR. In: Proceedings of the 5th international food legumes research conference and 7th European conference on grain legumes, Antalya, pp 26–30

    Google Scholar 

  • Barrios A, Caminero C, García P, Krezdorn N, Hoffmeier K, Winter P, De la Vega MP (2017) Deep super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.). BMC Plant Biol 17(1):1–15

    Google Scholar 

  • Barilli E, Moral J, Aznar-Fernández T, Rubiales D (2020) Resistance to anthracnose (Colletotrichum lentis, race 0) in Lens spp. germplasm. Agron 10(11):1799

    CAS  Google Scholar 

  • Barrios A, Aparicio T, Rodríguez MJ et al (2016) Winter sowing of adapted lines as a potential yield increase strategy in lentil (Lens culinaris Medik.). Spanish. J Agric Res 14(2):9

    Google Scholar 

  • Barulina OH (1930) Lentil of USSR and of other countries. Bull Appl Bot Genet Pl Breed 40:1–319

    Google Scholar 

  • Basu PS, Srivastava M, Singh P et al (2015) High-precision phenotyping under controlled versus natural environments. In: Phenomics in crop plants: trends, options and limitations. Springer, New Delhi, pp 27–40

    Google Scholar 

  • Baute GJ, Dempewolf H, Reisenberg LH (2015) Using genomic approaches to unlock the potential of CWR for crop adaptation to climate change. In: Redden R, Yadav SS, Maxted M, Dulloo E, Guarino L, Smith P (eds) Crop wild relatives and climate change. Wiley-Blackwell, Hoboken, NJ, pp 268–280

    Google Scholar 

  • Bayaa B, Erskine W, Hamdi A (1994) Response of wild lentil to Ascochyta fabae f.sp. lentis from Syria. Genet Resour Crop Evol 41:61–65. https://doi.org/10.1007/BF00053049

    Article  Google Scholar 

  • Bayaa B, Erskine W, Hamdi A (1995) Evaluation of a wild lentil collection for resistance to vascular wilt. Genet Resour Crop Evol 42(3):231–235

    Google Scholar 

  • Bezeda MV (1980) Effect of environmental conditions on lentil seeds. Unpublished M.Sc. thesis, University of Ottawa, Ottawa, ON

    Google Scholar 

  • Bhadauria V, Ramsay L, Bett KE et al (2017) QTL mapping reveals genetic determinants of fungal disease resistance in the wild lentil species Lens ervoides. Sci Rep 7:3231. https://doi.org/10.1038/s41598-017-03463-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhandari K, Siddique KH, Turner NC et al (2016) Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. J Crop Improv 30:118–151

    CAS  Google Scholar 

  • Bhatty RS (1988) Composition and quality of lentil (Lens culinaris Medik): a review. Can Inst Food Sci Technol J 21:144–160

    CAS  Google Scholar 

  • Biju S, Fuentes S, Gupta D (2017) Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Plant Physiol Biochem 119:250–264

    CAS  PubMed  Google Scholar 

  • Blancquaert D, Storozhenko S, Loizeau K et al (2010) Folates and folic acid: from fundamental research toward sustainable health. Crit Rev Plant Sci 29:14–35

    CAS  Google Scholar 

  • Boye J, Zare F, Pletch A (2010) Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res Int 43:414–431

    CAS  Google Scholar 

  • Chakraborty U, Pradhan D (2010) Biochemical responses of lentil (Lens culinaris Medik.) to elevated temperature stress. Res J Pharmaceut Biol Chem Sci 1(3):575–585

    CAS  Google Scholar 

  • Chauhan MP, Singh IS (1995) Inheritance of protein content in lentil (Lens culinaris Medik.). Legume Res 18:5–8

    Google Scholar 

  • Chen YL, Djalovic I, Rengel Z (2015) Phenotyping root traits. In: Kumar J, Pratap A, Kumar S (eds) Phenomics of crop plants: trends, options and limitations. Springer, New Delhi, pp 102–128

    Google Scholar 

  • Chen S, Guo Y, Sirault X et al (2019) Nondestructive phenomic tools for the prediction of heat and drought tolerance at anthesis in Brassica species. Plant Phenom 2019:3264872

    CAS  Google Scholar 

  • Choudhury DR, Tarafdar S, Das M et al (2012) Screening lentil (Lens culinaris Medik.) germplasms for heat tolerance. Trends Biosci 5(2):143–146

    Google Scholar 

  • Chung HJ, Liu Q, Hoover R (2009) Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydr Polym 75:436–447

    CAS  Google Scholar 

  • Cohen D, Ladizinsky G, Ziu M et al (1984) Rescue of interspecific Lens hybrids by means of embryo culture. Plant Cell Tiss Org Cult 3:343–347

    CAS  Google Scholar 

  • Covell S, Ellis RH, Roberts EH et al (1986) The influence of temperature on seed germination rate in grain legumes: I. A comparison of chickpea, lentil, soyabean and cowpea at constant temperatures. J Exp Bot 37:705–715

    Google Scholar 

  • Coyne SM, Rogers AA, Zurcher JD et al (2020) Does time spent using social media impact mental health?: an eight year longitudinal study. Comput Hum Behav 104:106–160

    Google Scholar 

  • Cubero JI (1981) Origin, taxonomy and domestication. In: Webb C, Hawtin G (eds) Lentils. Commonwealth Agricultural Bureaux, England, pp 15–38

    Google Scholar 

  • Cubero JI (1984) Taxonomy, distribution and evolution of the lentil and its wild relatives. In: Genetic resources and their exploitation—chickpeas, faba beans and lentils. Springer, Dordrecht, pp 187–203

    Google Scholar 

  • Cubero JI, De La Vega MP, Fratini R (2009) Origin, phylogeny, domestication and spread. In: The lentil: botany, production and uses, pp 13–33

    Google Scholar 

  • Dadu RHR, Ford R, Sambasivam P et al (2017) A novel Lens orientalis resistance source to the recently evolved highly aggressive Australian Ascochyta lentis isolates. Front Plant Sci 8:1038. https://doi.org/10.3389/fpls.2017.01038

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai A (2011) Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J Geophys Res Atmos 116:D12

    Google Scholar 

  • Das R, Nath R, Dikshit HK (2017) Host resistance of lentil genotypes against Stemphylium blight caused by Stemphylium botryosum Wallr. In lower gangetic alluvial zone of West Bengal, India. J Mycopathol Res 55(2):169–172

    Google Scholar 

  • De Almeida Costa GE, da Silva Q-MK, Reis SMPM et al (2006) Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem 94(3):327–330

    Google Scholar 

  • De Benoist B (2008) Conclusions of a WHO Technical Consultation on folate and vitamin B12 deficiencies. Food Nutr Bull 29(2_suppl 1):S238–S244

    PubMed  Google Scholar 

  • Delahunty A, Nuttall J, Nicolas M et al (2015) Genotypic heat tolerance in lentil. In: Proceedings of the 17th ASA Conference, pp 20–24

    Google Scholar 

  • Dhanda SS, Sethi GS, Behl RK (2004) Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci 190(1):6–12

    Google Scholar 

  • Dikshit HK, Singh A, Singh D et al (2016) Tagging and mapping of SSR markers for rust resistance gene in lentil (Lens culinaris ssp. culinaris). Indian J Exp Bot 54:394–399

    CAS  Google Scholar 

  • Dissanayake R, Kahrood HV, Dimech AM et al (2020) Development and application of image-based high-throughput phenotyping methodology for salt tolerance in lentils. Agronomy 10(12):1992

    CAS  Google Scholar 

  • Dixit P, Dubey DK (1986) Karyotype study in lentil. LENS Newslett 13:8–10

    Google Scholar 

  • Ekanayake IJ, Otoole JC, Garrity DP et al (1985) Inheritance of root characters and their relations to drought resistance in rice 1. Crop Sci 25:927–933

    Google Scholar 

  • El-Ashkar A, Sarker A, Haddad N et al (2003) Registration of ‘Idlib-2’ Lentil. Crop Sci 43(2):728–729

    Google Scholar 

  • Ellis RH, Barrett S (1994) Alternating temperatures and rate of seed germination in lentil. Ann Bot 74(5):519–524

    Google Scholar 

  • Emami MK (1996) Genetic mapping in lentil (Lens culinaris Medik.). Doctoral dissertation, IARI, Division of Genetics, New Delhi

    Google Scholar 

  • Emami MK, Sharma B (1996a) Confirmation of digenic inheritance of cotyledon colour in lentil (Lens culinaris). Ind J Genet Plant Breed 56:563–568

    Google Scholar 

  • Emami MK, Sharma B (1996b) Digenic control of cotyledon colour in lentil (Lens culinaris). Ind J Genet Plant Breed 56(3):357–361

    Google Scholar 

  • Emami MK, Sharma B (1999) Linkage between three morphological markers in lentil. Plant Breed 118(6):579–581

    Google Scholar 

  • Emami MK, Sharma B (2000) Inheritance of black testa colour in lentil (Lens culinaris Medik.). Euphytica 115:43–47

    Google Scholar 

  • Erskine W, Sarker A (1997) Bangladesh in a big way—and the results have been satisfying. ICARDA has been helping breed the varieties of the future. ICARDA Caravan 6:8–10

    Google Scholar 

  • Erskine W, Meyveci K, Izgin N (1981) Screening a world lentil collection for cold tolerance. Lens Newslett 8:5–8

    Google Scholar 

  • Erskine W, Adham Y, Holly L (1989) Geographic distribution of variation in quantitative traits in a world lentil collection. Euphytica 43(1):97–103

    Google Scholar 

  • Erskine W, Saxena NP, Saxena MC (1993) Iron deficiency in lentil: yield loss and geographic distribution in a germplasm collection. Plant and Soil 151(2):249–254

    CAS  Google Scholar 

  • Erskine W, Hussain A, Tahir M et al (1994) Field evaluation of a model of photothermal flowering responses in a world lentil collection. Theor Appl Genet 88:423–428

    CAS  PubMed  Google Scholar 

  • Erskine HE, Norman RE, Ferrari AJ, Chan GC, Copeland WE, Whiteford HA, Scott JG (2016) Long-term outcomes of attention-deficit/hyperactivity disorder and conduct disorder: a systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry 55(10):841–850

    PubMed  Google Scholar 

  • Eujayl I, Baum M, Powell W et al (1998) A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97(1–2):83–89. https://doi.org/10.1007/s001220050869

    Article  CAS  Google Scholar 

  • Eujayl I, Erskine W, Baum M et al (1999) Inheritance and linkage analysis of frost injury in lentil. Crop Sci 39(3):639–642

    Google Scholar 

  • Eujayl I, Erskine W, Bayaa B et al (2006) Fusarium vascular wilt in lentil: inheritance and identification of DNA markers for resistance. Plant Breed 117:497–499. https://doi.org/10.1111/j.1439-0523.1998.tb01982.x

    Article  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72(4):673–689

    CAS  PubMed  Google Scholar 

  • FAOSTAT (2018) Statistical databases. Food and Agriculture Organization of the United Nations, Italy. http://www.fao.org/faostat/en/#data/QC. Accessed 30 July 2020

  • Fedoruk MJ, Vandenberg A, Bett KE (2013) Quantitative trait loci analysis of seed quality characteristics in lentil using single nucleotide polymorphism markers. Plant Genome 6(3):1–10

    Google Scholar 

  • Ferguson M (2000) Lens spp: conserved resources, priorities for collection and future prospects. In: Linking research and marketing opportunities for pulses in the 21st century. Springer, Dordrecht, pp 613–620

    Google Scholar 

  • Ferguson ME, Robertson LD, Ford-Lloyd BV et al (1998) Contrasting genetic variation amongst lentil landraces from different geographical origins. Euphytica 102:265–273

    CAS  Google Scholar 

  • Fernández-Aparicio M, Sillero JC, Pérez-DeLuque A et al (2008) Identification of sources of resistance to crenate broomrape (Orobanche crenata) in Spanish lentil (Lens culinaris) germplasm. Weed Res 48:85–94

    Google Scholar 

  • Fernández-Aparicio M, Sillero JC, Rubiales D (2009) Resistance to broomrape in wild lentils (Lens spp.). Plant Breed 128(3):266–270

    Google Scholar 

  • Fernandez-Orozco R, Gallardo-Guerrero L, Hornero-Méndez D (2013) Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophyll esterification. Food Chem 141(3):2864–2872

    CAS  PubMed  Google Scholar 

  • Ford R, Pang ECK, Taylor PWJ (1999) Genetics of resistance to Ascochyta blight (A. lentis) of lentil and the identification of closely linked RAPD markers. Theor Appl Genet 98:93–98. https://doi.org/10.1023/a:1003097600701

    Article  CAS  Google Scholar 

  • Fratini R, Ruiz ML (2006) Interspecific hybridization in the genus Lens applying in vitro embryo rescue. Euphytica 150:271–280

    CAS  Google Scholar 

  • Fratini R, Ruiz ML, Perez de la Vega M (2004) Intra-specific and inter-sub-specific crossing in lentil (Lens culinaris Medik.). Can J Plant Sci 84:981–986

    Google Scholar 

  • Fratini R, Duran Y, Garcia P et al (2007) Identification of quantitative trait loci (QTL) for plant structure, growth habit and yield in lentil. Span J Agric Res 5:348–356

    Google Scholar 

  • Gahoonia TS, Ali O, Sarker A et al (2005) Root traits, nutrient uptake, multi-location grain yield and benefit–cost ratio of two lentil (Lens culinaris, Medikus.) varieties. Plant and Soil 272:153–161. https://doi.org/10.1007/s11104-004-4573-x

    Article  CAS  Google Scholar 

  • Gahoonia TS, Ali O, Sarker A, Nielsen NE, Rahman MM (2006) Genetic variation in root traits and nutrient acquisition of lentil genotypes. J Plant Nutr 29(4):643–655

    CAS  Google Scholar 

  • Ganesan K, Xu B (2017) Polyphenol-rich lentils and their health promoting effects. Int J Mol Sci 18(11):2390

    PubMed  PubMed Central  Google Scholar 

  • Gaur PM, Samineni S, Krishnamurthy L et al (2014) High temperature tolerance in grain legumes. In: International Food Legume Res Conference VI. University of Saskatchewan, Saskatoon

    Google Scholar 

  • Ghassemi-Golezani K, Mahmoodi-Yengabad F (2012) Physiological responses of lentil (Lens culinaris Medik.) to salinity. Int J Agric Crop Sci 4:1531–1535

    Google Scholar 

  • Ghosh S, Watson A, Gonzalez-Navarro OE et al (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13:2944–2963

    CAS  PubMed  Google Scholar 

  • Gill AS, Malhotra RS (1980) Inheritance of flower colour and flower number per inflorescence in lentils. Lens 7:15–19

    Google Scholar 

  • Gökçay D (2012) Physiological and biochemical screening of different Turkish Lentil (Lens culinaris M.) cultivars under drought stress condition (Master’s thesis)

    Google Scholar 

  • Gorim LY, Vandenberg A (2017a) Evaluation of wild lentil species as genetic resources to improve drought tolerance in cultivated lentil. Front Plant Sci 8:1129

    PubMed  PubMed Central  Google Scholar 

  • Gorim LY, Vandenberg A (2017b) Root traits, nodulation and root distribution in soil for five wild lentil species and Lens culinaris (medik.) grown under well-watered conditions. Front Plant Sci 8:1–13

    Google Scholar 

  • Grusak MA (2009) Nutritional and health-beneficial quality. In: The lentil: botany, production and uses, vol 1418, p 368

    Google Scholar 

  • Guan R, Chen J, Jiang J et al (2014) Mapping and validation of a dominant salt tolerance gene in the cultivated soybean (Glycine max) variety Tiefeng 8. Crop J 2(6):358–365

    Google Scholar 

  • Gupta PK, Bahl JR (1983) Cytogenetics and origin of some pulse crops. In: Swaminathan MS, Gupta PK, Sinha U (eds) Cytogenetics of crop plants. MacMillan, New Delhi, pp 405–440

    Google Scholar 

  • Gupta D, Sharma SK (2005) Embryo-ovule rescue technique for overcoming post-fertilization barriers in interspecific crosses of Lens. J Lentil Res 2:27–30

    Google Scholar 

  • Gupta D, Sharma SK (2006) Evaluation of wild Lens taxa for agromorphological traits, fungal diseases and moisture stress in northwestern Indian hills. Genet Res Crop Evol 53:1233–1241

    Google Scholar 

  • Gupta PK, Singh J (1981) Standard karyotype in lentil var. Pant L-639. LENS 8:23

    Google Scholar 

  • Gupta D, Taylor PW, Inder P et al (2012) Integration of EST-SSR markers of Medicago truncatula into intraspecific linkage map of lentil and identification of QTL conferring resistance to Ascochyta blight at seedling and pod stages. Mol Breed 30:429–439

    CAS  Google Scholar 

  • Gupta DS, Cheng P, Sablok G et al (2016) Development of a panel of unigene-derived polymorphic EST–SSR markers in lentil using public database information. Crop J 4(5):425–433

    Google Scholar 

  • Gupta S, Singh A, Dikshit HK et al (2018) Assessment of total phenol content, total flavonoid content and anti-oxidant capacity in exotic lentil germplasm. Chem Sci Rev Lett 7(26):459–463

    CAS  Google Scholar 

  • Gupta D, Dadu RHR, Sambasivam P et al (2019) Toward climate-resilient lentils: challenges and opportunities. In: Genomic designing of climate-smart pulse crops. Springer, Cham, pp 165–234

    Google Scholar 

  • Gupta S, Das S, Dikshit HK et al (2021a) Genotype by environment interaction effect on grain iron and zinc content of Indian and Mediterranean lentil genotypes. Genotypes Agron 11:1761. https://doi.org/10.3390/agronomy11091761

    Article  CAS  Google Scholar 

  • Gupta S, Kushwah A, Singh A et al (2021b) Nutritional profiling and antioxidant assessment of Indian and exotic lentil accessions. Indian J Genet 81:440–449. https://doi.org/10.31742/IJGPB.81.3.11

    Article  Google Scholar 

  • Hadded NI, Boggo TP, Muchibauer FJ (2004) Genetic variation of six agronomic characters in three lentil (Lens culinaris Medik.) crosses. Euphytica 31:113–120

    Google Scholar 

  • Hamdi A, Erskine W (1996) Reaction of wild species of the genus Lens to drought. Euphytica 91:173–179

    Google Scholar 

  • Hamdi A, Erskine W, Gates P (1991) Relationships among economic characters in lentil. Euphytica 57:109–116

    Google Scholar 

  • Hamwieh A, Xu D (2008) Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans. Breed Sci 58:355–359

    Google Scholar 

  • Hamwieh A, Udupa SM, Choumane W et al (2005) A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and localization of Fusarium vascular wilt resistance. Theor Appl Genet 110:669–677

    CAS  PubMed  Google Scholar 

  • Hamwieh A, Tuyen DD, Cong H et al (2011) Identification and validation of a major QTL for salt tolerance in soybean. Euphytica 179:451–459

    Google Scholar 

  • Hanson MG, Zahradka P, Taylor CG (2014) Lentil-based diets attenuate hypertension and large-artery remodelling in spontaneously hypertensive rats. Br J Nutr 111(4):690–698

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. Abio Stress Plant Res App Agric 13:169–205

    Google Scholar 

  • Havey MJ, Muehlbauer FJ (1989) Linkages between restriction fragment length, isozyme, and morphological markers in lentil. Theor Appl Genet 77:395–401. https://doi.org/10.1007/BF00305835

    Article  CAS  PubMed  Google Scholar 

  • Hawtin GC, Singh KB, Saxena MC (1978) Some recent developments in the understanding and improvement of chickpea and lentil. In: International legume conference, Royal Botanical Gardens, Kew, England, 31 July–5 Aug 1978

    Google Scholar 

  • Hefni M, Öhrvik V, Tabekha MM et al (2010) Folate content in foods commonly consumed in Egypt. Food Chem 121:540–545

    CAS  Google Scholar 

  • Hossain MS, Alam MU, Rahman A (2017) Use of iso-osmotic solution to understand salt stress responses in lentil (Lens culinaris Medik.). S Afr J Bot 113:346–354

    CAS  Google Scholar 

  • Hura T, Hura K, Grzesiak S (2009) Physiological and biochemical parameters for identification of QTLs controlling the winter triticale drought tolerance at the seedling stage. Plant Physiol Biochem 47:210–214

    CAS  PubMed  Google Scholar 

  • Idrissi O, Van Damme P (2018) Application of extended photoperiod to lentil (Lens culinaris Medik.) segregating genetic material and wild accessions (L. orientalis): towards accelerated (pre-) breeding for rapid improved-variety development. In: Proceedings of the international conference on scientific innovation for a sustainable development of African agriculture, Ghent, Belgium, 30-31/08/2018

    Google Scholar 

  • Idrissi O, Udupa SM, De Keyser E et al (2016) Identification of quantitative trait loci controlling root and shoot traits associated with drought tolerance in a lentil (Lens culinaris Medik.) recombinant inbred line population. Front Plant Sci 7:1174

    PubMed  PubMed Central  Google Scholar 

  • Idrissi O, Sahri A, Udupa S et al (2019) Single seed descent under extended photoperiod as a simple, rapid and efficient breeding method for accelerated genetic gain in lentil. In: Proceedings of the 3rd International Legume Society Conference, Poznan, Poland, 21-24/05/2019

    Google Scholar 

  • Islam MR, Nessa B, Haque MM et al (2009) Effect of soil flooding stress on morphology and yield of five lentil (Lens culinaris Medik.) genotypes. IUP J Soil Water Sci 2:48–57

    Google Scholar 

  • Jawad M, Malik SR, Sarwar M et al (2019) Genetic analysis of lentil (Lens culinaris) exotic germplasm to identify genotypes suitable for mechanical harvesting. Pak J Agric Res 32:152–158

    Google Scholar 

  • Jayasundara HPS, Thomson BD, Tang C (1997) Responses of cool season grain legumes to soil abiotic stresses. Adv Agron 63:77–151

    Google Scholar 

  • Jenkins DJ, Kendall CW, Augustin LS et al (2012) Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med 172:1653–1660

    CAS  PubMed  Google Scholar 

  • Jha AB, Ashokkumar K, Diapari M et al (2015) Genetic diversity of folate profiles in seeds of common bean, lentil, chickpea and pea. J Food Compos Anal 42:134–140

    CAS  Google Scholar 

  • Jha AB, Gali KK, Zhang H et al (2020) Folate profile diversity and associated SNPs using genome wide association study in pea. Euphytica 216:1–16

    Google Scholar 

  • Johnson CR, Combs GF Jr, Thavarajah P (2013) Lentil (Lens culinaris L.): a prebiotic-rich whole food legume. Food Res Int 51:107–113

    CAS  Google Scholar 

  • Johnson CR, Thavarajah P, Fenlason A et al (2015) A global survey of low-molecular weight carbohydrates in lentils. J Food Compos Anal 44:178–185

    CAS  Google Scholar 

  • Kamboj RK, Pandey MP, Chaube HS (1990) Inheritance of resistance to Fusarium wilt in Indian lentil germplasm (Lens culinaris Medik.). Euphytica 50(2):113–117

    Google Scholar 

  • Kahraman A, Kusmenoglu I, Aydin N et al (2004) Genetics of winter hardiness in 10 lentil recombinant inbred line populations. Crop Sci 44:5–12

    Google Scholar 

  • Kahraman A, Demirel U, Ozden M et al (2010) Mapping of QTLs for leaf area and the association with winter hardiness in fall-sown lentil. Afr J Biotechnol 9:8515–8519

    Google Scholar 

  • Kang UG, Choi JS, Kim JJ et al (2017) Yield potentials of rice and soybean as affected by cropping systems in mid-mountainous paddy soils of Korea. Korean J Soil Sci Fertil 50:259–274

    CAS  Google Scholar 

  • Kannainyan J, Nene YL (1976) Reaction of lentil germplasm and cultivars against three root pathogens. Ind J Agril Sci 46:165–167

    Google Scholar 

  • Kannaiyan J, Nene YL (1975) Note on the effect of sowing dates on the reaction of 12 lentil varieties to wilt disease. Madras Agric J 62:240

    Google Scholar 

  • Kaur S, Cogan NO, Stephens A et al (2014) EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theor Appl Genet 127:703–713. https://doi.org/10.1007/s00122-013-2252-0

    Article  CAS  PubMed  Google Scholar 

  • Khare MN (1981) Diseases of lentil. In: Webb C, Hawtin G (eds) Lentils. Commonwealth Agricultural Bureaux, England, pp 163–172

    Google Scholar 

  • Khare MN, Agrawal SC (1978) Lentil rust survey in Madhya Pradesh. In: Paper presented in All India Pulses Workshop held at Baroda

    Google Scholar 

  • Khare MN, Agrawal SC, Jain AC (1979) Lentil diseases and their control. Technical Bulletin. JNKVV, Jabalpur

    Google Scholar 

  • Khazaei H, Caron CT, Fedoruk M et al (2016) Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the world’s agro-ecological zones. Front Plant Sci 7:1093. https://doi.org/10.3389/fpls.2016.01093

    Article  PubMed  PubMed Central  Google Scholar 

  • Khazaei H, Podder R, Caron CT et al (2017) Marker–trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant Genome 10(2):1

    CAS  Google Scholar 

  • Khazaei H, Fedoruk M, Caron CT et al (2018) Single nucleotide polymorphism markers associated with seed quality characteristics of cultivated lentil. Plant Genome 11:1. https://doi.org/10.3835/plantgenome2017.06.0051

    Article  CAS  Google Scholar 

  • Kissinger G (2016) Pulse crops and sustainability: a framework to evaluate multiple benefits. http://www.fao.org/pulses

  • Kokten K, Karakoy T, Bakoglu A et al (2010) Determination of salinity tolerance of some lentil (Lens culinaris M.) varieties. J Food Agric Environ 8(1):140–143

    Google Scholar 

  • Kulshrestha DD, Vallabhacharyulu D (1985) Taxonomy and pathogenicity of Ascochyta spp. infecting gram, pea and lentil. Ind Phytopathol 38:598

    Google Scholar 

  • Kumar Y (2002) Inheritance and linkage of genes for morphological traits in lentil (Lens culinaris Medik.). Doctoral dissertation, PhD Thesis, CCS University, Meerut, India

    Google Scholar 

  • Kumar A, Elston J (1992) Genotypic differences in leaf water relations between Brassica juncea and B. napus. Ann Bot 70:3–9

    Google Scholar 

  • Kumar J, Solanki RK (2014) Evaluation of germplasm accessions for agro-morphological traits in lentil. J Food Legum 27:275

    Google Scholar 

  • Kumar Y, Mishra SK, Tyagi MC, Sharma B (2005) Inheritance of pod size in lentil (Lens culinaris Medik.). J Lentil Res 2:31–33

    Google Scholar 

  • Kumar S, Imtiaz M, Aditya P et al (2011) Distant hybridization and alien gene introgression in food legumes. In: Pratap A, Kumar J (eds) Biology and breeding of legume crops. CAB International, London, pp 81–110

    Google Scholar 

  • Kumar J, Basu PS, Srivastava E et al (2012) Phenotyping of traits imparting drought tolerance in lentil. Crop Pasture Sci 63:547–554

    CAS  Google Scholar 

  • Kumar J, Kant R, Kumar S et al (2016a) Heat tolerance in lentil under field conditions. Legume Genom Genet 7:1

    Google Scholar 

  • Kumar J, Singh J, Kanaujia R et al (2016b) Protein content in wild and cultivated taxa of lentil (Lens culinaris ssp. culinaris Medikus). Indian J Genet Plant Breed 76:631–634

    Google Scholar 

  • Kumar J, Basu PS, Gupta S et al (2018a) Physiological and molecular characterisation for high temperature stress in Lens culinaris. Funct Plant Biol 45:474–487

    CAS  PubMed  Google Scholar 

  • Kumar S, Choudhary AK, Rana KS et al (2018b) Bio-fortification potential of global wild annual lentil core collection. PLoS One 13:e0191122

    PubMed  PubMed Central  Google Scholar 

  • Kumar H, Singh A, Dikshit HK et al (2019) Genetic dissection of grain iron and zinc concentrations in lentil (Lens culinaris Medik.). J Genet 98(3):1–14. https://doi.org/10.1007/s12041-019-1112-3

    Article  CAS  Google Scholar 

  • Kumawat KR, Gothwal DK, Singh D (2017) Salinity tolerance of lentil genotypes based on stress tolerance indices. J Pharmacogn Phytochem 6:1368–1372

    CAS  Google Scholar 

  • Kusmenoglu I, Aydin N (1995) The current status of lentil germplasm exploitation for adaptation to winter sowing in the Anatolain highlands. In: Autumn-Sowing of Lentil in the Highlands of West Asia and North Africa. Central Research Institute for Field Crops, Ankara, Turkey, pp 63–71

    Google Scholar 

  • Lachaâl M, Grignon C, Hajji M (2002) Growth rate affects salt sensitivity in two lentil populations. J Plant Nutr 25:2613–2625

    Google Scholar 

  • Ladizinsky G (1979) The genetics of several morphological traits in the lentil. J Hered 70(2):135–137

    Google Scholar 

  • Ladizinsky G (1985) Founder effect in crop-plant evolution. Econ Bot 39(2):191–199

    Google Scholar 

  • Ladizinsky G, Braun D, Goshen D et al (1984) The biological species of the genus Lens. Bot Gaz 154:253–261

    Google Scholar 

  • Lal S, Srivastava RS (1975) Inheritance of flower colour in lentils. Indian J Genet Plant Breed 35:29–30

    Google Scholar 

  • Lambet AK, Ram N, Agrawal PC et al (1985) Pathogenic fungi intercepted in imported seeds and planting material during 1982. Ind Phytopathol 38:657–664

    Google Scholar 

  • Laserna-Ruiz I, De-Los-Mozos-Pascual M, Santana-Méridas O et al (2012) Screening and selection of lentil (Lens Miller) germplasm resistant to seed bruchids (Bruchus spp.). Euphytica 188:153–162

    Google Scholar 

  • Lee SY, Ahn JH, Cha YS et al (2007) Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed 126:43–46

    Google Scholar 

  • Leisner CP (2020) Climate change impacts on food security-focus on perennial cropping systems and nutritional value. Plant Sci 293:110412

    CAS  PubMed  Google Scholar 

  • Liu Y, Yu L, Qu Y et al (2016) GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf Cl-exclusion prior to Na+ exclusion but does not improve early vigor under salinity. Front Plant Sci 7:1485

    PubMed  PubMed Central  Google Scholar 

  • Lombardi M, Materne M, Cogan NO et al (2014) Assessment of genetic variation within a global collection of lentil (Lens culinaris Medik.) cultivars and landraces using SNP markers. BMC Genet 15:150. https://doi.org/10.1186/s12863-014-0150-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Malhotra RS, Sarker A, Saxena MC (2004) Drought tolerance in chickpea and lentil—present status and future strategies. Chall Strateg Dryland Agric 32:257–273

    Google Scholar 

  • Malik AI, Ailewe TI, Erskine W (2015) Tolerance of three grain legume species to transient waterlogging. AoB Plant 7:1

    CAS  Google Scholar 

  • Materne M, Reddy AA (2007) Commercial cultivation and profitability. In: Lentil. Springer, Dordrecht, pp 173–186

    Google Scholar 

  • Materne M, Siddique KHM (2009) Agroecology and crop adaptation. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) The lentil: botany, production and uses, pp 47–63

    Google Scholar 

  • Matny ON (2015) Lentil (Lens culinaris) current status and future prospect of production in Ethiopia. Adv Plants Agric Res 2:45–53. https://doi.org/10.15406/apar.2015.02.00040

    Article  Google Scholar 

  • Mbasani-Mansi J, Ennami M, Briache FZ et al (2019) Characterization of genetic diversity and population structure of Moroccan lentil cultivars and landraces using molecular markers. Physiol Mol Biol Plants 25:965–974. https://doi.org/10.1007/s12298-019-00673-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena JK, Singh A, Dikshit HK et al (2017) Screening of Lentil (Lens culinaris Medikus sub sp. culinaris) Germplasm against Fusarium Wilt (Fusarium oxysporum f. sp. lentis). Int J Curr Microbiol App Sci 6(11):2533–2541

    CAS  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2014) Water footprint benchmarks for crop production: a first global assessment. Ecol Indic 46:214–223

    Google Scholar 

  • Mirali M, Ambrose SJ, Wood SA et al (2014) Development of a fast extraction method and optimization of liquid chromatography–mass spectrometry for the analysis of phenolic compounds in lentil seed coats. J Chromatogr B 969:149–161

    CAS  Google Scholar 

  • Mirali M, Purves RW, Vandenberg A (2017) Profiling the phenolic compounds of the four major seed coat types and their relation to color genes in lentil. J Nat Prod 80:1310–1317

    CAS  PubMed  Google Scholar 

  • Mishra RP (1973) Studies on powdery mildew of lentil (Erysiphe polygoni DC) in Madhya Pradesh. Punjabrao Krishi Vidyapeeth Res J 2:72–73

    Google Scholar 

  • Mishra SK (2004) Final technical report on development of comprehensive genetic linkage map in lentil (Lens culinaris Medik.). ICAR, New Delhi

    Google Scholar 

  • Mishra SD, Gaur HS (1980) Reaction between nematization levels of the root knot nematode, Meloidogyne incognita and growth of lentil, Lens culinaris Linn. Indian J Entomol 42:262–263

    Google Scholar 

  • Mishra SK, Sharma B, Sharma SK (2007) Genetics and cytogenetics of lentil. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordecht, pp 187–208

    Google Scholar 

  • Mishra BK, Srivastava JP, Lal JP et al (2016) Physiological and biochemical adaptations in lentil genotypes under drought stress. Russ J Plant Physiol 63:695–708

    CAS  Google Scholar 

  • Mishra GP, Dikshit HK, Kumari J et al (2020) Identification and characterization of novel penta-podded genotypes in the cultivated lentil (Lens culinaris Medik.). Crop Sci 60(4):1974–1985. https://doi.org/10.1002/csc2.20156

    Article  CAS  Google Scholar 

  • Mobini SH, Lulsdorf M, Warkentin TD et al (2016) Low red: far-red light ratio causes faster in vitro flowering in lentil. Can J Plant Sci 96:908–918

    CAS  Google Scholar 

  • Mohammad A, Kumar U (1986) Screening of lentil varieties against Ozononium texanum var. parasiticum and Sclerotium rolfsii causing wilt and collar rot. Indian Phytopathol 39(1):93–95

    Google Scholar 

  • Monneveux P, Belhassen E (1996) The diversity of drought adaptation in the wide. In: Drought tolerance in higher plants: genetical, physiological and molecular biological analysis. Springer, Dordrecht, pp 7–14

    Google Scholar 

  • Morgan JM (1991) A gene controlling differences in osmoregulation in wheat. Funct Plant Biol 18(3):249–257

    Google Scholar 

  • Morgan JM, Condon AG (1986) Water use, grain yield, and osmoregulation in wheat. Funct Plant Biol 13:523–532

    Google Scholar 

  • Mudgal V, Mehta MK, Rane AS (2018) Lentil straw (Lens culinaris): an alternative and nutritious feed resource for kids. Anim Nutr 4:417–421. https://doi.org/10.1016/j.aninu.2018.04.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Muehlbauer FJ, Cho S, Sarker A et al (2006) Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147:149–165

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Murray GA, Eser D, Gusta LV et al (1988) Winter hardiness in pea, lentil, faba bean and chickpea. In: World crops: cool season food legumes. Springer, Dordrecht, pp 831–843

    Google Scholar 

  • Muscolo A, Sidari M, Anastasi U et al (2014) Effect of PEG-induced drought stress on seed germination of four lentil genotypes. J Plant Interact 9(1):354–363

    CAS  Google Scholar 

  • Nagarajan S, Rane J (2000) Relationship of seedling traits with drought tolerance in spring wheat cultivars. Indian J Plant Physiol 5:264–270

    Google Scholar 

  • Nene YL (2006) Indian pulses through the millennia. Asian Agri-History 10(3):179–202

    Google Scholar 

  • Nene YL, Kannaiyan J, Saxena GC (1975) Note on performance of lentil varieties and germplasm cultures against Uromyces fabae (Pers.) de Bary. Indian J Agric Sci 45:177–178

    Google Scholar 

  • Omar I, Ghoulam SB, Abdellah EA et al (2019) Evaluation and utilization of lentil crop wild relatives for breeding in Morocco: towards development of drought and herbicide tolerant varieties. In: First International experts workshop on pre-breeding utilizing crop wild relatives. ICARDA, Rabat, Morocco

    Google Scholar 

  • Oomah BD, Caspar F, Malcolmson LJ et al (2011) Phenolics and antioxidant activity of lentil and pea hulls. Food Res Int 44:436–441

    CAS  Google Scholar 

  • Ouji A, El-Bok S, Mouelhi M et al (2015) Effect of salinity stress on germination of five Tunisian lentil (Lens culinaris L.) genotypes. Eur Sci J 11:21

    Google Scholar 

  • Padhi EM, Liu R, Hernandez M et al (2017) Total polyphenol content, carotenoid, tocopherol and fatty acid composition of commonly consumed Canadian pulses and their contribution to antioxidant activity. J Funct Foods 38:602–611

    CAS  Google Scholar 

  • Pandey MP (1981) Rabi pulse varieties for higher production. Ind Farm Digest 14:18–22

    Google Scholar 

  • Passioura JB (1981) The role of root system characteristics in drought resistance of crop plants. In: Special International Symposium on principles and methods of crop improvement for drought resistance: with emphasis on rice, College, Laguna (Philippines), 4–8 May 1981

    Google Scholar 

  • Passioura JB (1986) Resistance to drought and salinity: avenues for improvement. Funct Plant Biol 13(1):191–201

    Google Scholar 

  • Podder R, Banniza S, Vandenberg A (2013) Screening of wild and cultivated lentil germplasm for resistance to stemphylium blight. Plant Genet Res 11(1):26–35

    Google Scholar 

  • Polanco C, de Miera LE, González AI et al (2019) Construction of a high-density interspecific (Lens culinaris x L. odemensis) genetic map based on functional markers for mapping morphological and agronomical traits, and QTLs affecting resistance to Ascochyta in lentil. PLoS One 14(3):e0214409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pouresmael M, Zahravi M, Ghanbari AA (2018) Evaluation and characterization of ICARDA elite germplasm of lentil. Iran J Genet Plant Breed 7(1):9–23

    Google Scholar 

  • Prakash A (1981) Lens culinaris a new host for root knot nematode, Meloidogyne javanica, in India. Natl Acad Sci Lett 4(12):459

    Google Scholar 

  • Priti, Mishra GP, Dikshit HK et al (2021) Diversity in phytochemical composition, antioxidant capacities, and nutrient contents among mungbean and lentil microgreens when grown at plain-altitude region (Delhi) and high-altitude region (Leh-Ladakh), India. Front Plant Sci 12:710812. https://doi.org/10.3389/fpls.2021.710812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai R, Singh RP (1999) Effect of salt stress on interaction between lentil (Lens culinaris) genotypes and Rhizobium spp. strains: symbiotic N2 fixation in normal and sodic soils. Biol Fertil Soil 29(2):187–195

    CAS  Google Scholar 

  • Rajendran K, Smouni A, Es-Safi NE et al (2020) Screening the FIGS set of lentil (Lens Culinaris Medikus) germplasm for tolerance to terminal heat and combined drought-heat stress. Agron 10(7):1036

    Google Scholar 

  • Ray H, Bett KE, Taran B et al (2014) Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop Sci 54:1698–1708

    Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239

    CAS  PubMed  Google Scholar 

  • Rozan P, Kuo YH, Lambein F (2001) Nonprotein amino acids in edible lentil and garden pea seedlings. Amino Acids 20(3):319–324

    CAS  PubMed  Google Scholar 

  • Rubeena A, Taylor PWJ, Ades PK et al (2006) QTL mapping of resistance in lentil (Lens culinaris ssp. culinaris) to Ascochyta blight (Ascochyta lentis). Plant Breed 125:506–512

    CAS  Google Scholar 

  • Rubiales D, Pérez-De-Luque A, Fernández-Aparicio M et al (2006) Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 147:187–199

    Google Scholar 

  • Rychlik M, Englert K, Kapfer S et al (2007) Folate contents of legumes determined by optimized enzyme treatment and stable isotope dilution assays. J Food Compos Anal 20:411–419

    CAS  Google Scholar 

  • Saha GC, Sarker A, Chen W et al (2010) Inheritance and linkage map positions of genes conferring resistance to Stemphylium blight in lentil. Crop Sci 50:1831–1839

    CAS  Google Scholar 

  • Saha GC, Sarker A, Chen W et al (2013) Inheritance and linkage map positions of genes conferring agromorphological traits in Lens culinaris Medik. Int J Agron 9. https://doi.org/10.1155/2013/618926

  • Sakina A, Ahmed I, Shahzad A et al (2016) Genetic variation for salinity tolerance in Pakistani rice (Oryza sativa L.) germplasm. J Agron Crop Sci 202:25–36

    CAS  Google Scholar 

  • Sanderson LA, Caron CT, Shen Y et al (2019) Know pulse: a web-resource focussed on diversity data for pulse improvement. Front Plant Sci 10:1–3

    CAS  Google Scholar 

  • Sankla HC, Singh HC, Sharma LC (1967) Powdery mildew in lentil. Ind Phytopathol 20:251

    Google Scholar 

  • Sarker A, Erskine W, Sharma B et al (1999) Inheritance and linkage relationship of days to flower and morphological loci in lentil (Lens culinaris Medikus subsp. culinaris). J Hered 90(2):270–275

    Google Scholar 

  • Sarker A, Ketata H, Erskine W et al (2002) Winter lentils promise improved nutrition and income in west Asian highlands. ICARDA Caravan (ICARDA) 16:14–16

    Google Scholar 

  • Sarker A, Erskine W, Singh M et al (2005) Variation in shoot and root characteristics and their association with drought tolerance in lentil landraces. Genet Res Crop Evol 52:89–97

    Google Scholar 

  • Sarker A, Kumar S, Kumar J et al (2016) Breeding pulses for nutritional quality with emphasis on biofortification. In: Abstract book of International Conference on Pulses, Marrakesh, Morocco, 18–20, p 51

    Google Scholar 

  • Saxena DR, Khare MN (1988) Factors influencing vascular wilt of lentil. Ind Phytopathol 41:69–74

    Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8):2073S–2085S

    CAS  PubMed  Google Scholar 

  • Schonfeld MA, Johnson RC, Carver BF et al (1988) Water relations in winter wheat as drought resistance indicators. Crop Sci 28:526–531

    Google Scholar 

  • Sehgal A, Sita K, Kumar J et al (2017) Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front Plant Sci 8:1776

    PubMed  PubMed Central  Google Scholar 

  • Sen Gupta D, Thavarajah D, Knutson P et al (2013) Lentils (Lens culinaris L.), a rich source of folates. J Agric Food Chem 61:7794–7799

    CAS  PubMed  Google Scholar 

  • Sen Gupta D, Thavarajah D, McGee RJ et al (2016) Genetic diversity among cultivated and wild lentils for iron, zinc, copper, calcium and magnesium concentrations. Aust J Crop Sci 10:1381–1387

    Google Scholar 

  • Shao GH (1994) Study on inheritance of salt tolerance in soybean. Acta Agron Sin 20:721–726

    Google Scholar 

  • Sharma SK, Sharma B (1978) Induction of tendril mutations in lentil (Lens culinaris Medic.). Curr Sci 47(22):864–866

    Google Scholar 

  • Sharma B, Emami MK (2002) Discovery of a new gene causing dark green cotyledons and pathway of pigment synthesis in lentil (Lens culinaris Medik). Euphytica 124(3):349–353

    Google Scholar 

  • Sharpe AG, Ramsay L, Sanderson LA et al (2013) Ancient orphan crop joins modern era: Gene-based SNP discovery and mapping in lentil. BMC Genomics 14:192. https://doi.org/10.1186/1471-2164-14-192

    Article  PubMed  PubMed Central  Google Scholar 

  • Sidahmed MM, Jaber NS (2004) The design and testing of a cutter and feeder mechanism for the mechanical harvesting of lentils. Biosyst Eng 88(3):295–304

    Google Scholar 

  • Sidari M, Muscolo A, Anastasi U, Preiti G, Santonoceto C (2007) Response of four genotypes of lentil to salt stress conditions. Seed Sci Technol 35(2):497–503

    Google Scholar 

  • Siddique KHM, Erskine W, Hobson K, Knights EJ, Leonforte A, Khan TN, Paull JG, Redden R, Materne M (2013) Cool-season grain legume improvement in Australia—use of genetic resources. Crop Pasture Sci 64(4):347–360

    CAS  Google Scholar 

  • Shrestha R, Siddique KHM, Turner NC, Turner DW, Berger JD (2005) Growth and seed yield of lentil (Lens culinaris Medikus) genotypes of West Asian and South Asian origin and crossbreds between the two under rainfed conditions in Nepal. Aust J Agric Res 56(9):971–981

    Google Scholar 

  • Shrestha R, Turner NC, Siddique KHM et al (2006) A water deficit during pod development in lentils reduces flower and pod numbers but not seed size. Aust J Agr Res 57:427–438

    Google Scholar 

  • Shukla TN, Ahmed ZU, Garg SK (1972) Root rot of lentil. Indian Phytopathol 25:584–585

    Google Scholar 

  • Sinclair TR, Ludlow MM (1985) Who taught plants thermodynamics? The unfulfilled potential of plant water potential. Funct Plant Biol 12:213–217

    Google Scholar 

  • Sindhu JS, Slinkard AE, Scoles GJ (1983) Studies on variation in Lens I. Karyotype. LENS 10:14

    Google Scholar 

  • Singh TP (1978) Inheritance of cotyledon colour in lentil. Ind J Genet Plant Breed 38(1):11–12

    Google Scholar 

  • Singh J (2018) Folate content in legumes. Biomed J Sci Tech Res 3:3475–3480

    Google Scholar 

  • Singh JP, Singh IS (1990) Genetics of resistance to rust in lentil. Ind J Pulses Res 3:132–135

    Google Scholar 

  • Singh SJ, Solanki SS (1980) Pathogenic variability in Uromyces fabae. Plant Dis 64:671–672

    Google Scholar 

  • Singh M, Rana MK, Kumar K et al (2013a) Broadening the genetic base of lentil cultivars through inter-sub-specific and interspecific crosses of Lens taxa. Plant Breed 132:667–675

    CAS  Google Scholar 

  • Singh D, Dikshit HK, Singh R (2013b) A new phenotyping technique for screening for drought tolerance in lentil (Lens culinaris Medik.). Plant Breed 132:185–190

    Google Scholar 

  • Singh M, Bisht IS, Kumar S et al (2014a) Global wild annual Lens collection: a potential resource for lentil genetic base broadening and yield enhancement. PLoS One 9:e107781. https://doi.org/10.1371/journal.pone.0107781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Bisht IS, Dutta M et al (2014b) Genetic studies on morpho-phenological traits in lentil (Lens culinaris Medikus) wide crosses. J Genet 93:561–566

    PubMed  Google Scholar 

  • Singh A, Dikshit HK, Singh D et al (2016a) Use of expressed sequence tag microsatellite markers for exploring genetic diversity in lentil and related wild species. J Agric Sci 154:1254–1269. https://doi.org/10.1017/S0021859615001252

    Article  CAS  Google Scholar 

  • Singh D, Singh CK, Tomar RSS et al (2016b) Molecular assortment of Lens species with different adaptations to drought conditions using SSR markers. PLoS One 11:e0147213. https://doi.org/10.1371/journal.pone.0147213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Sharma V, Dikshit HK et al (2017a) Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris). PLoS One 12(11):e0188296

    PubMed  PubMed Central  Google Scholar 

  • Singh A, Sharma V, Meena J et al (2017b) Genetic variability for grain iron and zinc concentration in lentil. Chem Sci Rev Lett 6(22):1327–1332

    CAS  Google Scholar 

  • Singh D, Singh CK, Taunk J et al (2019a) Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Sci Rep 9:1–19

    Google Scholar 

  • Singh A, Dikshit HK, Mishra GP et al (2019b) Association mapping for grain diameter and weight in lentil using SSR markers. Plant Gene 20:100204. https://doi.org/10.1016/j.plgene.2019.100204

    Article  CAS  Google Scholar 

  • Singh M, Kumar S, Basandrai AK et al (2020) Evaluation and identification of wild lentil accessions for enhancing genetic gains of cultivated varieties. PLoS One 15:e0229554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha RP, Choudhary SK, Sharma RN (1987) Inheritance of cotyledon color in lentil [Lens culinaris]. Lentil Exp News Service 14:3

    Google Scholar 

  • Sinha RP, Yadav BP (1989) Inheritance of resistance to rust in lentil. Lens Newslett 16:41

    Google Scholar 

  • Sita K, Sehgal A, HanumanthaRao B et al (2017a) Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front Plant Sci 8:1658

    PubMed  PubMed Central  Google Scholar 

  • Sita K, Sehgal A, Kumar J et al (2017b) Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front Plant Sci 8:744

    PubMed  PubMed Central  Google Scholar 

  • Siva N, Thavarajah P, Kumar S et al (2019) Variability in prebiotic carbohydrates in different market classes of chickpea, common bean, and lentil collected from the American local market. Front Nutr 6:38

    PubMed  PubMed Central  Google Scholar 

  • Slinkard AE (1978) Inheritance of cotyledon color in lentils. J Hered 69(2):139–140

    Google Scholar 

  • Slinkard AE, Bhatty RS, Drew BN, Morrall RAA (1990) Dry pea and lentil as new crops in Saskatchewan: a case study. In: Advances in new crops. Proceedings of the first national symposium ‘new crops: research, development, economics’, Indianapolis, IN, USA, 23–26 October 1988. Timber Press, Portland, pp 164–168

    Google Scholar 

  • Slinkard AE, Vanderberg A, Holm FA (2007) Lentil plants having increased resistance to imidazolinone herbicides US patent 7232942. http://www.uspto.gov/patft/index.html

  • Solaiman Z, Colmer TD, Loss SP et al (2007) Growth responses of cool-season grain legumes to transient waterlogging. Aust J Agr Res 58:406–412

    Google Scholar 

  • Spaeth SC, Muehlbauer FJ (1991) Registration of three germplasms of winter hardy lentil. Crop Sci 31:1395–1395

    Google Scholar 

  • Subedi M, Bett KE, Khazaei H et al (2018) Genetic mapping of milling quality traits in lentil (Lens culinaris Medik.). Plant Genome 11

    Google Scholar 

  • Sudheesh S, Rodda MS, Davidson J et al (2016) SNP-based linkage mapping for validation of QTLs for resistance to Ascochyta blight in lentil. Front Plant Sci 7:604. https://doi.org/10.3389/fpls.2016.01604

    Article  Google Scholar 

  • Sulser H, Sager F (1976) Identification of uncommon amino acids in the lentil seed (Lens culinaris Med.). Experientia 32:422–423

    CAS  PubMed  Google Scholar 

  • Summerfield RJ, Roberts EH, Erskine W et al (1985) Effects of temperature and photoperiod on flowering in lentils (Lens culinaris Medik.). Ann Bot 56:659–671

    Google Scholar 

  • Tadesse SG, Ramsay L, Teketel AH et al (2021) Identification of anthracnose (Colletotrichum lentis) race 1 resistance loci in lentil by integrating linkage mapping and a genome-wide association study. bioRxiv preprint. https://doi.org/10.1101/2021.03.16.435724

  • Tahir M, Muehlbauer FJ (1994) Gene mapping in lentil with recombinant inbred lines. J Hered 85(4):306–310

    CAS  Google Scholar 

  • Tahir M, Muehlbauer FJ (1995) Association of quantitative trait loci with isozyme markers in lentil (Lens culinaris L.). J Genet Breed 49:145–150

    Google Scholar 

  • Tahir M, Lindeboom N, BÃ¥ga M et al (2011) Composition and correlation between major seed constituents in selected lentil (Lens culinaris. Medik) genotypes. Can J Plant Sci 91:825–835

    Google Scholar 

  • Tepe I, Erman M, Yazlýk A et al (2005) Comparison of some winter-lentil cultivars in weedcrop competition. Crop Prot 24:585–595

    Google Scholar 

  • Terzi R, SaÄŸlam A, Kutlu N et al (2010) Impact of soil drought stress on photochemical efficiency of photosystem II and antioxidant enzyme activities of Phaseolus vulgaris cultivars. Turk J Bot 34:1–10

    CAS  Google Scholar 

  • Tewari TN, Singh BB (1991) Stress studies in lentil (Lens esculenta Moench). Plant and Soil 136:225–230

    CAS  Google Scholar 

  • Thavarajah D, Ruszkowski J, Vandenberg A (2008) High potential for selenium biofortification of lentils (Lens culinaris L.). J Agric Food Chem 56(22):10747–10753

    CAS  PubMed  Google Scholar 

  • Thavarajah P, Sarker A, Materne M et al (2011) A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): Implications for nutritional fortification strategies. Food Chem 125:72–76

    CAS  Google Scholar 

  • Toker C, Mutlu N (2011) Breeding for abiotic stresses. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes, pp 241–261

    Google Scholar 

  • Toker C, Mutlu N, Pratap A et al (2011) Breeding for abiotic stress. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes, pp 241–260

    Google Scholar 

  • Tomar SMS, Kumar GT (2004) Seedling survivability as a selection criterion for drought tolerance in wheat. Plant Breed 123:392–394

    Google Scholar 

  • Tripathi K, Mishra GP, Tripathi D et al (2021) First Report of a Novel Multi-flowering Germplasm with Fasciated Stem in Lentil (Lens culinaris Medik.). Indian J Plant Genet Res 34:1–4. https://doi.org/10.5958/0976-1926.2021.00001.2

    Article  Google Scholar 

  • Tsanakas GF, Mylona PV, Koura K et al (2018) Genetic diversity analysis of the Greek lentil (Lens culinaris) landrace ‘Eglouvis’ using morphological and molecular markers. Plant Genet Res 16:469–477

    Google Scholar 

  • Tschermak-Seysenegg E (1928) Lentil and field bean crosses. Sityringsber Akad Wiss Wein Math Nat Kl I Abt 137:171–181

    Google Scholar 

  • Tullu A, Tar'an B, Breitkreutz C et al (2006) A quantitative trait locus for resistance to Ascochyta blight Ascochyta lentis maps close to a gene for resistance to anthracnose Colletotrichum truncatum in lentil. Can J Plant Pathol 28:588–595

    CAS  Google Scholar 

  • Tullu A, Tar'an B, Warkentin T et al (2008) Construction of an intraspecific linkage map and QTL analysis for earliness and plant height in lentil. Crop Sci 48:2254–2264. https://doi.org/10.2135/cropsci2007.11.062

    Article  Google Scholar 

  • Tullu A, Banniza S, Taran B et al (2010) Sources of resistance to ascochyta blight in wild species of lentil (Lens culinaris Medik.). Genet Res Crop Evol 57:1053–1063

    Google Scholar 

  • Tullu A, Diederichsen A, Suvorova G et al (2011) Genetic and genomic resources of lentil: status, use and prospects. Plant Genet Res Crop Evol 9:19–29

    CAS  Google Scholar 

  • Tullu A, Bett K, Banniza S et al (2013) Widening the genetic base of cultivated lentil through hybridization of Lens culinaris ‘Eston’ and L. ervoides accession IG 72815. Can J Plant Sci 93:1037–1047

    Google Scholar 

  • Tyagi MC, Sharma B (1995) Protein content in lentil (Lens culinaris Medik.). Genetic research and education: current trends and the next fifty years. Indian Society of Genetics and Plant Breeding, New Delhi, pp 1031–1034

    Google Scholar 

  • Vadez V, Krishnamurthy L, Serraj R et al (2007) Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crop Res 104:123–129

    Google Scholar 

  • Vaillancourt R, Slinkard AE, Reichert RD (1986) The inheritance of condensed tannin concentration in lentil. Can J Plant Sci 66(2):241–246

    CAS  Google Scholar 

  • Vaillancourt RE, Slinkard AE (1992) Inheritance of new genetic markers in lentil (Lens Miller). Euphytica 64(3):227–236

    Google Scholar 

  • Van Emden HF (1973) Aphis-host palt relationship, some recent studies. In: Lowe AD (ed) Perspectives in Aphis Biology. Entomological Society of New Zealand, Auckland, pp 54–64

    Google Scholar 

  • Van Hoorn JW, Katerji N, Hamdy A et al (2001) Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agric Water Manag 51:87–98

    Google Scholar 

  • Van Vliet S, Burd NA, Van Loon LJ (2015) The skeletal muscle anabolic response to plant-versus animal-based protein consumption. J Nutr 145:1981–1991

    PubMed  Google Scholar 

  • Vandemark GJ, Grusak MA, McGee RJ (2018) Mineral concentrations of chickpea and lentil cultivars and breeding lines grown in the US Pacific Northwest. Crop J 6:253–262

    Google Scholar 

  • Vandenberg A, Slinkard AE (1987) Inheritance of a xantha chlorophyll deficiency in lentil. J Hered 78(2):130

    Google Scholar 

  • Vandenberg A, Slinkard AE (1989) Inheritance of four new qualitative genes in lentil. J Hered 80:320–322

    Google Scholar 

  • Vandenberg A, Slinkard AE (1990) Genetics of seed coat color and pattern in lentil. J Hered 81(6):484–488

    Google Scholar 

  • Verma P, Sharma TR, Srivastava PS et al (2014) Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers. Mol Biol Rep 41:5607–5625

    CAS  PubMed  Google Scholar 

  • Verma P, Goyal R, Chahota RK et al (2015) Construction of a genetic linkage map and identification of qtls for seed weight and seed size traits in lentil (Lens culinaris Medik.). PLoS One 10:e0139666

    PubMed  PubMed Central  Google Scholar 

  • Wilson VE, Law AG, Warner RL (1970) Inheritance of cotyledon color in lens Culinaris (Medic.). Crop Sci 10(2):205–207

    Google Scholar 

  • Wiraguna E, Malik AI, Erskine W (2017) Waterlogging tolerance in lentil (Lens culinaris Medik. subsp. culinaris) germplasm associated with geographic origin. Genet Res Crop Evol 64:579–586

    Google Scholar 

  • Wong MML, Gujaria-Verma N, Ramsay L et al (2015) Classification and characterization of species within the genus Lens using genotyping-by-sequencing (GBS). PLoS One 10:e0122025

    PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2007) Protein and Amino Acid Requirements in Human Nutrition; Report of a Joint WHO/FAO/UNU Expert Consultation; WHO Technical Report Series 935. World Health Organization/Food and Agriculture—Organization of the United Nations/United Nations University, Geneva

    Google Scholar 

  • Zhang B, Deng Z, Ramdath DD et al (2015) Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem 172:862–872

    CAS  PubMed  Google Scholar 

  • Zhang H, Jha AB, De Silva D et al (2019) Improved folate monoglutamate extraction and application to folate quantification from wild lentil seeds by ultra-performance liquid chromatography-selective reaction monitoring mass spectrometry. J Chromatogr B 1121:39–47

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dikshit, H.K. et al. (2022). Lentil Breeding. In: Yadava, D.K., Dikshit, H.K., Mishra, G.P., Tripathi, S. (eds) Fundamentals of Field Crop Breeding. Springer, Singapore. https://doi.org/10.1007/978-981-16-9257-4_24

Download citation

Publish with us

Policies and ethics