Skip to main content

Clean Energy for Environmental Protection: An Outlook Toward Phytoremediation

  • Chapter
  • First Online:
Biotechnological Innovations for Environmental Bioremediation
  • 952 Accesses

Abstract

The contamination of arable lands with toxic heavy metals is a serious problem. The reduction in the arable land area affects the food security of the increasing population. Likewise, heavy use of fossil fuels releases a surplus quantity of carbon dioxide into the atmosphere, which leads to an alarming rise in atmospheric temperature and global warming. In this scenario, the cultivation of energy plants in polluted lands for phytoremediation gets the double benefits of bioenergy production and decontamination of land. With the use and production of bioenergy, the effective utilization of a country’s biomass is enhanced, which results in the considerable reduction of the use of fossil fuels and associated energy sources. Therefore, the use of bioenergy as a renewable energy source plays a significant role in reducing the environmental impact in relation to CO2 emissions. The implementation of a bioenergy system accelerates the use of regional energy access, and consequently, it reduces the dependence on fossil fuels for sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelsalam IM, Elshobary M, Eladawy MM, Nagah M (2019) Utilization of multi-tasking non-edible plants for phytoremediation and bioenergy source-A review. Phyton 88(2):69

    Article  Google Scholar 

  • Abdullah B, Syed Muhammad SAF, Shokravi Z, Ismail S, Kassim KA, Mahmood AN, Aziz MMA (2019) Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sust Energ Rev 107:37–50

    Article  Google Scholar 

  • Abioye OP, Ijah UJJ, Aransiola SA (2017) Phytoremediation of soil contaminants by the biodiesel plant Jatropha curcas. In: Bauddh K, Singh B, Korstad J (eds) Phytoremed potential of bioenergy plants. Springer, Singapore, pp 97–137

    Google Scholar 

  • Abu-Abdoun II, Al-Balawna ZA (2019) Heavy metals contents in neem tree (Azadirachta indica) parts and surroundings. Acta Sci Med Sci 38:126–130

    Google Scholar 

  • Acharya RN, Perez-Pena R (2020) Role of comparative advantage in biofuel policy adoption in Latin America. Sustain For 12(4):1411

    Article  CAS  Google Scholar 

  • Akhtar FZ, Archana KM, Krishnaswamy VG et al (2020) Remediation of heavy metals (Cr, Zn) using physical, chemical and biological methods: a novel approach. Appl Sci 2:267

    CAS  Google Scholar 

  • Al Chami Z, Amer N, Al Bitar L, Cavoski I (2015) Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. Int J Environ Sci Technol 12(12):3957–3970

    Article  CAS  Google Scholar 

  • Ale S, Femeena PV, Mehan S, Cibin R (2019) Environmental impacts of bioenergy crop production and benefits of multifunctional bioenergy systems. In: Bioenergy with carbon capture and storage. Springer, New York, pp 195–217

    Chapter  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:6730305

    Google Scholar 

  • Ammar H, Ismaïl Y, Lehiani MA et al (2020) Biomass production and nutritive value of Kenaf (Hibiscus cannabinus) at various stages of growth. Agrofor Syst 94:1171–1178

    Article  Google Scholar 

  • Ancona V, Caracciolo AB, Campanale C, Rascio I, Grenni P et al (2019) Heavy metal phytoremediation of a poplar clone in a contaminated soil in Southern Italy. J Chem Technol Biotechnol 95(4):940–949

    Google Scholar 

  • Bañuelos G, Terry N, LeDuc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  PubMed  CAS  Google Scholar 

  • Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP et al (2015) Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Res 8(4):1500–1511

    Article  CAS  Google Scholar 

  • Bauddh K, Singh B, Korstad J (eds) (2017) Phytoremediation potential of bioenergy plants. Springer, Singapore

    Google Scholar 

  • Bryant ND, Pu Y, Tschaplinski TJ, Tuskan GA, Muchero W et al (2020) Transgenic poplar designed for biofuels. Trends Plant Sci 25(9):881–896

    Article  CAS  PubMed  Google Scholar 

  • Chauhan P, Mathur J (2020) Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil. Environ Sci Pollut Res 27:29954–29966

    Article  CAS  Google Scholar 

  • Chen L, Yang J, Wang D (2020) Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents. J Clean Prod 2020:121491

    Article  CAS  Google Scholar 

  • Cherubini F, Peters GP, Berntsen T, Strømman AH, Hertwich E (2011) CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy 3(5):413–426

    Article  CAS  Google Scholar 

  • Daniel DJ, Ellison CR, Bursavich J, Benbow M, Favrot C et al (2018) An evaluative comparison of lignocellulosic pyrolysis products derived from various parts of Populus deltoides trees and Panicum virgatum grass in an inductively heated reactor. Energy Convers Manag 171:710–720

    Article  CAS  Google Scholar 

  • Delgado MM, de Imperial RM, González I, Lobo C, Plaza A, Martínez S, Martín JV (2017) Phytoremediation potential of thistle (Cynara Cardunculus L.) and its ability to remove heavy metals from polluted soils with high rates of sewage sludge. Pol J Environ Stud 26(5):1935–1941

    Article  CAS  Google Scholar 

  • Duer H, Christensen PO (2010) Socio-economic aspects of different biofuel development pathways. Biomass Bioenergy 34(2):237–243

    Article  Google Scholar 

  • Fairless D (2007) The little shrub that could--maybe: India, like many countries, has high hopes for Jatropha as a biofuel source, but little is known about how to make it a successful crop. Daemon Fairless digs for the roots of a new enthusiasm. Nature 449(7163):652–656

    Article  PubMed  Google Scholar 

  • Fazekašová D, Fazekaš J (2020) Soil quality and heavy metal pollution assessment of iron ore mines in Nizna Slana (Slovakia). Sustain For 12(6):2549

    Article  CAS  Google Scholar 

  • Finco MVA, Doppler W (2010) Bioenergy and sustainable development: the dilemma of food security and climate change in the Brazilian savannah. Energy Sustain Dev 14(3):194–199

    Article  Google Scholar 

  • Goh CS, Saito O, Yamagata Y (2020) Developing sustainable bioenergy systems with local bio-resources: cases in Asia. Sustain Sci 15:1449–1453

    Article  Google Scholar 

  • Gomes HI (2012) Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev 1(1):59–66

    Article  CAS  Google Scholar 

  • González-Chávez MCA, Carrillo-González R, Godínez MI, Lozano SE (2016) Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus. Int J Phytoremediation 19(2):174–182

    Article  CAS  Google Scholar 

  • Gresshoff P, Rangan L, Indrasumunar A, Scott P (2017) A new bioenergy crop based on oil-rich seeds from the legume tree Pongamia pinnata. Energy Emission Control Technol 5:19–26

    Article  Google Scholar 

  • Guo Z, Gao Y, Cao X, Jiang W, Liu X et al (2019) Phytoremediation of Cd and Pb interactive polluted soils by switchgrass (Panicum virgatum L.). Int J Phytoremediation 2019:1–11

    Google Scholar 

  • Hamzah NHC, Khairuddin N, Siddique BM, Hassan MA (2020) Potential of Jatropha curcas L. as biodiesel feedstock in Malaysia: a concise review. Processes 8(7):786

    Article  CAS  Google Scholar 

  • He J, Li H, Ma C, Zhang Y, Polle A et al (2014) Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. New Phytol 205(1):240–254

    Article  PubMed  CAS  Google Scholar 

  • Hong YJ, Liao W, Yan ZF, Bai YC, Feng CL, Xu ZX, Xu DY (2020) Progress in the research of the toxicity effect mechanisms of heavy metals on freshwater organisms and their water quality criteria in China. J Chem 2020:9010348

    Article  CAS  Google Scholar 

  • Hou D, O’Connor D, Igalavithana AD, Alessi DS, Luo J et al (2020) Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat Rev Earth Environ 1:366–381

    Article  Google Scholar 

  • Hunce SY, Clemente R, Bernal MP (2019) Energy production potential of phytoremediation plant biomass: Helianthus annuus and Silybum marianum. Ind Crop Prod 135:206–216

    Article  CAS  Google Scholar 

  • IRENA (2016). www.irena.org/

  • Jámbor A, Török Á (2019) The economics of Arundo donax - a systematic literature review. Sustain For 11(15):4225

    Article  Google Scholar 

  • Janeeshma E, Puthur JT (2020) Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch Microbiol 202(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Javaid S, Zaman Q, Sultan K, Riaz U, Aslam A et al (2020) Heavy metals stress, mechanism and remediation techniques in rice (Oryza sativa L.): a review. Pure Appl Biol 9(1):403–426

    Article  CAS  Google Scholar 

  • Kanwal U, Ali S, Shakoor MB, Farid M, Hussain S et al (2014) EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environ Sci Pollut Res 21(16):9899–9910

    Article  CAS  Google Scholar 

  • Kanwal A, Ali S, Farhan M (2019) Heavy metal phytoextraction potential of indigenous tree species of the family fabaceae. Int J Phytoremediation 2019:1–8

    Google Scholar 

  • Kaur R, Bhaskar T (2020) Potential of castor plant (Ricinus communis) for production of biofuels, chemicals, and value-added products. Waste Biorefinery 2020:269–310

    Article  Google Scholar 

  • Kiran BR, Prasad MNV (2019) Biochar and rice husk ash assisted phytoremediation potentials of Ricinus communis L. for lead-spiked soils. Ecotoxicol Environ Saf 183:109574

    Article  CAS  PubMed  Google Scholar 

  • Korzeniowska J, Stanislawska-Glubiak E (2018) Phytoremediation potential of Phalaris arundinacea, Salix viminalis and Zea mays for nickel-contaminated soils. Int J Environ Sci Technol 16:1999–2008

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA et al (2019) Technologies for biofuel production: current development, challenges, and future prospects. Plant Long Non-Coding RNAs 2019:1–50

    Google Scholar 

  • Lan MM, Liu C, Liu SJ, Qiu RL, Tang YT (2020) Phytostabilization of Cd and Pb in highly polluted farmland soils using ramie and amendments. Int J Environ Res Public Health 17(5):1661

    Article  CAS  PubMed Central  Google Scholar 

  • Lebrun M, Miard F, Hattab-Hambli N, Bourgerie S, Morabito D (2018) Assisted phytoremediation of a multi-contaminated industrial soil using biochar and garden soil amendments associated with Salix alba or Salix viminalis: abilities to stabilize As, Pb, and Cu. Water Air Soil Pollut 229:5

    Article  CAS  Google Scholar 

  • Lee SH, Ji W, Lee WS, Koo N, Koh IH, Kim MS, Park JS (2014) Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings. J Environ Manag 139:15–21

    Article  CAS  Google Scholar 

  • Li XF, Su M, Yang MF, Shen SH, Jiang GM, Qi DM, Chen SY, Liu GS (2010) Major energy plants and their potential for bioenergy development in China. Environ Manag 46(4):579–589

    Article  Google Scholar 

  • Li Y, Ren X, Dahlquist E, Fan P, Chao T (2014) Biogas potential from Vetiveria zizaniodes (L.) planted for ecological restoration in China. Energy Procedia 61:2733–2736

    Article  CAS  Google Scholar 

  • Li S, Tian Z, Liu R, Zhou W, Cheng H et al (2020) Effective multi-metal removal from plant incineration ash via the combination of bioleaching and brine leaching. RSC Adv 10(3):1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima LR, Silva HF, Brignoni AS, Silva FG, Camargos LS, Souza LA (2019) Characterization of biomass sorghum for copper phytoremediation: photosynthetic response and possibility as a bioenergy feedstock from contaminated land. Physiol Mol Biol Plants 25(2):433–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Weng Y, You Y, Xu Q, Li H et al (2019) Inoculation with abscisic acid (ABA)-catabolizing bacteria can improve phytoextraction of heavy metal in contaminated soil. Environ Pollut 2019:113497

    Google Scholar 

  • Malico I, Pereira RN, Gonçalves AC, Sousa AMO (2019) Current status and future perspectives for energy production from solid biomass in the European industry. Renew Sust Energ Rev 112:960–977

    Article  Google Scholar 

  • Malik JA, Wani AA, Wani KA, Bhat MA (2020) Role of white willow (Salix alba L.) for cleaning up the toxic metal pollution. In: Hakeem KR, Bhat RA, Qadri H (eds) Bioremediation and biotechnology. Springer, Cham, pp 257–268

    Chapter  Google Scholar 

  • Martín JFG, González Caro MDC, López Barrera MDC, Torres García M, Barbin D, Álvarez Mateos P (2020) Metal accumulation by Jatropha curcas L. adult plants grown on heavy metal-contaminated soil. Plants 9(4):418

    Article  CAS  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54

    Article  CAS  PubMed  Google Scholar 

  • Mehmood MA, Ibrahim M, Rashid U, Nawaz M, Ali S, Hussain A, Gull M (2016) Biomass production for bioenergy using marginal lands. Sustainable Prod Consump 9:3–21

    Article  Google Scholar 

  • Meryemoğlu B, Hasanoğlu A, Irmak S, Erbatur O (2014) Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass. Bioresour Technol 151:278–283

    Article  PubMed  CAS  Google Scholar 

  • Milman O (2015) Earth has lost a third of arable land in past 40 years, scientists say. Guardian 2:12

    Google Scholar 

  • Namdjoyan S, Soorki AA, Elyasi N, Kazemi N, Simaei M (2019) Melatonin alleviates lead-induced oxidative damage in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicology 29(1):108–118

    Article  PubMed  CAS  Google Scholar 

  • Nizam MU, Mokhlesur Rahman M, Kim JE (2016) Phytoremediation potential of kenaf (Hibiscus cannabinus L.), mesta (Hibiscus sabdariffa L.), and jute (Corchorus capsularis L.) in arsenic-contaminated soil. Korean J Environ Agricul 35(2):111–120

    Article  Google Scholar 

  • Osorio-González CS, Gómez-Falcon N, Sandoval-Salas F, Saini R, Brar SK, Ramírez AA (2020) Production of biodiesel from castor oil: a review. Energies 13(10):2467

    Article  CAS  Google Scholar 

  • Padoan E, Passarella I, Prati M, Bergante S, Facciotto G, Ajmone-Marsan F (2019) The suitability of short rotation coppice crops for phytoremediation of urban soils. Appl Sci 10(1):307

    Article  CAS  Google Scholar 

  • Palanivel TM, Pracejus B, Victor R (2020) Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions. Environ Sci Pollut Res 27:17359–17369

    Article  CAS  Google Scholar 

  • Pandey VC, Bajpai O, Singh N (2016) Energy crops in sustainable phytoremediation. Renew Sust Energ Rev 54:58–73

    Article  Google Scholar 

  • Patel VR, Dumancas GG, Viswanath LCK, Maples R, Subong BJJ (2016) Castor oil: properties, uses, and optimization of processing parameters in commercial production. Lipid Insights 9:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phouthavong-Murphy JC, Merrill AK, Zamule S et al (2020) Phytoremediation potential of switchgrass (Panicum virgatum), two United States native varieties, to remove bisphenol-A (BPA) from aqueous media. Sci Rep 10:835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pidlisnyuk V, Stefanovska T, Lewis EE, Erickson LE, Davis LC (2014) Miscanthus as a productive biofuel crop for phytoremediation. Crit Rev Plant Sci 33(1):1–19

    Article  Google Scholar 

  • Rai PK, Lee SS, Zhang MM, Tsang YF, Kim KH (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385

    Article  CAS  PubMed  Google Scholar 

  • Rasool T, Srivastava VC, Khan MNS (2018) Bioenergy potential of Salix alba assessed through kinetics and thermodynamic analyses. Process Integr Optimiz Sustainability 2(3):259–268

    Article  Google Scholar 

  • Reisinger S, Schiavon M, Terry N, Pilon-Smits EAH (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial γ-glutamylcysteine synthetase or glutathione synthetase. Int J Phytoremediation 10:1–15

    Article  CAS  Google Scholar 

  • Rettenmaier N, Hienz G (2014) Linkages between socio-economic and environmental impacts of bioenergy. In: Rutz D, Janssen R (eds) Socio-economic impacts of bioenergy prod. Springer, Singapore, pp 59–80

    Chapter  Google Scholar 

  • Sall ML, Diaw AKD, Gningue-Sall D et al (2020) Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ Sci Pollut Res 27:29927–29942

    Article  CAS  Google Scholar 

  • Samuilov S, Lang F, Djukic M, Djunisijevic-Bojovic D, Rennenberg H (2016) Lead uptake increases drought tolerance of wild type and transgenic poplar (Populus tremula x P. alba) overexpressing gsh1. Environ Pollut 216:773–785

    Article  CAS  PubMed  Google Scholar 

  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev Environ Contam Toxicol 249:71–131

    Google Scholar 

  • Scarlat N, Dallemand JF, Monforti-Ferrario F, Banja M, Motola V (2015) Renewable energy policy framework and bioenergy contribution in the European Union – an overview from national renewable energy action plans and progress reports. Renew Sust Energ Rev 51:969–985

    Article  Google Scholar 

  • Shehata SM, Badawy RK, Aboulsoud YIE (2019) Phytoremediation of some heavy metals in contaminated soil. Bull Nat Res Centre 43(1):189

    Article  Google Scholar 

  • Sheldon RA (2018) Enzymatic conversion of first-and second-generation sugars. In: Vaz S (ed) Biomass and green chemistry. Springer, Cham, pp 169–189

    Chapter  Google Scholar 

  • Shim D, Kim S, Choi YI, Song WY, Park J et al (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90:1478–1486

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Jaiswal DK, Krishna R, Mukherjee A, Verma JP (2019) Restoration of degraded lands through bioenergy plantations. Restor Ecol 28(2):263–266

    Article  Google Scholar 

  • Suelee AL, Hasan SN, Kusin FM, Yusuff FM, Ibrahim ZZ (2017) Phytoremediation potential of vetiver grass (Vetiveria zizanioides) for treatment of metal-contaminated water. Water Air Soil Pollut 228:4

    Article  CAS  Google Scholar 

  • Tahir N, Tahir MN, Alam M, Yi W, Zhang Q (2020) Exploring the prospective of weeds (Cannabis sativa L., Parthenium hysterophorus L.) for biofuel production through nanocatalytic (Co, Ni) gasification. Biotechnol Biofuels 13:1

    Article  CAS  Google Scholar 

  • Tarekegn MM, Salilih FZ, Ishetu AI (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agricult 6(1):1783174

    Article  CAS  Google Scholar 

  • Tizé KJ, Sinbai M, Darman RD, Albert N (2016) Assessment of biofuel potential of dead neem leaves (Azadirachta indica) biomass in Maroua town, Cameroon. Afr J Biotechnol 15(34):1835–1840

    Article  Google Scholar 

  • Tripathi V, Edrisi SA, Abhilash PC (2016) Towards the coupling of phytoremediation with bioenergy production. Renew Sust Energ Rev 57:1386–1389

    Article  CAS  Google Scholar 

  • Turchi A, Tamantini I, Camussi AM, Racchi ML (2012) Expression of a metallothionein A1 gene of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper. Plant Sci 183:50–56

    Article  CAS  PubMed  Google Scholar 

  • Villarreal JV, Burgués C, Rösch C (2020) Acceptability of genetically engineered algae biofuels in Europe: opinions of experts and stakeholders. Biotechnol Biofuels 13(92):21

    Google Scholar 

  • Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2(1):573–584

    Article  CAS  Google Scholar 

  • Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M, Pilon-Smits EAH (2004) Overexpression of ATP sulfurylase in Indian mustard. J Environ Qual 33:54–60

    CAS  PubMed  Google Scholar 

  • Wu Y, Zhao F, Liu S et al (2018) Bioenergy production and environmental impacts. Geosci Lett 5:14

    Article  Google Scholar 

  • Yeboah A, Lu J, Yang T, Shi Y, Amoanimaa-Dede H, Boateng KGA, Yin X (2020) Assessment of castor plant (Ricinus communis L.) tolerance to heavy metal stress-a review. Phyton 89(3):453

    Article  Google Scholar 

  • Yesilyurt MK, Cesur C, Aslan V, Yilbasi Z (2019) The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: a comprehensive review. Renew Sust Energ Rev 2019:109574

    Google Scholar 

  • Zgorelec Z, Bilandzija N, Knez K et al (2020) Cadmium and mercury phytostabilization from soil using Miscanthus × giganteus. Sci Rep 10:6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zielonka D, Szulc W, Skowrońska M, Rutkowska B, Russel S (2020) Hemp-based phytoaccumulation of heavy metals from municipal sewage sludge and Phosphogypsum under field conditions. Agronomy 10(6):907

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere thanks to the Department of Science and Technology (DST), Government of India, for granting funds under the Fund for Improvement of S & T Infrastructure (FIST) program (SR/FST/LSI-532/2012). PPS gratefully acknowledges the financial assistance from University Grants Commission (UGC), India, through SRF fellowship (Grant Number: 318744). JTP acknowledges the financial assistance provided by the Kerala State Council for Science, Technology and Environment in the form of KSCSTE Research Grant (KSCSTE/5179/2017-SRSLS).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sameena, P.P., Puthur, J.T. (2022). Clean Energy for Environmental Protection: An Outlook Toward Phytoremediation. In: Arora, S., Kumar, A., Ogita, S., Yau, Y.Y. (eds) Biotechnological Innovations for Environmental Bioremediation. Springer, Singapore. https://doi.org/10.1007/978-981-16-9001-3_17

Download citation

Publish with us

Policies and ethics