Skip to main content

Advertisement

Log in

Assisted Phytoremediation of a Multi-contaminated Industrial Soil Using Biochar and Garden Soil Amendments Associated with Salix alba or Salix viminalis: Abilities to Stabilize As, Pb, and Cu

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

With the development of the industrial era, environmental pollution by organic and inorganic pollutants increased and became a worldwide issue. Particularly, former industrial sites often present high concentrations of metal(loid)s. These pollutions have adverse effects not only on the environment but also to human health, as pollutants can enter the food chain. Therefore, contaminated sites need rehabilitation. Phytoremediation is a clean and low-cost solution to remediate such sites. However, vegetation establishment can be difficult on such extreme soils from both a physical and a chemical point of view. Consequently, amendments, like biochar and garden soil, must be applied. Biochar, product of biomass pyrolysis under low-oxygen conditions, showed beneficial effects on soil fertility and plant growth, as well as metal(loid) sorption properties. The aims of this study were to investigate the effects of two organic amendments, biochar and garden soil, alone or combined, on the physico-chemical properties of a post-industrial soil and the growth of two Salix species (Salix alba and Salix viminalis) and evaluate the phytostabilizing capacities of the two Salix species. In this goal, a greenhouse experiment was performed, using garden soil at 50% (v/v) and/or biochar at 2 or 5% (w/w). The results showed that biochar did not improve soil physico-chemical properties, neither did it affect plant parameters (dry weight, organ metal(loid)s concentrations). Moreover, higher metal(loid) concentrations were found in the roots compared to the upper parts. Finally, S. alba presented lower metal(loid) concentrations in the aboveground parts compared to S. viminalis, associated with a good growth, which make it a better candidate for phytostabilization of the studied soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aasamaa, K., Heinsoo, K., & Holm, B. (2010). Biomass production, water use and photosynthesis of Salix clones grown in a wastewater purification system. Biomass and Bioenergy, 34(6), 897–905.

    Article  CAS  Google Scholar 

  • Agegnehu, G., Bass, A., Nelson, P., & Bird, M. (2016). Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543, 295–306.

    Article  CAS  Google Scholar 

  • Ahmad, M., Rajapaksha, A., Lim, J., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S., & Ok, Y. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869–881.

    Article  CAS  Google Scholar 

  • Bart, S., Motelica-Heino, M., Miard, F., Joussein, E., Soubrand, M., Bourgerie, S., & Morabito, D. (2016). Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. Catena, 136, 44–52.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282–2287.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12), 3269–3282.

    Article  CAS  Google Scholar 

  • Beesley, L., Marmiroli, M., Pagano, L., Pigoni, V., Fellet, G., Fresno, T., Vamerali, T., Bandiera, M., & Marmiroli, N. (2013). Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Science of the Total Environment, 454-455, 598–603.

    Article  CAS  Google Scholar 

  • Beesley, L., Inneh, O., Norton, G., Moreno-Jimenez, E., Pardo, T., Clemente, R., & Dawson, J. (2014). Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environmental Pollution, 186, 195–202.

    Article  CAS  Google Scholar 

  • Borišev, M., Pajević, S., Nikolić, N., Pilipović, A., Krstić, B., & Orlović, S. (2009). Phytoextraction of Cd, Ni, and Pb using four willow clones (Salix spp.). Polish Journal of Environmental Studies, 18(4), 553–561.

    Google Scholar 

  • Development Core Team, R. (2009). R: a language and environment for statistical computing. Vienne: R Foundation for Statistical Computing.

    Google Scholar 

  • Dong, J., Mao, W., Zhang, G., Wu, F., & Cai, Y. (2007). Root excretion and plant tolerance to cadmium toxicity—a review. Plant, Soil and Environment, 53(5), 193–200.

    Article  CAS  Google Scholar 

  • Herath, I., Kumarathilaka, P., Navaratne, A., Rajakaruna, N., & Vithanage, M. (2014). Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. Journal of Soils and Sediments, 15(1), 126–138.

    Article  CAS  Google Scholar 

  • Hossain, M., Strezov, V., Yin Chan, K., & Nelson, P. (2010). Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 78(9), 1167–1171.

    Article  CAS  Google Scholar 

  • Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92(11), 1450–1457.

    Article  CAS  Google Scholar 

  • Janus, A., Pelfrêne, A., Heymans, S., Deboffe, C., Douay, F., & Waterlot, C. (2015). Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on Miscanthus biochars. Journal of Environmental Management, 162, 275–289.

    Article  CAS  Google Scholar 

  • Justin, M., Pajk, N., Zupanc, V., & Zupančič, M. (2010). Phytoremediation of landfill leachate and compost wastewater by irrigation of Populus and Salix: biomass and growth response. Waste Management, 30(6), 1032–1042.

    Article  CAS  Google Scholar 

  • Kacálková, L., Tlustoš, P., & Száková, J. (2014). Phytoextraction of risk elements by willow and poplar trees. International Journal of Phytoremediation, 17(5), 414–421.

    Article  CAS  Google Scholar 

  • Kidd, P., Barceló, J., Bernal, M., Navari-Izzo, F., Poschenrieder, C., Shilev, S., Clemente, R., & Monterroso, C. (2009). Trace element behaviour at the root–soil interface: implications in phytoremediation. Environmental and Experimental Botany, 67(1), 243–259.

    Article  CAS  Google Scholar 

  • Kloss, S., Zehetner, F., Wimmer, B., Buecker, J., Rempt, F., & Soja, G. (2014). Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 177(1), 3–15.

    Article  CAS  Google Scholar 

  • Laghlimi, M., Baghdad, B., Hadi, H., & Bouabdli, A. (2015). Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open Journal of Ecology, 05(08), 375–388.

    Article  Google Scholar 

  • Lebrun, M., Macri, C., Miard, F., Hattab-Hambli, N., Motelica-Heino, M., Morabito, D., & Bourgerie, S. (2017). Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix. Journal of Geochemical Exploration, 182, 149–156.

    Article  CAS  Google Scholar 

  • Lucchini, P., Quilliam, R., DeLuca, T., Vamerali, T., & Jones, D. (2014). Does biochar application alter heavy metal dynamics in agricultural soil? Agriculture, Ecosystems & Environment, 184, 149–157.

    Article  CAS  Google Scholar 

  • Marmiroli, M., Pietrini, F., Maestri, E., Zacchini, M., Marmiroli, N., & Massacci, A. (2011). Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiology, 31(12), 1319–1334.

    Article  CAS  Google Scholar 

  • Méndez, A., Gómez, A., Paz-Ferreiro, J., & Gascó, G. (2012). Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere, 89(11), 1354–1359.

    Article  CAS  Google Scholar 

  • Mleczek, M., Kaczmarek, Z., Magdziak, Z., & Golinski, P. (2010). Hydroponic estimation of heavy metal accumulation by different genotypes of Salix. Journal of Environmental Science and Health, Part A, 45(5), 569–578.

    Article  CAS  Google Scholar 

  • Montiel-Rozas, M., Madejón, E., & Madejón, P. (2016). Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: an assessment in sand and soil conditions under different levels of contamination. Environmental Pollution, 216, 273–281.

    Article  CAS  Google Scholar 

  • Moon, D., Park, J., Chang, Y., Ok, Y., Lee, S., Ahmad, M., Koutsospyros, A., Park, J., & Baek, K. (2013). Immobilization of lead in contaminated firing range soil using biochar. Environmental Science and Pollution Research, 20(12), 8464–8471.

    Article  CAS  Google Scholar 

  • Moosavi, S. G., & Seghatoleslami, M. J. (2013). Phytoremediation: a review. Advances in Agricultural Biotechnology, 1(1), 5–11.

    Google Scholar 

  • Olmo, M., Alburquerque, J. A., Barrón, V., Del Campillo, M. C., Gallardo, A., Fuentes, M., & Villar, R. (2014). Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biology and Fertility of Soils, 50(8), 1177–1187.

    Article  Google Scholar 

  • Omondi, M., Xia, X., Nahayo, A., Liu, X., Korai, P., & Pan, G. (2016). Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 274, 28–34.

    Article  CAS  Google Scholar 

  • Park, J., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185(2–3), 549–574.

    Article  CAS  Google Scholar 

  • Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., & Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, 5(1), 65–75.

    Article  Google Scholar 

  • Pulford, I., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—a review. Environment International, 29(4), 529–540.

    Article  CAS  Google Scholar 

  • Rees, F., Simonnot, M., & Morel, J. (2014). Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. European Journal of Soil Science, 65(1), 149–161.

    Article  CAS  Google Scholar 

  • Shen, Z., Jin, F., Wang, F., McMillan, O., & Al-Tabbaa, A. (2015). Sorption of lead by Salisbury biochar produced from British broadleaf hardwood. Bioresource Technology, 193, 553–556.

    Article  CAS  Google Scholar 

  • Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47–82.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Chang, S., & Klasson, K. (2011). Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials, 190(1–3), 432–441.

    Article  CAS  Google Scholar 

  • Vaccari, F., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., & Miglietta, F. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 34(4), 231–238.

    Article  CAS  Google Scholar 

  • Vamerali, T., Bandiera, M., Coletto, L., Zanetti, F., Dickinson, N., & Mosca, G. (2009). Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environmental Pollution, 157(3), 887–894.

    Article  CAS  Google Scholar 

  • Vishnoi, S. & Srivastava, P. (2008). Phytoremediation—green for environmental clean. The 12th World Lake Conference, 1016–1021.

  • Wang, S., Shi, X., Sun, H., Chen, Y., Pan, H., Yang, X., & Rafiq, T. (2014). Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead. PLoS One, 9(9), e108568.

    Article  CAS  Google Scholar 

  • Yang, W., Wang, Y., Zhao, F., Ding, Z., Zhang, X., Zhu, Z., & Yang, X. (2014). Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction. Journal of Zhejiang University. Science. B, 15(9), 788–800.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank YARA for the access to the studied site and VT Green for providing the biochar.

Funding

This study was funded by the Région Centre-Val de Loire for the funding (Restor project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Morabito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebrun, M., Miard, F., Hattab-Hambli, N. et al. Assisted Phytoremediation of a Multi-contaminated Industrial Soil Using Biochar and Garden Soil Amendments Associated with Salix alba or Salix viminalis: Abilities to Stabilize As, Pb, and Cu. Water Air Soil Pollut 229, 163 (2018). https://doi.org/10.1007/s11270-018-3816-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3816-z

Keywords

Navigation