Skip to main content

Geochemical Characteristics of Mineral Elements: Arsenic, Fluorine, Lead, Nitrogen, and Carbon

  • Chapter
  • First Online:
Structure and Functions of Pedosphere

Abstract

Arsenic, lead, fluorine, nitrogen, and carbon are common in the near-surface environment, but their concentrations in water, solids, and biota are highly variable. The distribution of As, Pb, F, N, and C in the environment is dependent on source, mineralogy, speciation, biological interactions, and geochemical controls. The As minerals interact with environment, and this renders either their dissolution or the formation of secondary minerals, or both. The distribution of the environmental arsenic is determined by the biogeochemical transformations with respect to the redox conditions, the pH, the availability of ions, the adsorption–desorption, dissolution, and the biological activity. The biological transformation and cycling of As can lead to oxidation or reduction of species that mobilize As. Besides, a significant proportion of As can also be remobilized from the soils through the process of anion exchange. Large variations can be observed on all spatial scales influenced by a variety of natural processes including nongeological influences such as climate and vegetation. Continental weathering of bedrocks contributes natural Pb to sediments, while mining and refining of Pb-bearing ores, which are subsequently used for industrial Pb applications, supply anthropogenic Pb to the environment. Lead geochemistry of rivers and costal environments plays a significant role in the biogeochemical cycling of Pb and pollutant delivery at the land–sea interface. Fluorine is ubiquitous in the environment with most deriving from natural sources, these being normal weathering processes resulting in F release from rocks and minerals, volcanic activity, and marine aerosol emission, together with biomass burning, being in part natural. However, there are several sources of anthropogenically derived F, which in some areas represent a threat to the biosphere. Together with carbon, oxygen, and hydrogen, nitrogen is one of the four most common elements in living cells and an essential constituent of proteins and nucleic acids, the two groups of substances that can be said to support life. The important nitrogen pools are soil organic matter, rocks (in fact the largest single pool), sediments, coal deposits, organic matter in ocean water, and nitrate in ocean water. The next most common gaseous form of nitrogen in the atmosphere after molecular nitrogen is dinitrogen oxide. The geochemistry of carbon is the transformations involving the element carbon within the systems of the earth. Carbon is important in the formation of organic mineral deposits, such as coal, petroleum, or natural gas. Most carbon is cycled through the atmosphere into living organisms and then respires back into the atmosphere. Carbon can form a huge variety of stable compound. It is an essential component of living matter. Carbon makes up only 0.08% of the combination of the lithosphere, hydrosphere, and atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrahams PW, Thornton I (1987) Distribution and extent of land contaminated by arsenic and associated metals in the mining regions of Southwest England. Trans Inst Min Metall 96:B1–B8

    CAS  Google Scholar 

  • Amend JP, Saltikov C, Lu G-S, Hernandez J (2014) Microbial arsenic metabolism and reaction energetics. Rev Mineral Geochem 79:391–433

    Article  Google Scholar 

  • Appleton JD, Cave MR, Wragg J (2012) Anthropogenic and geogenic impacts on arsenic bioaccessibility in UK topsoils. Sci Total Environ 96:3427–3431

    Google Scholar 

  • Australian Government (2015) National Health and Medical Research Council. A systematic review of the efficacy and safety of fluoridation. Part A. Review of methodology and results. https://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/eh41_1.pdf. Accessed 18 Mar 2015

  • Ayoob S, Gupta AK (2006) Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 36:433–487

    Article  CAS  Google Scholar 

  • Balagizi CM, Kasereka MM, Cuoco E, Liotta M (2017) Rain-plume interactions at Nyiragongo and Nyamulagira volcanoes and associated rainwater hazards, East Africa. Appl Geochem 81:76–89

    Article  CAS  Google Scholar 

  • Bhattacharjee H, Mukhopadhyay R, Thiyagarajan S, Rosen BP (2008) Aquaglyceroporins: ancient channels for metalloids. J Biol 7:33–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biswas A, Hendry MJ, Essilfie-Dughan J (2016) Geochemistry of arsenic in low sulfide-high carbonate coal waste rock, Elk Valley, British Columbia, Canada. Sci Total Environ 579:396–408. https://doi.org/10.1016/j.scitotenv.2016.11.084

    Article  CAS  PubMed  Google Scholar 

  • Borisova AY, Pokrovski GS, Pichavant M, Freydier R, Candaudap F (2010) Arsenic enrichment in hydrous peraluminous melts: insights from femtosecond laser ablation-inductively coupled plasma-quadrupole mass spectrometry, and in-situ x-ray absorption fine structure spectroscopy. Am Mineral 95:1095–1104

    Article  CAS  Google Scholar 

  • Bostick BC, Fendorf S (2003) Arsenic sorption on troilite (FeS) and pyrite (FeS2). Geochim Cosmochim Acta 67:909–921

    Article  CAS  Google Scholar 

  • Boyle RW, Jonasson IR (1973) The geochemistry of as and its use as an indicator element in geochemical prospecting. J Geochem Explor 2:251–229

    Article  CAS  Google Scholar 

  • Brown KG, Ross GL (2002) Arsenic, drinking water, and health: a position paper of the American council on science and health. Regul Toxicol Pharmacol 36:162–174. https://doi.org/10.1006/rtph.2002.1573

    Article  CAS  PubMed  Google Scholar 

  • Caley ER, Richards JFC (1956) Theophrastus, on stones. Introduction, Greek text, English translation and commentary. Ohio State University, Columbus, OH, p 238

    Google Scholar 

  • Campbell KM, Nordstrom DK (2014) Arsenic speciation and sorption in natural environments. Rev Mineral Geochem 79:185–216

    Article  Google Scholar 

  • Centers for Disease Control and Prevention (1999) Ten Great Public Health Achievements—United States, 1900–1999. Morb Mortal Wkly Rep 48:241–243

    Google Scholar 

  • Chappells H, Campbell N, Drageb J, Fernandezc CV, Parkera L, Dummer TJB (2014) Understanding the translation of scientific knowledge about arsenic risk exposure among private well water users in Nova Scotia. Sci Total Environ 505:1259–1273. https://doi.org/10.1016/j.scitotenv.2013.12.108

    Article  CAS  PubMed  Google Scholar 

  • Charnock JM, Polya DA, Gault AG, Wogelius RA (2007) Direct EXAFS evidence for incorporation of As5+ in the tetrahedral site of natural andraditic garnet. Am Mineral 92:1856–1861

    Article  CAS  Google Scholar 

  • Chicarelli MI et al (1993) Geochim Cosmochim Acta 57:1307

    Article  CAS  PubMed  Google Scholar 

  • Chiou H, Hsuch Y, Liaw KF (1995) Incidence of internal cancers and ingested inorganic As: a seven-year follow up study in Taiwan. Canc Ees 55:1296–1300

    CAS  Google Scholar 

  • Cohen DR, Bowell RJ (2014) Exploration geochemistry. In: Scott SD (ed) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 624–649

    Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • Currell M, Cartwright I, Raveggi M, Han DM (2011) Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng basin, China. Appl Geochem 26:540–552

    Article  CAS  Google Scholar 

  • D’Alessandro W (2006) Human fluorosis related to volcanic activity a review. In: Kunolos AG, Brebbia CA, Samaras CP, Iopov V (eds) Environmental toxicology translational biomedicine and health, 10th edn. WLT Press, Southampton, pp 21–30

    Google Scholar 

  • D’Alessandro W, Bellomo S, Parello F (2012) Fluorine adsorption by volcanic soils at Mt. Etna, Italy. Appl Geochem 27(6):1179–1188

    Article  CAS  Google Scholar 

  • Dai S, Li W, Tang Y, Zhang Y, Feng P (2007) The sources, pathway, and preventive measures for fluorosis in Zhijin County, Guizhou, China. Appl Geochem 22:1017–1024

    Article  CAS  Google Scholar 

  • Davison LH, Weinstein LH (2006) Some problems relating to fluorides in the environment: effects on plants and animals. Chap. 8. In: Tressaud A (ed) Fluorine and the environment, atmospheric chemistry, emissions, & lithosphere, vol 1. Elsevier, Amsterdam, pp 251–298

    Chapter  Google Scholar 

  • Doley D, Hill RJ, Riese RH (2004) Environmental fluoride in Australasia: ecological effects, regulation and management. Clean Air Environ Qual 38(2):35–55

    Google Scholar 

  • Drahota P, Filippi M (2009) Secondary arsenic minerals in the environment: a review. Environ Int 35:1243–1255

    Article  CAS  PubMed  Google Scholar 

  • Eary LE, Schramke JA (1990) Rates of inorganic oxidation reactions involving dissolved oxygen. In: Melchior DC, Bassett RL (eds) Chemical modeling of aqueous systems II: American Chemical Society Symposium, vol 416, pp 379–396

    Chapter  Google Scholar 

  • Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y (2006) Fluoride in drinking-water. World Health Organization (WHO), London. http://apps.who.int/iris/bitstream/10665/43514/1/9241563192_eng.pdf. Accessed 16 Mar 2015

    Google Scholar 

  • Fergusson JE (1935) Inorganic chemistry and the earth. Pergamon Press, Oxford, pp 253–290

    Google Scholar 

  • Finkelman RB, Tian L (2018) The health impacts of coal use in China. Int Geol Rev 60:579–580

    Article  Google Scholar 

  • Finkelman RB, Belkin HE, Zheng BS (1999) Health impacts of domestic coal use in China. Proc Natl Acad Sci 96:3427–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster AL, Brown GE Jr, Parks GA (2003) XAFS study of As(V) and Se(IV) Sorption complexes on hydrous Mn oxides. Geochimica et Cosmocimica Acta 67(11):1937–1963

    Article  CAS  Google Scholar 

  • Francis P, Burton MR, Oppenheimer C (1998) Remote measurements of volcanic gas compositions by solar occultation spectroscopy. Nature 396:567–570

    Article  CAS  Google Scholar 

  • Franco F, Ardau C, Fanfani L (2009) Environmental geochemistry and mineralogy of lead at the old mine area of Baccu Locci (South-east Sardinia, Italy). J Geochem Explor 100:l 0l–l l5

    Google Scholar 

  • Friend JP (1989) Natural chlorine and fluorine in the atmosphere, water and precipitation. In: Scientific assessment of stratospheric ozone, 2. AFEAS report. NASA., Appendix, Washington, DC, pp 433–448

    Google Scholar 

  • Gaciri SJ, Davies TC (1993) The occurrence and geochemistry of fluoride in some nature-waters of Kenya. J Hydrol 143:395–412

    Article  CAS  Google Scholar 

  • Galloway JN (2004) In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 8. Elsevier, Amsterdam, pp 557–583

    Google Scholar 

  • Gammons CH, Grant TM, Nimick DA, Parker SR, DeGrandpre MD (2007) Diel changes in water chemistry in an arsenic-rich stream and treatment-pond system. Sci Total Environ 384:433–451

    Article  CAS  PubMed  Google Scholar 

  • Gao HJ, Zhao Q, Zhang XC, Wan XC, Mao JD (2014) Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots. J Agric Food Chem 62(10):2313–2319. https://doi.org/10.1021/jf4038437

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt VM (1954) Geochemistry. Clarendon, Oxford

    Google Scholar 

  • Hopenhayn C (2006) Arsenic in drinking water—impact on human health. Elements 2:103–107

    Article  CAS  Google Scholar 

  • Hu Z, Gao S (2008) Upper crustal abundances of trace elements: a revision and update. Chem Geol 253:205–221

    Article  CAS  Google Scholar 

  • Jain RB (2017) Concentrations of fluoride in water and plasma for US children and adolescents: data from NHANES 2013–2014. Environ Toxicol Pharmacol 50:20–31

    Article  CAS  PubMed  Google Scholar 

  • Jayarathane T, Stockwell CR, Yokeon RJ, Nakao S, Stone EA (2014) Emission of fine particle fluoride from biomass burning. Environ Sci Technol 40:12636–12644

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC, Boca Raton, FL

    Google Scholar 

  • Kakumanu N, Rao SD (2013) Images in clinical medicine. Skeletal fluorosis due to excessive tea drinking. N Engl J Med 368(12):1140

    Article  PubMed  Google Scholar 

  • Kargel JS (2006) Enceladus: cosmic gymnast, volatile miniworld. Science 311:1389

    Article  CAS  PubMed  Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108

    Article  CAS  PubMed  Google Scholar 

  • Ketris MP, Yudovich YE (2009) Estimations of Clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals. J Coal Geol 78:135–148

    Article  CAS  Google Scholar 

  • Kierdorf U, Bahelková P, Sedláček F, Kierdorf H (2012) Pronounced reduction of f fluoride exposure in free-ranging deer in North Bohemia (Czech Republic) as indicated by the biomarkers skeletal fluoride content and dental fluorosis. Sci Total Environ 414:686–695

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf U, Death C, Hufschmid J, Witzel C, Kierdorf H (2016) Developmental and post-eruptive defects in molar enamel of free-ranging eastern grey kangaroos (Macropus giganteus) exposed to high environmental levels of fluoride. PLoS One 11(2):e0147427. https://doi.org/10.1371/journal.pone.0147427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Killops S, Killops V (2005) Introduction to organic geochemistry, 2nd edn. Blackwell, Malden, MA, pp 1–9. ISBN 978-0-632-06504-2

    Google Scholar 

  • Kim MJ, Nriagu J, Haack S (2002) Arsenic species and chemistry in groundwater of southeast Michigan. Environ Pollut 120:379–390

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Miranda ML, Tootoo J, Bradley P, Gelfand AE (2011) Spatial modeling for groundwater arsenic levels in North Carolina. Environ Sci Technol 45:4824–4831. https://doi.org/10.1021/es103336s

    Article  CAS  PubMed  Google Scholar 

  • Koga KT, Rose-Koga EF (2018) Fluorine in the earth and the solar system, where does it come from and can it be found? Compt Rendus Chem 21:749–756. https://doi.org/10.1016/j.crci.2018.02.002

    Article  CAS  Google Scholar 

  • Kvande H (2014) The aluminium smelting process. J Occup Environ Med 56(S2–S4 Supp):5S

    Google Scholar 

  • Ladeira ACQ, Ciminelli VST (2004) Adsorption and desorption of arsenic on an oxisol and its constituents. Water Res 38:2087–2094

    Article  CAS  PubMed  Google Scholar 

  • Latha SS, Ambika SR, Prasad SJ (1999) Fluoride contamination status of groundwater in Karnataka. Curr Sci 76:730–734

    CAS  Google Scholar 

  • Lazareva O, Pichler T (2007) Naturally occurring arsenic in the Miocene hawthorn group, southwestern Florida: potential implication for phosphate mining. Appl Geochem 22:953–973

    Article  CAS  Google Scholar 

  • Li Y, Wang W, Yang L, Li H (2003) Environmental epidemic characteristics of coal-burning endemic fluorosis and the safety threshold of coal fluoride in China. Fluoride 36:106–112

    CAS  Google Scholar 

  • Li Z, Beachner R, McManama Z, Hanlie H (2007) Sorption of arsenic by surfactant-modified zeolite and kaolinite. Micropor Mesopor Mater 105:291–297

    Article  CAS  Google Scholar 

  • Li XQ, Hou XW, Zhou ZC, Liu LX (2011) Geochemical provenance and spatial distribution of fluoride in groundwater of Taiyuan Basin, China. Environ Earth Sci 62:1635–1642

    Article  CAS  Google Scholar 

  • Lièvremont D, Bertin PN, Lett MC (2009) Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Zheng L, Qi C, Zhang Y (2007) Environmental geochemistry and health of fluorine in Chinese coals. Environ Geol 52:1307–1313

    Article  CAS  Google Scholar 

  • Liu X, Wang B, Zheng B (2014) Geochemical process of fluorine in soil. Chin J Geochem 33:227–279

    Article  Google Scholar 

  • Maascheleyn PH, Delaune RD, Patrick WH (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419

    Article  Google Scholar 

  • Mancinelli RL, Banin A (2003) Where is the nitrogen on Mars? Int J Astrobiol 2:217

    Article  CAS  Google Scholar 

  • Marsan D, Rigaud S, Church T (2014) Natural radionuclides 210Po and 210Pb in the Delaware and Chesapeake estuaries: modeling scavenging rates and residence times. J Environ Radioact 138:447–455

    Article  CAS  PubMed  Google Scholar 

  • Matschullat J (2011) The global arsenic cycle revisited. In: Deschamps E, Matschullat J (eds) Arsenic: natural and anthropogenic. (Arsenic in the Environment), vol 4. CRC, Balkema, pp 43–26

    Google Scholar 

  • Matsunaga H, Yokoyama T, Eldridge RJ, Bolto BA (1996) Adsorption characteristics of Arsenic (III) and Arsenic (V) on Iron (III)-loaded chelating resin having Lysine-Na, Na-diacetic acid moiety. React Funct Polym 29:167–174

    Article  CAS  Google Scholar 

  • McCarty KM, Hanh HT, Kim K (2011) Arsenic geochemistry and human health in South East Asia. Rev Environ Health 26:71–78. https://doi.org/10.1515/reveh.2011.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McSween HY Jr, Huss GR (2010) Cosmochemistry. Cambridge University Press, Cambridge. ISBN 9781139489461

    Book  Google Scholar 

  • Mirlean M, Roisenberg A (2007) Fluoride distribution in the environment along the gradient of a phosphate-fertilizer production emission (southern Brazil). Environ Geochem Health 29:179–187

    Article  CAS  PubMed  Google Scholar 

  • Morin G, Calas G (2006) Arsenic in soils, mine tailings and former industrial sites. Elements 2:97–102

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    Article  CAS  PubMed  Google Scholar 

  • Myrold DD, Bottomley PJ (2007) Biological N inputs. In: Paul EA (ed) Soil microbiology, ecology and biochemistry. Elsevier, Burlington, MA, pp 365–388

    Google Scholar 

  • Nameroff T, Balistrieri L, Murray J (2002) Suboxic trace metal geochemistry in eastern tropic North Pacific. Geochem Cosmochim Acta 66(7):1139–1158

    Article  CAS  Google Scholar 

  • Naseem S, Rafique T, Bashir E, Bhanger MI, Laghari A, Usmani TH (2010) Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. Chemosphere 78:1313–1321

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (2006) Arsenic in drinking water. National Academy Press, Washington, DC

    Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C et al (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121:295–302. https://doi.org/10.1289/ehp.1205875

    Article  PubMed  PubMed Central  Google Scholar 

  • Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  CAS  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145. https://doi.org/10.1126/science.1072375

    Article  CAS  PubMed  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–113

    Article  CAS  PubMed  Google Scholar 

  • Onishi H (1969) In: Wedepohl KH (ed) Handbook of geochemistry. Springer, New York

    Google Scholar 

  • Oremland RS, Dowdle PR, Hoeft S, Sharp JO, Schaefer JK, Miller LG, Switzer BJ, Smith RL, Bloom NS, Wallschlaeger D (2000) Bacterial dissimilatory reduction of arsenate and sulfate in meromictic mono Lake, California. Geochim Cosmochim Acta 64:3073–3084

    Article  CAS  Google Scholar 

  • Panagopoulos G, Panagiotaras D (2011) Understanding the extent of geochemical and hydrochemical processes in coastal karst aquifers through ion chemistry and multivariate statistical analysis. Fresen Environ Bull 20:3270–3285

    CAS  Google Scholar 

  • Pascua C, Charnock J, Polya DA, Sato T, Yokoyama S, Minato M (2005) Arsenic-bearing Smectite from the geothermal environment. Mineral Mag 69:897–906

    Article  CAS  Google Scholar 

  • Polya DA (1988) Efficiency of hydrothermal ore formation and the Panasqueira W-Cu(Ag)-Sn vein deposit. Nature 333:838–841

    Article  CAS  Google Scholar 

  • Polya DA (1989) Chemistry of the main-stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, soils. Sci Total Environ 435–436:21–29

    Google Scholar 

  • Preunkert S, Legrand M (2001) Causes of enhanced fluoride levels in alpine ice cores over the last 75 years: implications for the atmospheric fluoride budget. J Geophys Res 106:12,619–12,632

    Article  CAS  Google Scholar 

  • Rakhunde R, Jasudkar D, Deshpande L, Juneja HD, Labhasetwar P (2012) Health effects and significance of arsenic speciation in water. Int J Env Sci Res 1:92–96

    Google Scholar 

  • Ranjan R, Ranjan A (2015) Fluoride toxicity in animals. Springer, Berlin

    Book  Google Scholar 

  • Reddy DV, Nagabhushanam P, Sukhija BS, Reddy AGS, Smedley PL (2010) Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalgonda District, India. Chem Geol 269:278–289

    Article  CAS  Google Scholar 

  • Rodriguez JH, Wannaz ED, Pignata ML, Fangmeier A, Franzaring J (2012) Fluoride biomonitoring around a large aluminium smelter using foliage from different tree species. Clean Soil Air Water 40:1315–1319

    Article  CAS  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continent crust. Treat Geochem 3:1–64

    Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the continental crust. In: Rudnick RL (ed) The Crust. Treatise on geochemistry, vol 4, 2nd edn. Elsevier, Amsterdam, pp 1–51. Holland HD, Turekian KK (Exec. Eds)

    Google Scholar 

  • Saikia J, Saha B, Das G (2011) Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles. J Hazard Mater 186:575–582

    Article  CAS  PubMed  Google Scholar 

  • Schmedt auf der GĂĽnne J, Mangstl M, Kraus F (2012) Occurrence of difluorine F2 in nature–in situ proof and quantification by NMR spectroscopy. Angew Chem Int Ed 51:7847–7849

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  • Smil V (2001) Enriching the earth. MIT Press, Cambridge, MA

    Google Scholar 

  • Smith DR, Flegal AR (1995) Lead in the biosphere: recent trends. Ambio 24(1):21–23

    Google Scholar 

  • Stollenwerk KG (2003) Geochemical process controlling transport of arsenic in groundwater—a review of adsorption. In: Welch AH, Stollenwerk KG (eds) Arsenic in ground water—geochemistry and occurrence. Kluwer Academic, Boston, pp 67–100

    Chapter  Google Scholar 

  • Sullivan EJ, Bowman RS, Legiec IA (2003) Sorption of arsenic from soil-washing leachate by surfactant-modified zeolite. J Environ Qual 32:2387–2391

    Article  CAS  PubMed  Google Scholar 

  • Sverjensky DA, Fukushi K (2006) Anion adsorption on oxide surfaces: inclusion of the water dipole in modeling the electrostatics of ligand exchange. Environ Sci Technol 40:263–271

    Article  CAS  PubMed  Google Scholar 

  • Tavener SJ, Clark JH (2006) Fluorine: friend or foe? A green chemist’s perspective. In: Tressaud A (ed) Fluorine and the environment: agrochemicals, archaeology, green chemistry & water. Advances in fluorine science, vol 2. Elsevier, Amsterdam, pp 177–202

    Chapter  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. Mol Clin Environ Toxicol 101:133–164

    Article  Google Scholar 

  • Tekle-Haimanot R, Melaku Z, Kloos H, Reimann C, Fantaye W, Zerihun L, Bjorvatn K (2006) The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sci Total Environ 367:182–190

    Article  CAS  PubMed  Google Scholar 

  • Theodore T, Kotlyar BB, Singer DA, Berger VI, Abbott EW, Foster AL (2003) Applied geochemistry, geology and mineralogy of the northernmost Carlin trend, Nevada. Econ Geol 98:287–316

    Article  CAS  Google Scholar 

  • Thinnappan V, Merrifield C, Islam F, Polya DA, Wincott P, Wogelius RA (2008) A combined experimental study of vivianite and as(V) reactivity in the pH range 2–11. Appl Geochem 23:3187–3204

    Article  CAS  Google Scholar 

  • Thompson TB, Teal L, Meeuwig RO (eds) (2002) Gold deposits of the Carlin trend. Nevada Bureau of Mines and Geology, Bulletin 111. Clean Soil Air Water 40:1315–1319

    Google Scholar 

  • Thornton I (1996) Sources and pathway of arsenic in the geochemical environment: health implications. In: Fuge JD, Mc Call R (eds) Environmental geochemistry and health, pp 153–161. Geological Society Special Publication No 113

    Google Scholar 

  • Tjahyono N, Gao Y, Wong D, Zhang W, Taylor MP (2011) Fluoride emissions management guide (FEMG) for aluminium smelters. In: Lindsay SJ (ed) Light metals. Springer, Berlin, pp 301–306

    Google Scholar 

  • Tseng CH (2005) Blackfoot disease and arsenic: a never-ending story. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 23:55–74. https://doi.org/10.1081/GNC-200051860

    Article  CAS  PubMed  Google Scholar 

  • Turner A, Millward GE (2002) Suspended particles their role in estuarine biogeochemical cycles. Estuar Coast Shelf Sci 55:857–883

    Article  CAS  Google Scholar 

  • Tourtelot HA (1964) Minor-element composition and organic carbon content of marine and nonmarine shales of Late Cretaceous age in the Western interior of the United States. Geochim Cosmochim Acta 28:1579–1604

    Article  CAS  Google Scholar 

  • U.S. Department of Health and Human Services. U.S (2015) Public health service recommendation for fluoride concentration in drinking water for the prevention of dental caries. Public Health Rep 130:1–14

    Google Scholar 

  • U.S. Environmental Protection Agency (2010) Fluoride: exposure and relative source contribution analysis. Health and ecological criteria division, Office of Water, US EPA, Washington, DC

    Google Scholar 

  • USDA (2005) National Fluoride Database of selected beverages and foods, release 2. U.S. Department of Agriculture, Nutrient Data Laboratory, Washington, DC, p 2

    Google Scholar 

  • Van de Graaf AA et al (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol 61:1246

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang XC, Kawahara K, Guo XJ (1999) Fluoride contamination of groundwater and its impacts on human health in Inner Mongolia area. Aqua (Oxford) 48:146–153

    CAS  Google Scholar 

  • Waugh DT, Godfrey M, Limeback H, Potter W (2017) Black tea source, production, and consumption: assessment of health risks of fluoride intake in New Zealand. J Environ Public Health 2017:5120504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Webster JG, Nordstrom DK (2003) Geothermal arsenic. In: Welch AH, Stollenwerk KG (eds) Arsenic in ground water: geochemistry and occurrence. Kluwer Academic, Boston, pp 101–126

    Chapter  Google Scholar 

  • Weinstein LH (1977) Fluoride and plant life. J Occup Med 19:49–78

    Article  CAS  PubMed  Google Scholar 

  • Welch AH, Lico MS, Hughoes H (1988) Arsenic in ground water of the western United States. Ground Water 2(6):333–347

    Article  Google Scholar 

  • Welch AH, Stollenwerk KG (eds) (2003) Arsenic in ground water: geochemistry and occurrence. Kluwer Academic, Boston, p 475

    Google Scholar 

  • Welch AB, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in groundwater of the United States: occurrence and geochemistry. Groundwater 38:589–604. https://doi.org/10.1111/j.1745-6584.2000.tb00251.x

    Article  CAS  Google Scholar 

  • World Health Organization (2006) In: Fawell J, Bailey K, Chilton E, Dahi E, Fewtrell L, Magara Y (eds) Fluoride in drinking-water. IWA, London

    Google Scholar 

  • World Health Organization (2016) Arsenic: Fact Sheet. http://www.who.int/mediacentre/factsheets/fs372/en/. Accessed Dec 2016

  • Wright DA, Welbourn P (2002) Environmental toxicology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Yadav IC, Devi NL (2018) Biomass burning, regional air quality, and climate change. In: Jerome Nriagu J (ed) Earth systems and environmental sciences. Edition: Encyclopedia of environmental health, 2nd edn. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-409548-9.11022-X

    Chapter  Google Scholar 

  • Yang N, Tang S, Zhang S, Huang W, Chen P, Chen Y, Xi Z, Yuan Y, Wang K (2017) Fluorine in Chinese coal: a review of distribution, abundance, modes of occurrence, genetic factors and environmental effects. Minerals 7:219. https://doi.org/10.3390/min7110219

    Article  CAS  Google Scholar 

  • Young SM, Pitawala A, Ishiga H (2011) Factors controlling fluoride contents of groundwater in north-central and northwestern Sri Lanka. Environ Earth Sci 63:1333–1342

    Article  CAS  Google Scholar 

  • Yung YL, DeMore WB (1999) Photochemistry of planetary atmospheres. (Oxford University Press, Oxford

    Book  Google Scholar 

  • Yung YL, McElroy MB (1979) Fixation of nitrogen in the prebiotic atmosphere. Science 203:1002

    Article  CAS  PubMed  Google Scholar 

  • Zhu YG, Yoshinaga M, Zhao FJ, Rosen BP (2014) Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci 42:443–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kar, S. (2022). Geochemical Characteristics of Mineral Elements: Arsenic, Fluorine, Lead, Nitrogen, and Carbon. In: Giri, B., Kapoor, R., Wu, QS., Varma, A. (eds) Structure and Functions of Pedosphere. Springer, Singapore. https://doi.org/10.1007/978-981-16-8770-9_10

Download citation

Publish with us

Policies and ethics