Skip to main content

Glutathione in Higher Plants: Biosynthesis and Physiological Mechanisms During Heat and Drought-Induced Oxidative Stress

  • Chapter
  • First Online:
Antioxidant Defense in Plants

Abstract

The growth and development of plants are affected by the adverse effect of environmental stresses including drought, salinity, high temperature, and toxic metal accumulation. Under environmental stresses, cell oxidative damage of plants generally occurs as a consequence of the overproduction of reactive oxygen species (ROS). While tolerant plants could survive against abiotic stress-induced oxidative stress by following various physiological mechanisms. Among various physiological processes, glutathione (GSH), a non-enzymatic antioxidant, is one of the key metabolites which plays a significant role in protecting the plant cells from oxidative stress. GSH directly or indirectly involves in detoxifying the ROS in plants’ cells. Besides these roles, GSH also plays role in detoxification of methylglyoxal, formation of phytochelatins, interacts with plant hormones, other signaling molecules and its redox state triggers signal transduction, and also acts as a cofactor in several biochemical reactions. Therefore, GSH is measured as a versatile redox molecule and a perfect metabolite to have an involvement in plant growth and development, under both stress and normal conditions. The current chapter overviewed the earlier studies on the biosynthesis and physiological mechanisms of GSH during heat and drought-induced oxidative stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akter N, Sobahan MA, Uraji M, Ye W, Hossain MA, Mori IC et al (2012) Effects of depletion of glutathione on abscisic acid and methyl jasmonate induced stomata closure in Arabidopsis thaliana. Biosci Biotechnol Biochem 76:2032–2037

    Article  CAS  PubMed  Google Scholar 

  • Akter N, Okuma E, Sobahan MA, Uraji M, Munemasa S, Nakamura Y et al (2013) Negative regulation of methyl jasmonate-induced stomatal closure by glutathione in Arabidopsis. J Plant Growth Regul 32:208–215

    Article  CAS  Google Scholar 

  • Anjum NA, Singh HP, Khan MIR, Masood A, Per TS, Negi A et al (2015a) Too much is bad–an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environ Sci Pollut Res 22:3361–3382

    Article  CAS  Google Scholar 

  • Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, Rodrigo MAM, Adam V, Fujita M, Kizek R, Duarte AC, Pereira E, Ahmad I (2015b) Jacks of metal/metalloidchelation trade on plants-an overview. Front Plant Sci 6:192

    PubMed  PubMed Central  Google Scholar 

  • Bae MJ, Kim YS, Kim IS, Choe YH, Lee EJ, Kim YH et al (2013) Transgenic rice overexpressing the Brassica juncea gamma-glutamylcysteine synthetase gene enhances tolerance to abiotic stress and improves grain yield under paddy field conditions. Mol Breed 31(4):931–945

    Article  CAS  Google Scholar 

  • Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214. https://doi.org/10.1515/BC.2009.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banhegyi G., Lusini L., Puskas F., Rossi R., Fulceri R., Braun L., Mile V., Simplicio P., , Mandl J., Benedetti A. (1999). Preferential transport of glutathione versus glutathione disulfide in rat liver microsomal vesicles, J Biol Chem, 274, 12213–12216

    Article  CAS  PubMed  Google Scholar 

  • Bellomo G, Palladini G, Vairetti M (1997) Intranuclear distribution, function and fate of glutathione and glutathione-S-conjugate in living rat hepatocytes studied by fluorescence microscopy. Microsc Res Tech 36(1997):243–252

    Article  CAS  PubMed  Google Scholar 

  • Biterova EI, Barycki JJ (2009) Mechanistic details of glutathione biosynthesis revealed by crystal structures of Saccharomyces cerevisiae glutamate-cysteine ligase. J Biol Chem 284:32700–32708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittsánszky A, Kömives T, Gullner G, Gyulai G, Kiss J, Heszky L et al (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc (2+) stress. Environ Int 31(2):251–254

    Article  PubMed  CAS  Google Scholar 

  • Bogs J, Bourbouloux A, Cagnac O, Wachter A, Rausch T, Delrot S (2003) Functional characterization and expression analysis of a glutathione transporter, BjGT1, from Brassica juncea: evidence for regulation by heavy metal exposure. Plant Cell Environ 26(10):1703–1711

    Article  CAS  Google Scholar 

  • Bourbouloux A, Shahi P, Chakladar A, Delrot S, Bachhawat AK (2000) Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J Biol Chem 275:13259–13265

    Article  CAS  PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Cagnac O, Bourbouloux A, Chakrabarty D, Zhang MY, Delrot S (2004) AtOPT6 transports glutathione derivatives and is induced by primisulfuron. Plant Physiol 135(3):1378–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centomani I, Sgobba A, D’Addabbo P, Dipierro N, Paradiso A, De Gara L, Dipierro S, Viggiano L, de Pinto MC (2015) Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. Protoplasma 252:1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Bose J, Shabala L, Shabala S (2016) Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three brassica species. J Exp Bot 67(15):4611–4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaouch S, Queval G, Vanderauwera S, Mhamdi A, Vandorpe M, Langlois-Meurinne M, Van Breusegem F, Saindrenan P, Noctor G (2010) Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a day length related manner. Plant Physiol 153:1692–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Yang L, Yan X, Liu Y, Wang R, Fan T et al (2016) Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol 171(1):707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng G, Karunakaran R, East AK, Munoz-Azcarate O, Poole PS (2017) Glutathione affects the transport activity of Rhizobium leguminosarum 3841 and is essential for efficient nodulation. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnx045

  • Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    Article  CAS  PubMed  Google Scholar 

  • Choe YH, Kim YS, Kim IS, Bae MJ, Lee EJ, Kim YH et al (2013) Homologous expression of Îł-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses. J Plant Physiol 170(6):610–618

    Article  CAS  PubMed  Google Scholar 

  • Cicero LL, Madesis P, Tsaftaris A, Piero ARL (2015) Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses. Phytochemistry 116:69–77

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione- deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase. Plant J 16:73–78

    Article  CAS  PubMed  Google Scholar 

  • Copley SD, Dhillon JK (2002) Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol 3(25):1–16

    Google Scholar 

  • Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG (2004) Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med 37:1511–1526

    Article  CAS  PubMed  Google Scholar 

  • De Gara L, Locato V, Dipierro S, de Pinto MC (2010) Redox homeostasis in plants. The challenge of living with endogenous oxygen production. Resp Physiol Neurobiol 173:S13–S19

    Article  CAS  Google Scholar 

  • De Jesus MC, Ingle BL, Barakat KA, Shrestha B, Slavens KD, Cundari TR, Anderson ME (2014) The role of strong electrostatic interactions at the dimer interface of human glutathione synthetase. Protein J 33(5):403–409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Pinto MC, Locato V, Sgobba A, Romero-Puertas Mdel C, Gadaleta C, Delledonne M, De Gara L (2013) S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco bright yellow-2 cells. Plant Physiol 163:1766–1775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Pinto MC, Locato V, Paradiso A, De Gara L (2015a) Role of redox homeostasis in thermo-tolerance under a climate change scenario. Ann Bot 116:487–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Pinto MC, Locato V, Paradiso A, De Gara L (2015b) Role of redox homeostasis in thermo-tolerance under a climate change scenario. Ann Bot 116:487–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    Article  CAS  PubMed  Google Scholar 

  • Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830:3217–3266

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF et al (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and Îł-glutamylcysteine synthetase expression. Nat Biotechnol 20(11):1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Diao Y, Xu H, Li G, Yu A, Yu X, Hu W et al (2014) Cloning a glutathione peroxidase gene from Nelumbo nucifera and enhanced salt tolerance by overexpressing in rice. Mol Biol Rep 41(8):4919–4927

    Article  CAS  PubMed  Google Scholar 

  • Dixit P, Mukherjee PK, Ramachandran V, Eapen S (2011) Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLoS One 6(1):e16360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du B, Zhao W, An Y, Li Y, Zhang X, Song L, Guo C (2019) Overexpression of an alfalfa glutathione S-transferase gene improved the saline-alkali tolerance of transgenic tobacco. Biol Open 8(9):bio043505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang W, Qiao LS, Ming W, Jian Q, Feng YW, Hua GH, Zhou XX (2016) Cloning and expression analysis of one gamma-GlutamylcysteineSynthetase gene (HbÎł-ECS1) in latex production in Heveabrasiliensis. BioMed Res Int 2016:5657491

    PubMed  PubMed Central  Google Scholar 

  • Flocco CG, Lindblom SD, Elizabeth AH, Smits P (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytoremediation 6(4):289–304

    Article  CAS  PubMed  Google Scholar 

  • Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med 30:1–12

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) Presence of glutathione and glutathione reductase in chloroplasts proposed role in ascorbic-acid metabolism. Planta 133(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109(3):1047–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Theodoulou F, Delrot S (2001) The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci 6:486–492

    Article  CAS  PubMed  Google Scholar 

  • Fraser JA, Saunders RD, McLellan LI (2002) Drosophila melanogaster glutamate-cysteine ligase activity is regulated by a modifier subunit with a mechanism of action similar to that of the mammalian form. J Biol Chem 277:1158–1165

    Article  CAS  PubMed  Google Scholar 

  • Frendo P, Mathieu C, Van de Sype G, HĂ©rouart D, Puppo A (1999) Characterisation of a cDNA encoding gamma-glutamylcysteine synthetase in Medicago truncatula. Free Radic Res 31:S213–S218

    Article  CAS  PubMed  Google Scholar 

  • Galant A, Arkus KA, Zubieta C, Cahoon RE, Jez JM (2009) Structural basis for evolution of product diversity in soybean glutathione biosynthesis. Plant Cell 21:3450–3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galant A, Preuss ML, Cameron J, Jez JM (2011) Plant glutathione biosynthesis: diversity in biochemical regulation and reaction products. Front Plant Sci 2:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallie DR (2013) The role of l-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64:433–443

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trived DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione reductase and glutathione: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  PubMed  Google Scholar 

  • Gomez LD, Vanacker H, Buchner P, Noctor G, Foyer CH (2004) Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling. Plant Physiol 134:1662–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith OW, Meister A (1979) Translocation of intracellular glutathione to membrane-bound gamma-glutamyl transpeptidase as a discrete step in the gamma-glutamyl cycle: glutathionuria after inhibition of transpeptidase. Proc Natl Acad Sci U S A 76:268–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gromes R, Hothorn M, Lenherr ED, Rybin V, Scheffzek K, Rausch T (2008a) The redox switch of gamma-glutamylcysteine ligase via a reversible monomer-dimer transition is a mechanism unique to plants. Plant J 54:1063–1075

    Article  CAS  PubMed  Google Scholar 

  • Gromes R, Hothorn M, Lenherr ED, Rybin V, Scheffzek K, Rausch T (2008b) The redox switch of gamma- glutamylcysteine ligase via a reversible monomer-dimer transition is a mechanism unique to plants. Plant J 54:1063–1075

    Article  CAS  PubMed  Google Scholar 

  • Gullner G, Kömives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing Îł-glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52(358):971–979

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72(7):1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596. 18 pages

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han Y, Fan T, Zhu X, Wu X, Ouyang J, Jiang L, Cao S (2019) WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis. Plant Mol Biol 99(1–2):149–159

    Article  CAS  PubMed  Google Scholar 

  • Harms K, Von Ballmoos P, Brunold C, Höfgen R, Hesse H (2000) Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. Plant J 22(4):335–343

    Article  CAS  PubMed  Google Scholar 

  • Harshavardhan VT, Wu TM, Hong CY (2017) Glutathione reductase and abiotic stress tolerance in plants. In: Glutathione in plant growth, development, and stress tolerance. Springer, Cham, pp 265–286

    Chapter  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23(2):249–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Rahman A, Mahmud JA, Alharby HF, Fujita M (2018) Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms. J Plant Interact 13:203–212

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8(9):384

    Article  CAS  PubMed Central  Google Scholar 

  • Herrera K, Cahoon RE, Kumaran S, Jez JM (2007) Reaction mechanism of glutathione synthetase from Arabidopsis thaliana: site-directed mutagenesis of active site residues. J Biol Chem 282:17157–17165

    Article  CAS  PubMed  Google Scholar 

  • Herschbach C, van der Zalm E, Schneider A, Jouanin L, De Kok LJ, Rennenberg H (2000) Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing gamma-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S. Plant Physiol 124(1):461–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibi T, Nii H, Nakatsu T, Kimura A, Kato H, Hiratake J, Oda J (2004) Crystal structure of g-glutamylcysteine synthetase: insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis. Proc Natl Acad Sci U S A 101:15052–15057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM (2007a) Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell 19:2653–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM (2007b) Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell 19:2653–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho YF, Guenthner TM (1994) Uptake and biosynthesis of glutathione by isolated hepatic nuclei. Toxicologist 14:178

    Google Scholar 

  • Hothorn M, Wachter A, Gromes R, Stuwe T, Rausch T, Scheffzek K (2006) Structural basis for the redox control of plant glutamate cysteine ligase. J Biol Chem 281:27557–27565

    Article  CAS  PubMed  Google Scholar 

  • Huang C-S, Anderson ME, Meister A (1993a) Amino acid sequence and function of the light subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem 268:20578–20583

    Article  CAS  PubMed  Google Scholar 

  • Huang CS, Chang LS, Anderson ME, Meister A (1993b) Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteinesynthetase. J Biol Chem 268(26):19675–19680

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Guo T, Zheng SC, Feng QL, Liang JH, Li L (2009) Increased cold tolerance in Arabidopsis thaliana transformed with Choristoneura fumiferana glutathione S-transferase gene. Biol Plant 53(1):183–187

    Article  CAS  Google Scholar 

  • Iantomasi T, Favilli F, Marraccini P, Magaldi T, Bruni P, Vincenzini MT (1997) Glutathione transport system in human small intestine epithelial cells. Biochim Biophys Acta 1330:274–283

    Article  CAS  PubMed  Google Scholar 

  • Ivanova LA, Ronzhina DA, Ivanov LA, Stroukova LV, Peuke AD, Rennenberg H (2011) Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil. Plant Biol 13(4):649–659

    Article  CAS  PubMed  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Brit Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  CAS  Google Scholar 

  • Jespersen HM, Kjaersgard IVH, Ostergaard L, Welinder KG (1997) From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J 326:305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jez JM, Cahoon RE (2004) Kinetic mechanism of glutathione synthetase from Arabidopsis thaliana. J Biol Chem 279:42726–42731

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Cahoon RE, Chen S (2004) Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J Biol Chem 279:33463–33479

    Article  CAS  PubMed  Google Scholar 

  • Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32(8):1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Kaplowitz N, Aw TY, Ookhtens M (1985) The regulation of hepatic glutathione. Ann Rev Pharmacol Toxicol 25(1):715–744

    Article  CAS  Google Scholar 

  • Kissoudis C, Kalloniati C, Flemetakis E, Madesis P, Labrou NE, Tsaftaris A, Nianiou-Obeidat I (2015) Stress-inducible GmGSTU4 shapes transgenic tobacco plants metabolome towards increased salinity tolerance. Acta Physiol Plant 37(5):102

    Article  CAS  Google Scholar 

  • Kliebenstein DL, Monde R-A, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocsy G, Szalai G, Galiba G (2002) Effect of heat stress on glutathione biosynthesis in wheat. Acta Biol Szegediensis 46(3-4):71–72

    Google Scholar 

  • Kocsy G, Szalai G, Sutka J, Páldi E, Galiba G (2004) Heat tolerance together with heat stress-induced changes in glutathione and hydroxymethylglutathione levels is affected by chromosome 5A of wheat. Plant Sci 166(2):451–458

    Article  CAS  Google Scholar 

  • Krueger S, Niehl A, Martin MC, Steinhauser D, Donath A, Hildebrandt T, Romero LC, Hoefgen R, Gotor C, Hesse H (2009) Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis. Plant Cell Environ 32(4):349–367

    Article  CAS  PubMed  Google Scholar 

  • Kuluev BR, Berezhneva ZA, Mikhaylova EV, Postrigan BN, Knyazev AV (2018) Productivity and stress-tolerance of transgenic tobacco plants with a constitutive expression of the rapeseed glutathione synthetase gene BnGSH. Russian J Genet: Appl Res 8(2):190–196

    Article  CAS  Google Scholar 

  • Kumar D, Chattopadhyay S (2018) Glutathione modulates the expression of heat shock proteins via the transcription factors BZIP10 and MYB21 in Arabidopsis. J Exp Bot 69(15):3729–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar C, Igbaria A, D'Autreaux B, Planson AG, Junot C, Godat E, Bachhawat AK, Delaunay-Moisan A, Toledano MB (2011) Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J 30:2044–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013) Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J Hazard Mater 248:228–237

    Article  PubMed  CAS  Google Scholar 

  • Kumar D, Datta R, Sinha R, Ghosh A, Chattopadhyay S (2014) Proteomic profiling of Îł-ECS overexpressed transgenic Nicotiana in response to drought stress. Plant Signal Behav 9(8):e29246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc MS, Lima A, Montello P, Kim T, Meagher RB, Merkle S (2011) Enhanced arsenic tolerance of transgenic eastern cottonwood plants expressing gamma-glutamylcysteine synthetase. Int J Phytoremed 13(7):657–673

    Article  CAS  Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Balish RS, Meagher RB (2005) Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial Îł-glutamylcysteine synthetase. Environ Toxicol Chem: Int J 24(6):1376–1386

    Article  CAS  Google Scholar 

  • Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB (2006a) The shoot-specific expression of Îł-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141(1):288–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Heaton AC, Carreira L, Meagher RB (2006b) Enhanced tolerance to and accumulation of mercury, but not arsenic, in plants overexpressing two enzymes required for thiol peptide synthesis. Physiol Plant 128(1):48–57

    Article  CAS  Google Scholar 

  • Li H, Han JL, Lin J, Yang QS, Chang YH (2015) A Îł-glutamylcysteine synthetase gene from Pyrus calleryana is responsive to ions and osmotic stresses. Plant Mol Biol Report 33(4):1088–1097

    Article  CAS  Google Scholar 

  • Liu R-M, Pravia KG (2010) Oxidative stress and glutathione in TGF-β-mediated fibrogenesis. Free Radic Biol Med 48:1–15

    Article  PubMed  CAS  Google Scholar 

  • Locato V, Paradiso A, Sabetta W, De Gara L, de Pinto MC (2016) Nitric oxide and reactive oxygen species in PCD signaling. Adv Bot Res 77:165–192

    Article  Google Scholar 

  • Locato V, Cimini S, De Gara L (2017) Glutathione as a key player in plant abiotic stress responses and tolerance. In: Hossain M, Mostofa M, Diaz-Vivancos P, Burritt D, Fujita M, Tran LS (eds) Glutathione in Plant growth, development, and stress tolerance. Springer, Cham. https://doi.org/10.1007/978-3-319-66682-2_6

    Chapter  Google Scholar 

  • Lou L, Li X, Chen J, Li Y, Tang Y, Lv J (2018) Photosynthetic and ascorbate-glutathione metabolism in the flag leaves as compared to spikes under drought stress of winter wheat (Triticum aestivum L.). PLoS One 13(3):e0194625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30:42–59

    Article  CAS  Google Scholar 

  • Lu YP, Li ZS, Drozdowicz YM, Hortensteiner S, Martinoia E, Rea PA (1998a) AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. Plant Cell 10:267–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu YP, Li ZS, Drozdowicz YM, Hortensteiner S, Martinoia E, Rea PA (1998b) AtMRP2 and Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. Plant Cell 10(2):267–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lueder DV, Phillips MA (1996) Characterization of Trypanosoma brucei Îł-glutamylcysteine synthetase, an essential enzyme in the biosynthesis of trypanothione. J Biol Chem 271:17485–17490

    Article  CAS  PubMed  Google Scholar 

  • Mahmood Q, Ahmad R, Kwak SS, Rashid A, Anjum NA (2010) Ascorbate and glutathione: protectors of plants in oxidative stress. In: Mahmood Q, Ahmad R, Kwak SS, Rashid A, Anjum NA (eds) Ascorbate–glutathione pathway and stress tolerance in plants. Springer, Berlin, pp 209–229

    Chapter  Google Scholar 

  • Markovic J, Borras C, Ortega A, Sastre J, Vina J, Pallardo FV (2007) Glutathione is recruited into the nucleus in early phases of cell proliferation. J Biol Chem 282:20416–20424

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993) ATP-dependent glutathione S-conjugate export pump in the vacuolar membrane of plants. Nature 364(6434):247–249

    Article  CAS  Google Scholar 

  • Matamoros MA, Clemente MR, Sato S, Asamizu E, Tabata S, Ramos J, Moran JF, Stiller J, Gresshoff PM, Becana M (2003) Molecular analysis of the pathway for the synthesis of thiol tripeptides in the model legume Lotus japonicus. Mol Plant-Microbe Interact 16:1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, Haas F, Nieuwland J, Lim B, Muller C, Salcedo-Sora E, Kruse C, Orsel M, Hell R, Miller AJ, Bray P, Foyer CH, Murray JAH, Meyer AJ, Cobbett CS (2010) Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc Natl Acad Sci U S A 107(5):2331–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May MJ, Leaver CJ (1993) Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol 103:621–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May MJ, Leaver CJ (1994a) Arabidopsis thaliana Îł-glutamylcysteinesynthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. Proc Natl Acad Sci U S A 91(21):10059–10063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May MJ, Leaver CJ (1994b) Arabidopsis thaliana Îł-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. Proc Natl Acad Sci U S A 91:10059–10063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May MJ, Vernoux T, Sanchez-Fernandez R, Van Montagu M, InzĂ© D (1998) Evidence for posttranscriptional activation of Îł-glutamylcysteinesynthetase during plant stress responses. Proc Natl Acad Sci 95(20):12049–12054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister A (1995) [3] Glutathione biosynthesis and its inhibition. Methods Enzymol 252:26–30

    Article  CAS  PubMed  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-CĂłzatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meuwly P, Thibault P, Schwan AL, Rauser WE (1995) Three families of thiol peptides are induced by cadmium in maize. Plant J 7:391–400

    Article  CAS  PubMed  Google Scholar 

  • Meyer AJ, Fricker MD (2002) Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells. Plant Physiol 130:1927–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer Y, Buchanan BB, Vignols F, Reichheld JP (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43:335–367

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G (2010a) Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153:1144–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G (2010b) Arabidopsis Glutathione Reductase1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153(3):1144–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC, Clemente MR, Brewin NJ, Becana M (2000) Glutathione and homoglutathione synthetases of legume nodules. Cloning, expression, and subcellular localization. Plant Physiol 124:1381–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murugaiyan V, Zeibig F, Anumalla M, Siddiq SA, Frei M, Murugaiyan J, Ali J (2021) Arsenic stress responses and accumulation in Rice. In: Ali J, Wani SH (eds) Rice improvement physiological, molecular breeding and genetic perspectives, pp 281–3313. https://doi.org/10.1007/978-3-030-66530-2_9

  • Nahar K, Hasanuzzaman M, Alam M, Fujita M (2015) Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants 7

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49(321):623–647

    CAS  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Foyer CH (2000) Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. Philos Trans R Soc B-Biol Sci 355:1465–1475

    Article  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012a) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Márquez-GarcĂ­a B, Queval G, Foyer CH (2012b) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Queval G, Foyer CH (2013) Regulating the redox gatekeeper: vacuolar sequestration puts glutathione disulide in its place. Plant Physiol 163:665–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa KI (2005) Glutathione-associated regulation of plant growth and stress responses. Antioxid Redox Signal 7:973–981

    Article  CAS  PubMed  Google Scholar 

  • Okuma E, Jahan MS, Munemasa S, Hossain MA, Muroyama D, Islam MM, Ogawa K, Watanabe- Sugimoto M, Nakamura Y, Shimoishi Y, Mori IC, Murata Y (2011) Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis. J Plant Physiol 168:2048–2055

    Article  CAS  PubMed  Google Scholar 

  • Oppenheimer L, Wellner VP, Griffith OW, Meister A (1979) Glutathione synthetase. Purification from rat kidney and mapping of the substrate binding sites. J Biol Chem 254:5184–5190

    Article  CAS  PubMed  Google Scholar 

  • Osawa HG, Stacey W, Gassmann S (2006) OPT1 and AtOPT4 function as proton-coupled oligopeptide transporters with broad but distinct substrate specificities. Biochem J 393:267–275

    Article  CAS  PubMed  Google Scholar 

  • Owens RA, Hartman PE (1986) Glutathione: a protective agent in Salmonella typhimurium and Escherichia coli as measured by mutagenicity and by growth delay assays. Environ Mutagen 8:659–673

    Article  CAS  PubMed  Google Scholar 

  • PallardĂł FV, Markovic J, GarcĂ­a JL, Viña J (2009) Role of nuclear glutathione as a key regulator of cell proliferation. Mol Asp Med 30(1–2):77–85

    Article  CAS  Google Scholar 

  • Pang S, Li XF, Liu Z, Wang CJ (2010) ZmGT1 transports glutathione conjugates and its expression is induced by herbicide atrazine. Prog Biochem Biophys 37(10):1120–1127

    Article  CAS  Google Scholar 

  • Pang S, Ran ZJ, Liu ZQ, Song XY, Duan LS, Li XF, Wang CJ (2012) Enantioselective induction of a glutathione-S-transferase, a glutathione transporter and an abc transporter in maize by metolachlor and its (S)-isomer. PLoS One 7(10). https://doi.org/10.1371/journal.pone.0048085

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2006) Identification of PAD2 as a Îł-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance in Arabidopsis. Plant J 49:159–172

    Article  PubMed  CAS  Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2007) Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J 49:159–172

    Article  CAS  PubMed  Google Scholar 

  • Park SI, Kim YS, Kim JJ, Mok JE, Kim YH, Park HM et al (2017) Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions. J Plant Physiol 215:39–47

    Article  CAS  PubMed  Google Scholar 

  • Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ (2008a) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J 53:999–1012

    Article  CAS  PubMed  Google Scholar 

  • Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ (2008b) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J 53:999–1012

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, KlĂĽsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Pike S, Patel A, Stacey G, Gassmann W (2009) Arabidopsis OPT6 is an oligopeptide transporter with exceptionally broad substrate specificity. Plant Cell Physiol 50(11):1923–1932

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Thominet D, Vanacker H, Miginiac-Maslow M, Gakiere B, Noctor G (2009) H2O2-activated up-regulation of glutathione in arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. Mol Plant 2:344–356

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Jaillard D, Zechmann B, Noctor G (2011a) Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant Cell Environ 34:21–32

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Jaillard D, Zechmann B, Noctor G (2011b) Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant Cell Environ 34(2011):21–32

    Article  CAS  PubMed  Google Scholar 

  • Rawlins MR, Leaver CJ, May MJ (1995) Characterisation of an Arabidopsis thaliana cDNA encoding glutathione synthetase. FEBS Lett 376:81–86

    Article  CAS  PubMed  Google Scholar 

  • Rebbeor JF, Connolly GC, Dumont ME, Ballatori N (1993) ATP-dependent transport of reduced glutathione in yeast secretory vesicles. Biochem J 334:723–729

    Article  Google Scholar 

  • Reichheld JP, Bashandy T, Siala W, Riondet C, Delorme V, Meyer A, Meyer Y (2009) Redundancy and crosstalk within the thioredoxin and glutathione pathways: a new development in plants. Adv Bot Res 52:253–276

    Article  CAS  Google Scholar 

  • Reisinger S, Schiavon M, Terry N, Pilon-Smits EA (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial Îł-glutamylcysteine synthetase or glutathione synthetase. Int J Phytoremed 10(5):440–454

    Article  CAS  Google Scholar 

  • Rodriguez-Manzaneque MT, Tamarit J, Belli G, Ros J, Herrero E (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell 13:1109–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodriguez-Serrano M, del Rio LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166

    Article  CAS  PubMed  Google Scholar 

  • Sarker U, Oba S (2018) Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci Rep 8(1):1–12

    Google Scholar 

  • Schäfer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial Îł-glutamylcysteinesynthetase isoform. Plant Mol Biol 37(1):87–97

    Article  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sibirny A (ed) (2019) Non-conventional yeasts: from basic research to application. Springer

    Google Scholar 

  • Skipsey M, Davis BG, Edwards RD (2005) Diversification in substrate usage by glutathione synthetases from soya bean (Glycine max), wheat (Triticum aestivum) and maize (Zea mays). Biochem J 391:567–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey MG, Osawa H, Patel A, Gassmann W, Stacey G (2006) Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta 223(2):291–305

    Article  CAS  PubMed  Google Scholar 

  • Stephen DW, Jamieson DJ (1997) Amino acid-dependent regulation of the Saccharomyces cerevisiaeGSH1 gene by hydrogen peroxide. Mol Microbiol 23(2):203–210

    Article  CAS  PubMed  Google Scholar 

  • Stevens RG, Creissen GP, Mullineaux PM (2000) Characterisation of pea cytosolic glutathione reductase expressed in transgenic tobacco. Planta 211:537–545

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama KI, Izawa S, Inoue Y (2000) The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem 275(20):15535–15540

    Article  CAS  PubMed  Google Scholar 

  • Tiwari YK, Yadav SK (2020) Effect of high-temperature stress on ascorbate–glutathione cycle in maize. Agric Res 9(2):179–187

    Article  Google Scholar 

  • Tommasini R, Martinoia E, Grill E, Dietz KJ, Amrhein N (1993) Transport of oxidized glutathione into barley vacuoles – evidence for the involvement of the glutathione-S-conjugate ATPase. Z Naturforsch C 48(11–12):867–871

    Article  Google Scholar 

  • Ullmann P, Gondet L, Potier S, Bach TJ (1996) Cloning of Arabidopsis thaliana glutathione synthetase (GSH2) by functional complementation of a yeast gsh2 mutant. Eur J Biochem 236:662–669

    Article  CAS  PubMed  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S et al (2000) The root meristemless1/cadmium sensitive2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivancos PD, Dong YP, Ziegler K, Markovic J, Pallardo FV, Pellny TK, Verrier PJ, Foyer CH (2010) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64(5):825–838

    Article  CAS  PubMed  Google Scholar 

  • Voehringer DW, McConkey DJ, McDonnell TJ, Brisbay S, Meyn RE (1998) Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc Natl Acad Sci U S A 95:2956–2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005a) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41(1):15–30

    Article  CAS  PubMed  Google Scholar 

  • Wachter S, Wolf H, Steininger J, Bogs T (2005b) Rausch, Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41:15–30

    Article  CAS  PubMed  Google Scholar 

  • Wang CL, Oliver DJ (1996) Cloning of the cDNA and genomic clones for glutathione synthetase from Arabidopsis thaliana and complementation of a gsh2 mutant in fission yeast. Plant Mol Biol 31:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Wang CL, Oliver DJ (1997) Identification of a putative flexible loop in Arabidopsis glutathione synthetase. Biochem J 322:241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci U S A 112(2):613–618

    Article  CAS  PubMed  Google Scholar 

  • WawrzyĹ„ski A, Kopera E, WawrzyĹ„ska A, KamiĹ„ska J, Bal W, Sirko A (2006) Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J Exp Bot 57(10):2173–2182

    Article  PubMed  CAS  Google Scholar 

  • Wheeler GL, Quinn KA, Perrone G, Dawes IW, Grant CM (2002) Glutathione regulates the expression of Îł-glutamylcysteine synthetase via the Met4 transcription factor. Mol Microbiol 46(2):545–556

    Article  CAS  PubMed  Google Scholar 

  • Wheeler GL, Trotter EW, Dawes IW, Grant CM (2003) Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors. J Biol Chem 278(50):49920–49928

    Article  CAS  PubMed  Google Scholar 

  • Wild AC, Mulcahy RT (2000) Regulation of Îł-glutamylcysteinesynthetase subunit gene expression: insights into transcriptional control of antioxidant defenses. Free Radic Res 32(4):281–301

    Article  CAS  PubMed  Google Scholar 

  • Wonisch W, Schaur R (2001) Chemistry of glutathione. In: Grill D, Tausz M, De Kok LJ (eds) Significance of glutathione to plant adaptation to the environment. Kluwer, Dordrecht, pp 13–26

    Chapter  Google Scholar 

  • Wu AL, Moye-Rowley WS (1994) GSH1, which encodes gamma-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation. Mol Cell Biol 14(9):5832–5839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Qu T, Chen S, Zhao Z, An L (2009) Molecular cloning and characterization of a Îł-glutamylcysteinesynthetase gene from Chorispora bungeana. Protoplasma 235(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10(9):1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Kato H, Hata Y, Nishioka T, Kimura A, Oda J, Katsube Y (1993) Three-dimensional structure of the glutathione synthetase from Escherichia coli B at 2.0 Ă… resolution. J Mol Biol 229:1083–1100

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Ochiai K, Matoh T (2019) Rice plants have three homologs of glutathione synthetase genes, one of which, OsGS2, codes for hydroxymethyl-glutathione synthetase. Plant direct 3(2). https://doi.org/10.1002/pld3.119

  • Yan N, Meister A (1990) Amino acid sequence of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem 265:1588–1593

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Liu YJ, Zeng QY (2019a) Overexpression of three orthologous glutathione S-transferases from Populus increased salt and drought resistance in Arabidopsis. Biochem Syst Ecol 83:57–61

    Article  CAS  Google Scholar 

  • Yang Y, Lenherr ED, Gromes R, Wang S, Wirtz M, Hell R, Rausch T (2019b) Plant glutathione biosynthesis revisited: redox-mediated activation of glutamylcysteine ligase does not require homo-dimerization. Biochem J 476(7):1191–1203

    Article  CAS  PubMed  Google Scholar 

  • Yousuf PY, Hakeem KUR, Chandna R, Ahmad P (2012) Role of glutathione reductase in plant abiotic stress. In: Abiotic stress responses in plants. Springer, New York, NY, pp 149–158

    Chapter  Google Scholar 

  • Yuan L, Kaplowitz N (2009) Glutathione in liver diseases and hepatotoxicity. Mol Aspects Med 30:29–41

    Article  CAS  PubMed  Google Scholar 

  • Zaman GJ, Lankelma J, Tellingen O, Beijnen J, Dekker H, Paulusma C, Oude Elferink RP, Baas F, Borst P (1995) Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci U S A 92:7690–7694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechmann B, Muller M (2010) Subcellular compartmentation of glutathione in dicotyledonous plants. Protoplasma 246:15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MY, Bourbouloux A, Cagnac O, Srikanth CV, Rentsch D, Bachhawat AK, Delrot S (2004) A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiol 134(1):482–491. https://doi.org/10.1104/pp.103.030940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Xie Q, Jobe TO, Kau AR, Wang C, Li Y, Qiu B, Wang Q, Mendoza-Cozatl DG, Schroeder JI (2016) Identification of AtOPT4 as a plant glutathione transporter. Mol Plant 9(3):481–484

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao H, Zhou S, He Y, Luo Q, Zhang F et al (2018) Expression of TaGF14b, a 14-3-3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco. Planta 248(1):117–137

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wu M, Teng Y, Jia S, Yu D, Wei T et al (2019) Overexpression of the glutathione peroxidase 5 (RcGPX5) gene from rhodiola crenulata increases drought tolerance in Salvia miltiorrhiza. Front Plant Sci 9:1950

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Qiao M, Yu Y, Xia G, Xiang F (2010) The effect of the heterologous expression of Phragmites australis Îł-glutamylcysteine synthetase on the Cd2+ accumulation of Agrostis palustris. Plant Cell Environ 33(6):877–887

    Article  CAS  PubMed  Google Scholar 

  • Zhu LY, Pilon-Smits EA, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119(1):73–80

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing Îł-glutamylcysteine synthetase. Plant Physiol 121(4):1169–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, A. et al. (2022). Glutathione in Higher Plants: Biosynthesis and Physiological Mechanisms During Heat and Drought-Induced Oxidative Stress. In: Aftab, T., Hakeem, K.R. (eds) Antioxidant Defense in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-7981-0_9

Download citation

Publish with us

Policies and ethics