Skip to main content
Log in

Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad A, Zhang Y, Cao XF (2010) Decoding the epigenetic language of plant development. Mol Plant 3:719–728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aquea F, Federici F, Moscoso C, Vega A, Jullian P, Haseloff J, Arce-Johnson P (2012) A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity. Plant Cell Environ 35:719–734

    Article  CAS  PubMed  Google Scholar 

  • Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2009) Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 179:572–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed Central  PubMed  Google Scholar 

  • Boyko A, Kathiria P, Zemp FJ, Yao YL, Pogribny I, Kovalchuk I (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants (virus-induced plant genome instability). Nucleic Acids Res 35:1714–1725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Candaele J, Demuynck K, Mosoti D, Beemster GTS, Inze D, Nelissen H (2014) Differential methylation during maize leaf growth targets developmentally regulated genes. Plant Physiol 164:1350–1364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Causevic A, Gentil MV, Delaunay A, El-Soud WA, Garcia Z, Pannetier C, Brignolas F, Hagege D, Maury S (2006) Relationship between DNA methylation and histone acetylation levels, cell redox and cell differentiation states in sugarbeet lines. Planta 224:812–827

    Article  CAS  PubMed  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600

    Article  CAS  PubMed  Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Chang 81:7–30

    Article  Google Scholar 

  • de Pinto MC, Tommasi F, De Gara L (2000) Enzymes of the ascorbate biosynthesis and ascorbate-glutathione cycle in cultured cells of tobacco Bright Yellow 2. Plant Physiol Biochem 38:541–550

    Article  Google Scholar 

  • de Pinto MC, Tommasi F, De Gara L (2002) Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant Physiol 130:698–708

    Article  PubMed Central  PubMed  Google Scholar 

  • Evron E, Umbricht CB, Korz D, Raman V, Loeb DM, Niranjan B, Buluwela L, Weitzman SA, Marks J, Sukumar S (2001) Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res 61:2782–2787

    CAS  PubMed  Google Scholar 

  • Geilfus CM, Zorb C, Muhling KH (2010) Salt stress differentially affects growth-mediating beta-expansins in resistant and sensitive maize (Zea mays L.). Plant Physiol Biochem 48:993–998

    Article  CAS  PubMed  Google Scholar 

  • Granier C, Tardieu F (1999) Leaf expansion and cell division are affected by reducing absorbed light before but not after the decline in cell division rate in the sunflower leaf. Plant Cell Environ 22:1365–1376

    Article  Google Scholar 

  • Hsu A, Wong CP, Yu Z, Williams DE, Dashwood RH, Ho E (2011) Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells. Clin Epigenetics 3:3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang NC, Li CH, Lee JY, Yen HE (2010) Cytosine methylation changes in the ice plant Ppc1 promoter during transition from C-3 to Crassulacean acid metabolism. Plant Sci 178:41–46

    Article  CAS  Google Scholar 

  • Jang SJ, Shin SH, Yee ST, Hwang B, Im KH, Park KY (2005) Effects of abiotic stresses on cell cycle progression in tobacco BY-2 cells. Mol Cells 20:136–141

    CAS  PubMed  Google Scholar 

  • Kawamura K, Murray JAH, Shinmyo A, Sekine M (2006) Cell cycle regulated D3-type cyclins form active complexes with plant-specific B-type cyclin-dependent kinase in vitro. Plant Mol Biol 61:311–327

    Article  CAS  PubMed  Google Scholar 

  • Kende H, Bradford KJ, Brummell DA, Cho HT, Cosgrove DJ, Fleming AJ, Gehring C, Lee Y, McQueen-Mason S, Rose JKC, Voesenek LACJ (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311–314

    Article  CAS  PubMed  Google Scholar 

  • Komaki S, Sugimoto K (2012) Control of the plant cell cycle by developmental and environmental cues. Plant Cell Physiol 53:953–964

    Article  CAS  PubMed  Google Scholar 

  • Kuluev BR, Safiullina MG, Knyazev AV, Chemeris AV (2013) Effect of ectopic expression of NtEXPA5 gene on cell size and growth of organs of transgenic tobacco plants. Russ J Dev Biol 44:28–34

    Article  CAS  Google Scholar 

  • Kumar A, Kaur J (2014) Primer based approach for PCR amplification of high GC content gene: mycobacterium gene as a model. Mol Biol Int 2014:937308

    Article  PubMed Central  PubMed  Google Scholar 

  • Lecoeur J, Wery J, Turc O, Tardieu F (1995) Expansion of pea leaves subjected to short water-deficit—cell number and cell-size are sensitive to stress at different periods of leaf development. J Exp Bot 46:1093–1101

    Article  CAS  Google Scholar 

  • Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  PubMed  Google Scholar 

  • Link BM, Cosgrove DJ (1998) Acid-growth response and alpha-expansins in suspension cultures of Bright Yellow 2 tobacco. Plant Physiol 118:907–916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot London 94:481–495

    Article  CAS  Google Scholar 

  • Menges M, Samland AK, Planchais S, Murray JAH (2006) The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phase transition in Arabidopsis. Plant Cell 18:893–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  CAS  PubMed  Google Scholar 

  • Muller B, Bourdais G, Reidy B, Bencivenni C, Massonneau A, Condamine P, Rolland G, Conejero G, Rogowsky P, Tardieu F (2007) Association of specific expansins with growth in maize leaves is maintained under environmental, genetic, and developmental sources of variation. Plant Physiol 143:278–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell-line as the Hela-cell in the cell biology of higher-plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Nakagami H, Kawamura K, Sugisaka K, Sekine M, Shinmyo A (2002) Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco. Plant Cell 14:1847–1857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ortega L, Taleisnik E (2003) Elongation growth in leaf blades of Chloris gayana under saline conditions. J Plant Physiol 160:517–522

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Potters G, Caubergs R, Jansen MAK (2005a) Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. J Exp Bot 56:1991–2001

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Rudas V, Potters G, Jansen MAK (2005b) Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ Exp Bot 53:299–314

    Article  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MAK (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169

    Article  PubMed  Google Scholar 

  • Reisen D, Marty F, Leborgne-Castel N (2005) New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress. BMC Plant Biol 5:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Rymen B, Sugimoto K (2012) Tuning growth to the environmental demands. Curr Opin Plant Biol 15:683–690

    Article  PubMed  Google Scholar 

  • Rymen B, Fiorani F, Kartal F, Vandepoele K, Inze D, Beemster GTS (2007) Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol 143:1429–1438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190:556–565

    Article  CAS  PubMed  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242

    Article  PubMed Central  PubMed  Google Scholar 

  • Sgobba A, Paradiso A, Dipierro S, De Gara L, de Pinto MC (2015) Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress. Physiol Plant 153:68–78

    Article  CAS  PubMed  Google Scholar 

  • Skirycz A, Inze D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203

    Article  CAS  PubMed  Google Scholar 

  • Smertenko A, Draber P, Viklicky V, Opatrny Z (1997) Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant Cell Environ 20:1534–1542

    Article  Google Scholar 

  • Sorrell DA, Combettes B, Chaubet-Gigot N, Gigot C, Murray JAH (1999) Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco bright yellow-2 cells. Plant Physiol 119:343–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorrell DA, Menges M, Healy JMS, Deveaux Y, Amano C, Su Y, Nakagami H, Shinmyo A, Doonan JH, Sekine M, Murray JAH (2001) Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar Bright Yellow-2 cells. Plant Physiol 126:1214–1223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  CAS  PubMed  Google Scholar 

  • Taya Y (1997) RB kinases and RB-binding proteins: new points of view. Trends Biochem Sci 22:14–17

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    Article  CAS  PubMed  Google Scholar 

  • Vanhees K, Coort S, Ruijters EJB, Godschalk RWL, van Schooten FJ, van Doorn-Khosrovani SBV (2011) Epigenetics: prenatal exposure to genistein leaves a permanent signature on the hematopoietic lineage. FASEB J 25:797–807

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677

    Article  CAS  PubMed  Google Scholar 

  • Wada Y, Miyamoto K, Kusano T, Sano H (2004) Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomics 271:658–666

    Article  CAS  PubMed  Google Scholar 

  • West G, Inze D, Beemster GTS (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135:1050–1058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao WY, Custard KD, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18:805–814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Concetta de Pinto.

Additional information

Handling Editor: Peter Nick

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Centomani, I., Sgobba, A., D’Addabbo, P. et al. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. Protoplasma 252, 1451–1459 (2015). https://doi.org/10.1007/s00709-015-0772-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0772-y

Keywords

Navigation