Skip to main content
Log in

Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

AtOPT promoter-GUS fusions were constructed for six of the nine known, putative oligopeptide transporters (OPTs) in Arabidopsis thaliana and used to examine AtOPT expression at various stages of plant development. AtOPT1, AtOPT3, AtOPT4, AtOPT6 and AtOPT7 were expressed in the embryonic cotyledons prior to root radicle emergence. Except for AtOPT8, which gave weak expression, all AtOPTs were strongly expressed in post-germinative seedlings with strongest expression in vascular tissues of cotyledons and hypocotyls. Preferential expression of AtOPTs in vascular tissues was also observed in cotyledons, leaves, hypocotyls, roots, flowers, siliques, and seed funiculi of seedlings and adult plants. Differential tissue-specific expression was observed for specific AtOPTs. For example, AtOPT1, AtOPT3 and AtOPT8 were uniquely expressed in pollen. Only AtOPT1 was expressed in growing pollen tubes, while only AtOPT6 was observed in ovules. AtOPT8 was transiently expressed in seeds during early stages of embryogenesis. Iron limitation was found to enhance expression of AtOPT3. These data suggest distinct cellular roles for specific AtOPTs including nitrogen mobilization during germination and senescence, pollen tube growth, pollen and ovule development, seed formation and metal transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    PubMed  CAS  Google Scholar 

  • Becker DM, Fikes JD, Guarente L (1991) A cDNA encoding a human CCAAT- binding protein cloned by functional complementation in yeast. Proc Natl Acad Sci USA 88:1968–1972

    Article  PubMed  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Blackmore CG, McNaughton PA, van Heen HW (2001) Multidrug transporters in prokaryotic and eucaryotic cells: physiological functions and transport mechanisms. Mol Membr Biol 18:97–103

    Article  PubMed  CAS  Google Scholar 

  • Bogs J, Bourbouloux A, Cagnac O, Wachter A, Rausch T, Delrot S (2003) Functional characterizationa and expression analysis of a glutathione transporter, BjGT1, from Brassica juncea: evidence for heavy metal regulation by heavy metal exposure. Plant Cell Environ 26:1703–1711

    Article  CAS  Google Scholar 

  • Bourbouloux A, Shahi P, Chakladar A, Delrot S, Bachhawat AK (2000) Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J Biol Chem 275:13259–13265

    Article  PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE, Nguyen H, Olsen O-A (1999) Development of endosperm in Arabidopsis thaliana. Sex Plant Reprod 12:32–42

    Article  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Pink D (2003) The molecular analysis of leaf senescence-a genomics approach. Plant Biotech J 1:3–22

    Article  CAS  Google Scholar 

  • Cagnac O, Bourbouloux A, Chakrabarty D, Zhang M-Y, Delrot S (2004) AtOPT6 transports glutathione derivatives and is induced by primisulfuron. Plant Physiol 135:1378–1387

    Article  PubMed  CAS  Google Scholar 

  • Chiang C-S, Stacey G, Tsay Y-F (2004) Mechanisms and functional properties of two peptide transporters, AtPTR2 and fPTR2. J Biol Chem 279:30150–30157

    Article  PubMed  CAS  Google Scholar 

  • Cho K, Zusman DR (1999) Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol Microbiol 34:714–725

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat J-F, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    Article  PubMed  CAS  Google Scholar 

  • Detmers FJM, Lanfermiejer FV, Poolman B (2001) Peptides and ATP-binding cassette peptide transporters. Res Microbiol 152: 245–258

    Article  PubMed  CAS  Google Scholar 

  • DiDonato RJ Jr, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403–414

    Article  PubMed  CAS  Google Scholar 

  • Dietrich D, Hammes U, Thor K, Suter-Grotemeyer M, Flückiger R, Slusarenko AJ, Ward JM, Rentsch D (2004) AtPTR1, a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis. Plant J 40:488–499

    Article  PubMed  CAS  Google Scholar 

  • Frommer WB, Hummel S, Rentsch D (1994) Cloning of an Arabidopsis histidine transporting protein related to nitrate and peptide transporters. FEBS Lett 347:185–189

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Hauser M, Donhardt AM, Barnes D, Naider F, Becker JM (2000) Enkephalines are transported by a novel eukaryotic peptide uptake system. J Biol Chem 275:3037–3041

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF, Payne JW (1980) Transport and utilization of amino acids and peptides by higher plants. In: Payne JW (ed) Microorganisms and nitrogen sources. Wiley, New York, pp 609–637

    Google Scholar 

  • Higgins CF, Payne JW (1981) The peptide pools of germinating barley grains: relation to hydrolysis and transport of storage proteins. Plant Physiol 67:785–792

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF, Payne JW (1982) Plant Peptides. In: Boulder AD, Parthier B (eds) Encyclopedia of plant physiology, vol 14. Springer, Berlin Heidelberg New York, pp 438–458

  • Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB (1998) Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis. Plant J 14:535–544

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Article  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucoronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Koh S, Donhardt AM, Sharp J, Naider F, Becker JM, Stacey G (2002) An oligopeptide transporter gene family in Arabidopsis thaliana. Plant Physiol 128:21–29

    Article  PubMed  CAS  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the pollen. Plant J 39:415–424

    Article  PubMed  CAS  Google Scholar 

  • Liman ER, Tytgat J, Hess P (1992) Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9:861–871

    Article  PubMed  CAS  Google Scholar 

  • Lubkowitz MA, Hauser L, Breslav M, Naider F, Becker JM (1997) An oligopeptide transport gene from Candida albicans. Microbiol 143:387–396

    CAS  Google Scholar 

  • Lubkowitz MA, Barnes D, Breslav M, Burchfield A, Naider F, Becker JM (1998) Schizosaccharomyces pombe isp4 encodes a transporter representing a novel family of oligopeptide transporters. Mol Microbiol 28:729–741

    Article  PubMed  CAS  Google Scholar 

  • Mae T, Makino A, Ohira K (1983) Changes in the amounts of ribulose biphosphate carboxylase synthesized and degraded during the life span of rice leaf. Plant Cell Physiol 24:1079–1086

    CAS  Google Scholar 

  • Masrchner H, Römheld V, Ossenberg-Neuhaus H (1982) Rapid method for measuring changes in pH and reducing processes along roots of intact plants. Z Pflanzenphysiol 105:407–416

    Google Scholar 

  • Miranda M, Borisjuk L, Tewes A, Dietrich D, Rentsch D, Weber H, Wobus U (2003) Peptide and amino acid transporters are differentially regulated during seed development and germination in Faba Bean. Plant Physiol 132:1950–1960

    Article  PubMed  CAS  Google Scholar 

  • Müntz K, Belozersky MA, Dunaevsky YE, Schlereth A, Tiedemann J (2001) Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. J Exp Bot 52:1741–1752

    Article  PubMed  Google Scholar 

  • Olsen O-A (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16:S214–S227

    Article  PubMed  CAS  Google Scholar 

  • Rea PA, Li ZS, Lu YP, Drozdowicz YM, Martinoia E (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Ann Rev Plant Physiol Plant Mol Biol 49:727–760

    Article  CAS  Google Scholar 

  • Roberts LA, Pierson AJ, Panaviene Z, Walker EL (2004) Yellow Stripe1. Expanded roles for the Maize iron-phytosiderophore transporter. Plant Physiol 135:112–120

    Article  PubMed  CAS  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    Article  PubMed  CAS  Google Scholar 

  • Sanders PM, Bui AQ, Wetterings K, McIntire KN, Hsu Y-C, Lee PY, Troung MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, Wiren NV (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091–9096

    Article  PubMed  CAS  Google Scholar 

  • Schlereth A, Standhardt D, Mock HP, Müntz K (2001) Stored cysteine proteinases start globulin breakdown in protein bodies of embryonic axes and cotyledons of germinating vetch (Vicia sativa L.) seeds. Planta 212:718–727

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann J (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37(5):501–506

    Article  PubMed  CAS  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  PubMed  CAS  Google Scholar 

  • Song W, Steiner HY, Zang L, Naider F, Becker JM, Stacey G (1996) Cloning of a second Arabidopsis peptide transport gene. Plant Physiol 110:171–178

    Article  PubMed  CAS  Google Scholar 

  • Stacey G, Koh S, Granger C, Becker JM (2002a) Peptide transport in plants. Trends Plant Sci 7:257–263

    Article  PubMed  CAS  Google Scholar 

  • Stacey M, Koh S, Becker J, Stacey G (2002b) AtOPT3, a member of the oligopeptide transporter family, is essential for embryo development in Arabidopsis. Plant Cell 14:2799–2811

    Article  PubMed  CAS  Google Scholar 

  • Steiner HY, Song W, Zhang L, Naider F, Becker JM, Stacey G (1994) An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins. Plant Cell 6:1289–1299

    Article  PubMed  CAS  Google Scholar 

  • Stessman D, Miller A, Spalding M, Rodermel S (2002) Regulation of photosynthesis during Arabidopsis leaf development in continuous light. Photosynth Res 72:27–37

    Article  PubMed  CAS  Google Scholar 

  • Tiedemann J, Neubohn B, Müntz K (2000) Different functions of vicilin and legumin are reflected in the histopattern of globulin mobilization during germination of vetch (Vicia sativa L.). Planta 211:1–12

    Article  PubMed  CAS  Google Scholar 

  • Tsay Y-F, Schroeder JI, Feldman KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713

    Article  PubMed  CAS  Google Scholar 

  • Walker-Smith DJ, Payne JW (1984) Characteristics of the active transport of peptides and amino acids by germinating barley embryos. Planta 162:159–165

    Article  CAS  Google Scholar 

  • Walker-Smith DJ, Payne JW (1985) Synthesis of the peptide transport carrier of the barley scutellum during early stages of germination. Planta 164:550–556

    Article  CAS  Google Scholar 

  • Waterworth WM, West CE, Bray CM (2000) The barley scutellar peptide transporter: biochemical characterization and localization to the plasma membrane. J Exp Bot 51:1201–1209

    Article  PubMed  CAS  Google Scholar 

  • Waterworth WM, West CE, Bray CM (2001) The physiology and molecular biology of peptide transport in seeds. Seed Sci Res 11:275–284

    CAS  Google Scholar 

  • West MAL, Harada JJ (1993) Embryogenesis in higher plants: an overview. Plant Cell 5:1361–1369

    Article  PubMed  Google Scholar 

  • West CE, Waterworth WM, Stephens SM, Smith CP, Bray CM (1998) Cloning and functional characterization of a peptide transporter expressed in the scutellum of barley grain during the early stages of germination. Plant J 15:221–230

    Article  PubMed  CAS  Google Scholar 

  • Williams LE, Miller AJ (2001) Transporters responsible for the uptake and partitioning of of nitrogenous solutes. Annu Rev Plant Mol Biol 52:659–688

    Article  CAS  Google Scholar 

  • Wintz H, Fox T, Wu Y-Y, Feng V, Chen W, Chang H-S, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    Article  PubMed  CAS  Google Scholar 

  • von Wiren N, Mori S, Masrchner H, Romheld V (1994) Iron inefficiency in maize mutant ys1 (Zea mays L. cv Yellow-Stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol 106:71–77

    Google Scholar 

  • Yen M-R, Tseng Y-H, Saier MH Jr (2001) Maize Yellow Stripe1, an iron phytosiderophore uptake transporter, is a member of the oligopeptide transporter (OPT) family. Microbiol 147:2881–2883

    CAS  Google Scholar 

  • Zhang MY, Bourbouloux A, Cagnac O, Shrikanth CV, Rentsch D, Bachhawat AK, Delrot S (2004) A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiol 134:482–491

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Theodoulou FL, Ingemarsson B, Miller AJ (1998) Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J Biol Chem 273:12017–12023

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Elizabeth E. Rogers and Dr. Bruce A McClure for their valuable technical suggestions and helpful discussions. We also thank Dr. Tom Guilfoyle for giving us access to his spectrofluorometer. This work was supported in part by the University of Missouri-Columbia Life Sciences Post-Doctoral Fellowship (H.O.) and by the National Science Foundation (grant MCB-0235286 to G.S. and W.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Stacey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stacey, M.G., Osawa, H., Patel, A. et al. Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta 223, 291–305 (2006). https://doi.org/10.1007/s00425-005-0087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0087-x

Keywords

Navigation