Skip to main content

Hydrogels as Smart Drug Delivery Systems: Recent Advances

  • Chapter
  • First Online:
Smart Nanomaterials in Biomedical Applications

Abstract

Hydrogels are cross-linked three-dimensional (3D) polymeric networks capable of absorbing and holding a vast amount of water in their swollen state. The swollen hydrogels are like native tissue with smooth surfaces and have been used widely in developing drug delivery systems. Many natural polymers, synthetic polymers, and grafted polymers are exploited to synthesize hydrogels for drug delivery applications. Hydrogels can respond to small changes in environmental conditions with a large change in structural changes. These smart hydrogels can control drug release due to external conditions such as chemical, physical, and biological conditions. A variety of natural polymers and monomers are used to design smart hydrogels through novel cross-linking methods. Researchers have recently paid more attention to the development of novel stimuli-responsive hydrogels that can respond to electric, magnetic, light, enzyme, glucose, dual, and multi-responsive hydrogels besides the conventional temperature and pH-responsive hydrogels. This chapter explores the principle and applications of these stimuli-responsive hydrogels for useful drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

IPN:

Interpenetrating polymeric network

CST:

Critical solution temperature

NiPAAm:

N-isopropylacrylamide

PBA:

Phenylboronic acid

References

  • Aguila M, Elvir C, Gallard A, Vazque B, Roman J (2007) In: Ashammakhi N, Reis R, Chiellini E (eds) Smart polymers & their applications as biomaterials, Topics in tissue engineering, vol 3

    Google Scholar 

  • Alfimove MV, Fedorova OA, Gromov SP (2003) Photo switchable molecular receptors. J Photochem Photobiol A 158(2-3):183–198

    Article  CAS  Google Scholar 

  • Almeida H, Amaral MH, Lobao P (2012) Temperature & pH stimuli-responsive polymers and their applications in controlled and self-regulated drug delivery. J Appl Pharm Sci 2(6):1–10

    CAS  Google Scholar 

  • Belali S, Savoie H, O’Brien JM, Cafolla AA, O’Connell B, Karimi AR, Boyle RW, Senge MO (2018) Synthesis and Characterization of Temperature-sensitive and Chemically Cross-linked Poly(Nisopropylacrylamide)/Photosensitizer Hydrogels for Applications in Photodynamic Therapy. Biomacromolecules 19(5):1592–1601

    Google Scholar 

  • Bertoglio P, Jacobo SE, Daraio ME (2010) Preparation and characterization of PVA films with magnetic nanoparticles the effect of particle loading on drug release behaviour. J Appl Polym Sci 115(3):1859–1865

    Article  CAS  Google Scholar 

  • Billah SMR, Mondal MIH, Somoal SH, Pervez MN, Haque MO (2019) Enzyme – responsive hydrogels. In: Cellulose based superabsorbent hydrogels, pp 309–330

    Chapter  Google Scholar 

  • Chandrawati R (2016) Enzyme-responsive polymer hydrogels for therapeutic delivery. Exp Biol Med 241(9):972–979

    Article  CAS  Google Scholar 

  • Cheng X, Jin Y, Sun T, Qi R, Fan B, Li H (2015) Oxidation and thermo-responsive poly (N-isopropylacrylamide-co-2-hydroxyethyl acrylate) hydrogels cross-linked via diselenides for controlled drug delivery. RSC Adv 5(6):4162–4170

    Article  CAS  Google Scholar 

  • Chiang CY, Chu CC (2015) Synthesis of photo responsive hybrid alginate hydrogel with photo-controlled release behavior. Carbohydr Polym 119:18–25

    Article  CAS  PubMed  Google Scholar 

  • Das D, Pal S (2015) Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Adv 5(32):25014–25050

    Article  CAS  Google Scholar 

  • Ding C, Guo Z, Xiong J, Wu D, Tao Y, Qin Y, Kong Y (2019) Rational design of a multi-responsive drug delivery plat form based on SiO2@PPy@poly (acrylic acid-co-acrylamide). React Funct Polym 137:88–95

    Article  CAS  Google Scholar 

  • Dong Y, Wang W, Veiseh O, Appel EA, Xue K, Webber MJ, Tang B, Yang XW, Weir W, Langer R, Anderson DG (2016) Injectable and glucose-responsive hydrogels based on boronic acid–glucose complexation. Langmuir 32(34):8743–8747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowlut M, Hall DG (2006) An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J Am Chem Soc 128(13):4226–4227

    Article  CAS  PubMed  Google Scholar 

  • Duan JJ, Zang LN (2017) Robust and smart hydrogels based on natural polymers. Chin J Polym Sci 35:1165–1180

    Article  CAS  Google Scholar 

  • Ekici S, Saraydin D (2017) Temperature-sensitive ternary interpenetrating polymeric networks for potential gastrointestinal drug release. J Drug 1(3):1–6

    Article  Google Scholar 

  • El-Sawy NM, Raafat AI, Badawy NA, Mohamed AM (2020) Radiation development of pH-responsive (xanthan-acrylic acid)/MgO nanocomposite hydrogels for controlled delivery of methotrexate anticancer drug. Int J Biol Macromol 142:254–264

    Article  CAS  PubMed  Google Scholar 

  • Finotelli PV, Silva DD, Penna MS, Rossi AM, Farina M, Andrade LR, Takeuchi AY, Leao MHR (2010) Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin. Colloids Surf B Biointerfaces 81(1):206–211. https://doi.org/10.1016/j.colsurfb.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  • Frachini ECG, Petri DFS (2019) Magneto-responsive hydrogels: preparation, characterization, biotechnological and environmental applications. Rev J Braz Chem Soc 30(10):2010–2028

    CAS  Google Scholar 

  • Gong CB, Wong KL, Lam (2008) Photo responsive molecularly imprinted hydrogels for the photo regulated release and uptake of pharmaceuticals in the aqueous media. Chem Mater 20(4):1353–1358

    Article  CAS  Google Scholar 

  • Guo J, Sun H, Lei W, Tang Y, Hong S, Yang H, Tay FR, Huang C (2019) MMP-8-responsive polyethylene glycol hydrogel for intraoral drug delivery. J Dent Res 98(5):564–571

    Article  CAS  PubMed  Google Scholar 

  • Haija YMA, Ulijin RV (2014) Enzyme-responsive hydrogels for biomedical application. In: Connon CJ, Hamley IW (eds) Hydrogels in cell-based therapies. The Royal Society of Chemistry, Cambridge UK, pp 112–134

    Chapter  Google Scholar 

  • Hassan CM, Doyle FJ III, Peppas NA (1997) Dynamic behavior of glucose-responsive poly (methacrylic acid-g-ethylene glycol) hydrogels. Macromolecules 30(20):6166–6173

    Article  CAS  Google Scholar 

  • Hill KL, Meleties M, Katyal P, Xie X, Delgado-Fukushima E, Jihad T, Liu C-F, O’Neill S, Tu SR, Renfrew PD, Bonneau R, Wadghiri YZ, Montclare JK (2019) Thermoresponsive protein-engineered coiled-coil hydrogel for sustained small molecule release. Biomacromolecules 20(9):3340–3351

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Liu M, Chen J, Gao C, Gong Q (2012) A novel magnetic triple-responsive composite semi-IPN hydrogels for targeted and controlled drug delivery. Eur Polym J 48(10):1734–1744

    Article  CAS  Google Scholar 

  • Işıklan N, Küçükbalcı G (2015) Synthesis and characterization of pH- and temperature sensitive materials based on alginate and poly (N-isopropyl acrylamide/acrylic acid) for drug delivery. Polym Bull 73:1321–1342

    Article  CAS  Google Scholar 

  • Jalababu R, Satyaveni S, Suresh Reddy KVN (2018) Synthesis and characterization of dual responsive sodium alginate-g-acryloyl phenylalanine-poly N-isopropyl acrylamide smart hydrogels for the controlled release of anticancer drug. J Drug Deliv Sci Technol 44:190–204

    Article  CAS  Google Scholar 

  • James HP, John R, Alex A, Anoop KR (2014) Smart polymers for the controlled delivery of drugs-a concise overview. Acta Pharma Sin B 4(2):120–127

    Article  Google Scholar 

  • Johan H, Koeslag Peter T, Saunders TE (2003) A reappraisal of the blood glucose homeostat which comprehensively explains the type 2 diabetes mellitus–syndrome X complex. J Physiol 549(2):333–346

    Article  CAS  Google Scholar 

  • Joshi N, Yan J, Levy S, Bhagchandani S, Slaughter KV, Sherman NE, Amirault J, Wang Y, Riegel L, He X, Rui TS, Valic M, Vemula PK, Miranda OR, Levy O, Gravallese EM, Aliprantis AO, Ermann J, Karp JM (2018) Towards an arthritis flare-responsive drug delivery system. Nat Commun 9:1275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim KT, Cornelissen J, Nolte R, Hest JV (2009) Polymeric monosaccharide receptors responsive at neutral pH. J Am Chem Soc 131(31):13908–13909

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk A, Fau M, Karbarz M, Donten M, Stojek Z, Nowicka AM (2014) Hydrogel with chains functionalized with carboxyl groups as Universal 3D platform in DNA biosensors. Biosens Bioelectron 54:222–228

    Article  CAS  PubMed  Google Scholar 

  • Krishna Rao KSV, Vijaya Kumar Naidu B, Subha MCS, Sairam M, Aminabhavi TM (2006) Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr Polym 66(3):333–344

    Article  CAS  Google Scholar 

  • Kulkarni PS, Haldar MK, Nahire RR, Katti P, Ambre AH, Muhonen WW, Shabb JB, Padi SKR, Singh RK, Borowicz PP, Shrivastava DK, Katti KS, Reindl K, Guo B, Mallik S (2015) MMP-9 Responsive PEG cleavable nanovesicles for efficient delivery of chemotherapeutics to pancreatic cancer. Mol Pharm 11(7):2390–2399

    Article  CAS  Google Scholar 

  • Kumar BA, Nayak RR (2019) Supramolecular phenoxy-alkyl maleate-based hydrogels and their enzyme/pH -responsive curcumin release. New J Chem 43:5559–5567

    Article  CAS  Google Scholar 

  • Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, Lu TJ, Xu F (2012) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23(6):660–672. https://doi.org/10.1002/adfm.201201708

    Article  CAS  Google Scholar 

  • Li YH, Huang GY, Zhang XH, Li BQ, Chen YM, Lu TL, Lu TJ, Xu F (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23(6):660–672

    Article  CAS  Google Scholar 

  • Li J, Ma L, Chen G, Zhou Z, Li Q (2015) A high water-content and high elastic dual-responsive polyurethane hydrogel for drug delivery. J Mater Chem B 3(42):8401–8409

    Article  CAS  PubMed  Google Scholar 

  • Li X, Fu M, Wu J, Zhang C, Deng X, Dhinakar A, Huang W, Qian H, Ge L (2017) pH-sensitive peptide hydrogel for glucose-responsive insulin delivery. Acta Biomater 51:294–303

    Article  CAS  PubMed  Google Scholar 

  • Lina K, Yia J, Maob X, Wua H, Zhangb LM, Yang L (2019) Glucose-sensitive hydrogels from covalently modified carboxylated pullulan and concanavalin A for smart controlled release of insulin. React Funct Polym 139:112–119

    Article  CAS  Google Scholar 

  • Linsely CS, Wu BM (2017) Recent advances in light responsive on-demand drug delivery systems. Ther Deliv 8(2):89–107

    Article  CAS  Google Scholar 

  • Liu TY, Hu SH, Liu KH, Liu DM, Chen SY (2006) Preparation and characterization of smart magnetic hydrogels and its use for drug release. J Magn Magn Mater 204(1):e397–e399

    Article  CAS  Google Scholar 

  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60(15):1650–1662

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Shi L (2014) Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym Chem 5(5):1503–1518

    Article  CAS  Google Scholar 

  • Mangaiyarkarasi R, Chinnathambi S, Karthikeyan S, Aruna P, Ganesan S (2016) Paclitaxel conjugated Fe3O4@LaF3:Ce3+, Tb3+ nanoparticles as bifunctional targeting carriers for Cancer theranostics application. J Magn Mat 399:207–215. https://doi.org/10.1016/j.jmmm.2015.09.084

    Article  CAS  Google Scholar 

  • Mariouras T, Vamvakaki M (2016) Field responsive materials: photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polym Chem 8:74–96

    Google Scholar 

  • Matsuda T, Kawakami R, Namba R, Nakajima T, Gong JP (2019) Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 363(6426):504–508

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto A, Ikeda S, Harada A, Kataoka K (2003) Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 4(5):1410–1416

    Article  CAS  PubMed  Google Scholar 

  • Merino S, Martin C, Kostarelos K, Prato M, Vazques E (2015) Nanocomposite hydrogels: 3D polymer – nanoparticle synergies for on – demand drug delivery. ACS Nano 9(5):4686–4697

    Article  CAS  PubMed  Google Scholar 

  • Michael AV, Webber MJ (2019) Biologically inspired and chemically derived methods for glucose-responsive insulin therapy. Adv Healthcare Mater 8(12):1801466

    Article  CAS  Google Scholar 

  • Miyata M, Jikihara A, Nakamae K, Hoffman AS (2004) Preparation of reversibly glucose-responsive hydrogels by covalent immobilization of lectin in polymer networks having pendant glucose. J Biomater Sci Polym 15(9):1085–1098

    Article  CAS  Google Scholar 

  • Murdan S (2003) Electro-responsive drug delivery from hydrogels. JCR 92(1-2):1–17

    Article  CAS  Google Scholar 

  • Oktay S, Alemdar N (2018) Electrically controlled release of 5-fluorouracil from conductive gelatin methacryloyl-based hydrogels. J Appl Polym Sci 136(1):46914

    Article  CAS  Google Scholar 

  • Pham S, Choi Y, Choi J (2020) Stimuli-responsive nanomaterials for application in antitumor terapy and drug delivery. Pharmaceutics 12(7):630

    Article  CAS  PubMed Central  Google Scholar 

  • Qin J, Asempah L, Laurent S, Fornara A, Muller RN, Muhammed M (2009) Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs. Adv Mater 21(13):1354–1357

    Article  CAS  Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Zhao X, Ma PX, Guo B (2018) Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release. Acta Biomater 72:55–69

    Article  CAS  PubMed  Google Scholar 

  • Quershi D, Nayak SK, Maji S, Anis A, Kim D, Pal K (2019) Environment sensitive hydrogels for drug delivery applications. Eur Polym J 120:109220

    Article  CAS  Google Scholar 

  • Reddy NN, Mohan YM, Varaprasad K, Ravindra S, Joy PA, Raju KM (2011) Magnetic and electric responsive hydrogel magnetic nanocomposites for drug-delivery application. J Appl Poym Sci 122(2):1364–1375

    Article  CAS  Google Scholar 

  • Ruan C, Liu C, Hu H, Guo XL, Jiang BP, Liang H, Shen XC (2019) NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy. Chem Sci 10:4699–4706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikia AK, Aggarwal S, Mandal UK (2015) Electrically induced swelling and methylene blue release behavior of poly (N-isopropylacrylamide-co-acrylamido-2-methylpropyl sulphonic acid) hydrogels. Colloid Polym Sci 293:3533–3544

    Article  CAS  Google Scholar 

  • Secret E, Kelly SJ, Crannell KE, Andrew JS (2014) Enzyme-responsive hydrogel microparticles for pulmonary drug delivery. ACS Appl Mater Interfaces 6(13):10313–10321

    Article  CAS  PubMed  Google Scholar 

  • Sharifzadeh G, Hosseinkhani H (2017) Biomolecule-responsive hydrogels in medicine. Adv Healthcare Mater 6(24). https://doi.org/10.1002/adhm.201700801

  • Sharpe LA, Daily AM, Horava SD, Peppas NA (2014) Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 11(6):901–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Zheng Y, Wang G, Lin Q, Fan H (2014) pH-and electro-responsive characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for the dual controlled drug delivery. RSC Adv 4(87):47056–47065

    Article  CAS  Google Scholar 

  • Shi W, Huang J, Fang R, Liu M (2020) Imparting functionality to the hydrogel by magnetic-field-induced nano-assembly and macro-response. ACS Appl Mater Interfaces 12(5):5177–5194

    Article  CAS  PubMed  Google Scholar 

  • Siangsanoh C, Ummartyotin S, Sathirakul K, Rojanapanthu P, Treesuppharat W (2018) Fabrication and characterization of triple-responsive composite hydrogel for targeted and controlled drug delivery System. J Mol Liq 256:90–99

    Article  CAS  Google Scholar 

  • Spruell JM, Hawker CJ (2011) Triggered structural and property changes in polymeric nanomaterials. J Chem Sci 2:18–26

    Article  CAS  Google Scholar 

  • Suhail M, Wu P-C, Usman Minhas M (2021) Development and characterization of pH-sensitive chondroitin sulfate- co-poly (acrylic acid) hydrogels for controlled release of diclofenac sodium. J Saudi Chem Soc 25(4):101212

    Article  CAS  Google Scholar 

  • Sun L, Mo Z, Li Q, Zheng D, Qiu X, Pan X (2021) Facile synthesis and performance of pH/temperature dual-response hydrogel containing lignin-based carbon dots. Int J Biol Macromol 175:516–525

    Article  CAS  PubMed  Google Scholar 

  • Timko BP, Dvir T, Kohane DS (2010) Remotely triggerable drug-delivery systems. Adv Mater 22(44):4925–4943

    Article  CAS  PubMed  Google Scholar 

  • Ullah F, Othma MBH, Javed F, Ahmada Z, Ad AH (2015) Classification, processing and application of hydrogels: a review. Materi Sci Eng C 57:414–433

    Article  CAS  Google Scholar 

  • Wang B, Ma R, Liu G, Li Y, Liu X, An Y, Shi L (2009) Glucose-responsive micelles from self-assembly of poly (ethylene glycol)-b-Poly (acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir 25(21):12522–12528

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu M, Gao C, Ma L, Cui D (2010) A pH-, thermo-, and glucose-, triple-responsive hydrogels: synthesis and controlled drug deliver. React Funct Polym 70(3):159–167

    Article  CAS  Google Scholar 

  • Wang C, Ye Y, Sun W, Yu J, Wang J, Lawrence DS, Buse JB, Gu Z (2017) Red blood cells for glucose-responsive insulin delivery. Adv Mater 29(18):1606617

    Article  CAS  Google Scholar 

  • Wang J, Zhang H, Wang F, Ai X, Huang D, Liu G, Mi P (2018a) Enzyme-responsive polymers for drug delivery and molecular imaging. In: Stimuli responsive nanocarriers for drug delivery applications, 1st edn. Elsevier, Publisher Woodhead Publishing., pp 101–119

    Chapter  Google Scholar 

  • Wang Y, Wei G, Zhang X, Huang X, Zhao J, Guo X, Zhou S (2018b) Multistage targeting strategy using magnetic composite nanoparticles for synergism of photothermal therapy and chemotherapy. Small 14(12):e1702994. https://doi.org/10.1002/smll.201702994

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang Z, Yu J, Kahkoska AR, Buse JB, Gu Z (2019a) Glucose-responsive insulin and delivery systems: innovation and translation. Adv Mater 32(13):1902004

    Article  CAS  Google Scholar 

  • Wang Y, Zong M, Wang M, Wang L, Liu Y, Wang B, Li Y (2019b) Chelerythrine loaded composite magnetic thermosensitive hydrogels as s novel anticancer drug-delivery system. J Drug Deliv Sci Technol 54: Article 101293.

    Google Scholar 

  • Ward MA, Georgiou TK (2011) Thermo-responsive polymers for biomedical applications. Polymers 3:215–1242

    Article  CAS  Google Scholar 

  • Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7(3):165–185

    Article  CAS  Google Scholar 

  • Wu WT, Mitra N, Yan E, Zhou SQ (2010) Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano 4(8):4831–4839

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wang L, Yu HJ, Wang JJ, Chen ZF (2011) Organization of glucose-responsive systems and their properties. Chem Rev 111(12):7855–7875

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Huang Z, Huang Z, Zhang X, He S, Sun X, Shen Y, Yan M, Zhao C (2017) Injectable. NIR/pH responsive nanocomposite hydrogel as long-acting implant for chemo-photothermal synergistic cancer therapy. ACS Appl Mater Interfaces 9(24):20361–20375

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Zhu Z, Zou Y, Huang Y, Liu D, Jia S, Xu D, Wu M, Zhou Y, Zhou S, Yang CJ (2013) Target-responsive “sweet” hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. J Am Chem Soc 135(10):3748–3751

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Sun X, Liu G, Ma R, Li Z, An Y, Shi L (2013) Glucose-responsive complex micelles for self-regulated release of insulin under physiological conditions. Soft Matter 9(35):8589–8599

    Article  CAS  Google Scholar 

  • Yin R, Han J, Zhang J, Nie J (2010) Glucose-responsive composite microparticles based on chitosan, concanavalin A and dextran for insulin delivery. Colloids Surf B 76(2):483–488

    Article  CAS  Google Scholar 

  • Zhang S, Chu LY, Xu D, Zhang J, Ju XJ, Xie R (2008) Poly(N-isopropylacrylamide)-based comb-type grafted hydrogel with rapid response to blood glucose concentration change at physiological temperature. Polym Adv Technol. 19(8):937–943

    Article  CAS  Google Scholar 

  • Zhang Q, Colazo J, Berg D, Mugo SM, Serpe JM (2017) Multi responsive nanogels for targeted anticancer drug delivery. Mol Pharm 14:2624–2628

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Kim J, Cezar CA, Huebsch N, Lee K, Bouhadir K, Mooney DJ (2011) Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci USA 108(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Niu L, Liang H, Tan H, Liu C, Zhu F (2017) pH and glucose dual-responsive Injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS Appl Mater Interfaces 9(43):37563–37574

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Wang L, Xu Y, Du W, Cai X, Wang F, Ling Y, Chen H, Wang Z, Hu B, Zheng Y (2018) A pH and magnetic dual-response hydrogel for synergistic chemi-magnetic hyperthermia tumor therapy. RSC Adv 8(18):9812–9821

    Article  CAS  Google Scholar 

  • Zohreh N, Hosseini SH, Pourjavadi A (2016) Hydrazine-modified starch coated magnetic nanoparticles as an effective pH-responsive nanocarrier for doxorubicin delivery. J Indus Eng Chem 39:203–209. https://doi.org/10.1016/j.jiec.2016.05.029

    Article  CAS  Google Scholar 

  • Zou X, Zhao X, Ye L (2015) Synthesis of cationic chitosan hydrogel and its controlled glucose-responsive drug release behavior. Chemical Engineering Journal 273:92–100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jalababu, R., Reddy, M.K., Reddy, K.V.N.S., Rao, K.S.V.K. (2021). Hydrogels as Smart Drug Delivery Systems: Recent Advances. In: Kim, JC., Alle, M., Husen, A. (eds) Smart Nanomaterials in Biomedical Applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-84262-8_7

Download citation

Publish with us

Policies and ethics