Skip to main content

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 11))

  • 550 Accesses

Abstract

Sustainable management of organic solid wastes (OSW) within environmental, economic, and social standards is becoming an increasingly important and hot topic. This chapter gives a brief introduction to the types, sources and properties of OSW and then outlines technologies for sustainable recycle or conversion of OSW into biofuels and chemicals. In this chapter, features of biological, chemical, thermochemical, and photo-chemical technologies are described. An overview of databases used in life cycle assessment (LCA) of OSW and related topics are given. Advantages and scope of each technology are given for converting OSW into valuable products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McNabb DE. The population growth barrier. In: Global pathways to water sustainability. Palgrave Macmillan, Champions; 2019. https://doi.org/10.1007/978-3-030-04085-7_5.

    Chapter  Google Scholar 

  2. Hedblom M, Knez I, Ode Sang Ã…, Gunnarsson B. Evaluation of natural sounds in urban greenery: potential impact for urban nature preservation. R Soc Open Sci. 2017;4:170037. https://doi.org/10.1098/rsos.170037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jean F, Agnes BQ, Lionel F. The great shift: macroeconomic projections for the world economy at the 2050 Horizon (February 10, 2012). CEPII Working Paper No. (2012), 3: Available at SSRN: https://ssrn.com/abstract=2004332

  4. De Medina-Salas L, Castillo-González E, Giraldi-Díaz MR, Jamed-Boza LO. Valorisation of the organic fraction of municipal solid waste. Waste Manag Res. 2019;37(1):59–73. https://doi.org/10.1177/0734242X18812651.

    Article  PubMed  Google Scholar 

  5. Kaza S, Yao LC, Bhada-Tata P, Van Woerden F. What a waste 2.0: a global snapshot of solid waste management to 2050. Urban development, 2018. World Bank. https://openknowledge.worldbank.org/handle/10986/30317

  6. Kumar A, Samadder SR. A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manage. 2017;69:407–22. https://doi.org/10.1016/j.wasman.2017.08.046.

    Article  CAS  Google Scholar 

  7. Wainaina S, Awasthi MK, Sarsaiya S, Chen H, Singh E, Kumar A, Ravindran B, Awasthi SK, Liu T, Duan Y, Kumar S, Zhang Z, Taherzadeh MJ. Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresour Technol. 2020;301:122778. https://doi.org/10.1016/j.biortech.2020.122778.

    Article  CAS  PubMed  Google Scholar 

  8. Ortiz FJG, Kruse A, Ramos F, Ollero P. Integral energy valorization of municipal solid waste reject fraction to biofuels. Energy Convers Manag. 2019;180:1167–84. https://doi.org/10.1016/j.enconman.2018.10.085.

    Article  CAS  Google Scholar 

  9. Dixon N, Jones DRV. Engineering properties of municipal solid waste. Geotext Geomembr. 2005;23(3):205–33. https://doi.org/10.1016/j.geotexmem.2004.11.002.

    Article  Google Scholar 

  10. Stehlík P. Contribution to advances in waste-to-energy technologies. J Clean Prod. 2009;17(10):919–31. https://doi.org/10.1016/j.jclepro.2009.02.011.

    Article  CAS  Google Scholar 

  11. Kothari R, Tyagi VV, Pathak A. Waste-to-energy: a way from renewable energy sources to sustainable development. Renew Sust Energ Rev. 2010;14(9):3164–70. https://doi.org/10.1016/j.rser.2010.05.005.

    Article  CAS  Google Scholar 

  12. Sharma S, Basu S, Shetti NP, Kamali M, Walvekar P, Aminabhavi TM. Waste-to-energy nexus: a sustainable development. Environ Pollut. 2020;115501 https://doi.org/10.1016/j.envpol.2020.115501.

  13. Assi A, Bilo F, Zanoletti A, Pontiet J, Valsesia A, Spina R, Zacco A, Bontempi E. Zero-waste approach in municipal solid waste incineration: reuse of bottom ash to stabilize fly ash. J Clean Prod. 2020;245:118779. https://doi.org/10.1016/j.jclepro.2019.118779.

    Article  CAS  Google Scholar 

  14. Morris M, Waldheim L. Energy recovery from solid waste fuels using advanced gasification technology. Waste Manag. 1998;18(6–8):557–64. https://doi.org/10.1016/S0956-053X(98)00146-9.

    Article  CAS  Google Scholar 

  15. Chen D, Yin L, Wang H, He P. Pyrolysis technologies for municipal solid waste: a review. Waste Manag. 2014;34(12):2466–86. https://doi.org/10.1016/j.wasman.2014.08.004.

    Article  CAS  PubMed  Google Scholar 

  16. Zhan L, Jiang L, Zhang Y, Gao B, Xu Z. Reduction, detoxification and recycling of solid waste by hydrothermal technology: a review. Chem Eng J. 2020;390:124651. https://doi.org/10.1016/j.cej.2020.124651.

    Article  CAS  Google Scholar 

  17. Zamri M, Hasmady S, Akhiar A, Ideris F, Shamsuddin AH, Mofijur M, Fattah IMR, Mahlia TMI. A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renew Sust Energ Rev. 2021;137:110637. https://doi.org/10.1016/j.rser.2020.110637.

    Article  CAS  Google Scholar 

  18. Jensen JW, Felby C, Jørgensen H, Nørholm ND, Rønsch G. Enzymatic processing of municipal solid waste. Waste Manag. 2010;30(12):2497–503. https://doi.org/10.1016/j.wasman.2010.07.009.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar S, Panda AK, Singh RK. A review on tertiary recycling of high-density polyethylene to fuel. Resource Conserv Recycl. 2011;55(11):893–910. https://doi.org/10.1016/j.resconrec.2011.05.005.

    Article  Google Scholar 

  20. Ragaert K, Delva L, Van Geem K, Laurenti E, Montoneri E, Arques A, Carlos L. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017;69:24–58. https://doi.org/10.1016/j.wasman.2017.07.044.

    Article  CAS  PubMed  Google Scholar 

  21. Avetta P, Bella F, Prevot AB, Laurenti E, Montoneri E, Arques A, Carlos L. Waste cleaning waste: photodegradation of monochlorophenols in the presence of waste-derived photosensitizer. ACS Sustain Chem Eng. 2013;1(12):1545–50. https://doi.org/10.1021/sc400294z.

    Article  CAS  Google Scholar 

  22. Lee Y, Nirmalakhandan N. Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste. Bioresour Technol. 2011;102(10):5831–5. https://doi.org/10.1016/j.biortech.2011.02.090.

    Article  CAS  PubMed  Google Scholar 

  23. Singh RP, Tyagi VV, Allen T, Ibrahim MH, Kothari R. An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renew Sust Energ Rev. 2011;15(9):4797–808. https://doi.org/10.1016/j.rser.2011.07.071.

    Article  Google Scholar 

  24. Baawain M, Al-Mamun A, Omidvarborna H, Al-Amri W. Ultimate composition analysis of municipal solid waste in Muscat. J Clean Prod. 2017;148:355–62. https://doi.org/10.1016/j.jclepro.2017.02.013.

    Article  CAS  Google Scholar 

  25. Colon J, Cadena E, Colazo AB, Quiros R, Sanchez A, Font X, Artola A. Toward the implementation of new regional biowaste management plans: environmental assessment of different waste management scenarios in Catalonia. Resources Conserv Recycl. 2015;95:143–55. https://doi.org/10.1016/j.resconrec.2014.12.012.

    Article  Google Scholar 

  26. Mukherjee C, Denney J, Mbonimpa EG, Slagley J, Bhowmik R. A review on municipal solid waste-to-energy trends in the USA. Renew Sust Energ Rev. 2020;119:109512. https://doi.org/10.1016/j.rser.2019.109512.

    Article  CAS  Google Scholar 

  27. Mou Z, Scheutz C, Kjedsen P. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills. Waste Manag. 2014;34:2251–9. https://doi.org/10.1016/j.wasman.2014.06.025.

    Article  CAS  PubMed  Google Scholar 

  28. Hao Z, Yang B, Jahng D. Combustion characteristics of biodried sewage sludge. Waste Manage. 2018;72:296–305. https://doi.org/10.1016/j.wasman.2017.11.008.

    Article  CAS  Google Scholar 

  29. Zhang Q, Hu J, Lee D-J, Chang Y, Lee Y-J. Sludge treatment: current research trends. Bioresour Technol. 2017;243:1159–72. https://doi.org/10.1016/j.biortech.2017.07.070.

    Article  CAS  PubMed  Google Scholar 

  30. Wu RM, Lee DJ. Hydrodynamic drag force exerted on a moving floc and its implication to free-settling tests. Water Res. 1998;32:760–8. https://doi.org/10.1016/S0043-1354(97)00320-5.

    Article  CAS  Google Scholar 

  31. Gottumukkala L D, Haigh K, Collard F X, Rensburg Van R E, Görgens J. Opportunities and prospects of biorefinery-based valorisation of pulp and paper sludge. Bioresour Technol (2016) 215: 37–49. doi: https://doi.org/10.1016/j.biortech.2016.04.015

  32. Xu G, Yang X, Spinosa L. Development of sludge-based adsorbents: preparation, characterization, utilization and its feasibility assessment. J Environ Manage. 2015;151:221–32. https://doi.org/10.1016/j.jenvman.2014.08.001.

    Article  CAS  PubMed  Google Scholar 

  33. Xie C, Liu J, Zhang X, Xie W, Sun J, Chang K, Kuo J, Xie W, Liu C, Sun S. Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks. Appl Energy. 2018;212:786–95. https://doi.org/10.1016/j.apenergy.2017.12.084.

    Article  CAS  Google Scholar 

  34. Zhang H, Gao Z, Liu Y, Ran C, Mao X, Kang Q, Ao W, Fu J, Li J, Liu G, Dai J. Microwave-assisted pyrolysis of textile dyeing sludge, and migration and distribution of heavy metals. J Hazard Mater. 2018;355:128–35. https://doi.org/10.1016/j.jhazmat.2018.04.080.

    Article  CAS  PubMed  Google Scholar 

  35. Al-Salem SM, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag. 2009;29(10):2625–43. https://doi.org/10.1016/j.wasman.2009.06.004.

    Article  CAS  PubMed  Google Scholar 

  36. Al-Salem SM, Lettieri P, Baeyens J. The valorization of plastic solid waste (PSW) by primary to quaternary routes: from re-use to energy and chemicals. Prog Energy Combust Sci. 2010;36(1):103–29. https://doi.org/10.1016/j.pecs.2009.09.001.

    Article  CAS  Google Scholar 

  37. Liu H, Wang Y, Zhao S, Hu H, Cao C, Li A, Yu Y, Yao H. Review on the current status of the co-combustion technology of Organic Solid Waste (OSW) and coal in China. Energy Fuel. 2020;34(12):15448–87. https://doi.org/10.1021/acs.energyfuels.0c02177.

    Article  CAS  Google Scholar 

  38. Okan M, Aydin HM, Barsbay M. Current approaches to waste polymer utilization and minimization: a review. J Chem Technol Biotechnol. 2019;94(1):8–21. https://doi.org/10.1002/jctb.5778.

    Article  CAS  Google Scholar 

  39. Coates GW, Getzler YDYL. Chemical recycling to monomer for an ideal, circular polymer economy. Nat Rev Mater. 2020;5(7):501–16. https://doi.org/10.1038/s41578-020-0190-4.

    Article  CAS  Google Scholar 

  40. Silvarrey LSD, Phan AN. Kinetic study of municipal plastic waste. Int J Hydrog Energy. 2016;41(37):16352–64. https://doi.org/10.1016/j.ijhydene.2016.05.202.

    Article  CAS  Google Scholar 

  41. Miskolczi N, Bartha L, Deak G, Jover B. Thermal degradation of municipal plastic waste for production of fuel-like hydrocarbons. Polym Degrad Stab. 2004;86(2):357–66. https://doi.org/10.1016/j.polymdegradstab.2004.04.025.

    Article  CAS  Google Scholar 

  42. Quecholac-Piña X, García-Rivera MA, Espinosa-Valdemar RM, Vázquez-Morillas A, Beltrán-Villavicencio M, de la Luz Cisneros-Ramos A. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation. Environ Sci Pollut Res. 2017;24(33):25725–30. https://doi.org/10.1007/s11356-016-6553-0.

    Article  CAS  Google Scholar 

  43. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. https://doi.org/10.1126/sciadv.1700782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL. Plastic waste inputs from land into the ocean. Science. 2015;347(6223):768–71. https://doi.org/10.1126/science.1260352.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao YB, Lv XD, Ni HG. Solvent-based separation and recycling of waste plastics: A review. Chemosphere. 2018;209:707–20. https://doi.org/10.1016/j.chemosphere.2018.06.095.

    Article  CAS  PubMed  Google Scholar 

  46. Jiao X, Zheng K, Chen Q, Li X, Li Y, Shao W, Xu J, Zhu J, Pan Y, Sun Y, Xie Y. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions. Angew Chem Int Ed. 2020;59(36):15497–501. https://doi.org/10.1002/anie.201915766.

    Article  CAS  Google Scholar 

  47. Barnes SJ. Understanding plastics pollution: the role of economic development and technological research. Environ Pollut. 2019;249:812–21. https://doi.org/10.1016/j.envpol.2019.03.108.

    Article  CAS  PubMed  Google Scholar 

  48. Larsen MB, Schultz L, Glarborg P, Skaarup-Jensen L, Dam-Johansen K, Frandsen F, Henriksen U. Devolatilization characteristics of large particles of tyre rubber under combustion conditions. Fuel. 2006;85(10–11):1335–45. https://doi.org/10.1016/j.fuel.2005.12.014.

    Article  CAS  Google Scholar 

  49. Fazli A, Rodrigue D. Waste rubber recycling: a review on the evolution and properties of thermoplastic elastomers. Materials. 2020;13(3):782. https://doi.org/10.3390/ma13030782.

    Article  CAS  PubMed Central  Google Scholar 

  50. Tang X, Chen Z, Liu J, Chen Z, Xie W, Evrendilek F, Buyukada M. Dynamic pyrolysis behaviors, products, and mechanisms of waste rubber and polyurethane bicycle tires. J Hazard Mater. 2021;402:123516. https://doi.org/10.1016/j.jhazmat.2020.123516.

    Article  CAS  PubMed  Google Scholar 

  51. Chen R, Li Q, Zhang Y, Xu X, Zhang D. Pyrolysis kinetics and mechanism of typical industrial non-tyre rubber wastes by peak-differentiating analysis and multi kinetics methods. Fuel. 2019;235:1224–37. https://doi.org/10.1016/j.fuel.2018.08.121.

    Article  CAS  Google Scholar 

  52. Thomas BS, Gupta RC. A comprehensive review on the applications of waste tire rubber in cement concrete. Renew Sust Energ Rev. 2016;54:1323–33. https://doi.org/10.1016/j.rser.2015.10.092.

    Article  CAS  Google Scholar 

  53. Ramarad S, Khalid M, Ratnam CT, Chuah AL, Rashmi W. Waste tire rubber in polymer blends: a review on the evolution, properties and future. Prog Mater Sci. 2015;72:100–40. https://doi.org/10.1016/j.pmatsci.2015.02.004.

    Article  CAS  Google Scholar 

  54. Miranda M, Pinto F, Gulyurtlu I, Cabrita I. Pyrolysis of rubber tyre wastes: a kinetic study. Fuel. 2013;103:542–52. https://doi.org/10.1016/j.fuel.2012.06.114.

    Article  CAS  Google Scholar 

  55. Chen W, Lin B, Lin Y, Chu Y, Ubando AT, Show PL, Ong HC, Chang J, Ho S, Culaba AB, Petrissans A, Petrissans M. Progress in biomass torrefaction: Principles, applications and challenges. Prog Energy Combust Sci. 2021;82:100887. https://doi.org/10.1016/j.pecs.2020.100887.

    Article  Google Scholar 

  56. Nowak DJ, Greenfield EJ, Ash RM. Annual biomass loss and potential value of urban tree waste in the United States. Urban For Urban Green. 2019;46:126469. https://doi.org/10.1016/j.ufug.2019.126469.

    Article  Google Scholar 

  57. Sayed ET, Wilberforce T, Elsaid K, Rabaia MKH, Abdelkareem MA, Chae KJ, Olabi AG. A critical review on environmental impacts of renewable energy systems and mitigation strategies: wind, hydro, biomass and geothermal. Sci Total Environ. 2020:144505. https://doi.org/10.1016/j.scitotenv.2020.144505.

  58. Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HMN. Lignocellulose: a sustainable material to produce value-added products with a zero waste approach-a review. Int J Biol Macromol. 2017;99:308–18. https://doi.org/10.1016/j.ijbiomac.2017.02.097.

    Article  CAS  PubMed  Google Scholar 

  59. Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel. 2010;89(5):913–33. https://doi.org/10.1016/j.fuel.2009.10.022.

    Article  CAS  Google Scholar 

  60. Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci. 2018;115(25):6506–11. https://doi.org/10.1073/pnas.1711842115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang H, Yan R, Chen H, Zheng C, Lee D, Liang D. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuel. 2006;20(1):388–93. https://doi.org/10.1021/ef0580117.

    Article  CAS  Google Scholar 

  62. Brinchi L, Cotana F, Fortunati E, Kenny JM. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym. 2013;94(1):154–69. https://doi.org/10.1016/j.carbpol.2013.01.033.

    Article  CAS  PubMed  Google Scholar 

  63. Luo Y, Li Z, Li X, Liu X, Fan J, Clark JH, Hu C. The production of furfural directly from hemicellulose in lignocellulosic biomass: a review. Catal Today. 2019;319:14–24. https://doi.org/10.1016/j.cattod.2018.06.042.

    Article  CAS  Google Scholar 

  64. Gani A, Naruse I. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energy. 2007;32(4):649–61. https://doi.org/10.1016/j.renene.2006.02.017.

    Article  CAS  Google Scholar 

  65. Hu J, Zhang Q, Lee DJ. Kraft lignin biorefinery: a perspective. Bioresour Technol. 2018;247:1181–3. https://doi.org/10.1016/j.biortech.2017.08.169.

    Article  CAS  PubMed  Google Scholar 

  66. Haq I, Qaisar K, Nawaz A, Akram F, Mukhtar H, Zohu X, Xu Y, Mumtaz MW, Rashid U, Ghani WAWAK, Choong TSY. Advances in valorization of lignocellulosic biomass towards energy generation. Catalysts. 2021;11(3):309. https://doi.org/10.3390/catal11030309.

    Article  CAS  Google Scholar 

  67. Ji H, Dong C, Yang G, Pang Z. Valorization of lignocellulosic biomass toward multipurpose fractionation: furfural, phenolic compounds, and ethanol. ACS Sustain Chem Eng. 2018;6(11):15306–15. https://doi.org/10.1021/acssuschemeng.8b03766.

    Article  CAS  Google Scholar 

  68. Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M. Valorization of biomass: deriving more value from waste. Science. 2012;337(6095):695–9. https://doi.org/10.1126/science.1218930.

    Article  CAS  PubMed  Google Scholar 

  69. Esteves EMM, Herrera AMN, Esteves VPP, Morgado CDRV. Life cycle assessment of manure biogas production: a review. J Clean Prod. 2019;219:411–23. https://doi.org/10.1016/j.jclepro.2019.02.091.

    Article  CAS  Google Scholar 

  70. Berendes DM, Yang PJ, Lai A, Hu D, Brown J. Estimation of global recoverable human and animal faecal biomass. Nat Sustain. 2018;1(11):679–85. https://doi.org/10.1038/s41893-018-0167-0.

    Article  Google Scholar 

  71. Mihelcic JR, Fry LM, Shaw R. Global potential of phosphorus recovery from human urine and feces. Chemosphere. 2011;84(6):832–9. https://doi.org/10.1016/j.chemosphere.2011.02.046.

    Article  CAS  PubMed  Google Scholar 

  72. Hamoda MF, Abu Qdais HA, Newham J. Evaluation of municipal solid waste composting kinetics. Resources Conserv Recycl. 1998;23:209–23. https://doi.org/10.1016/S0921-3449(98)00021-4.

    Article  Google Scholar 

  73. Vermeulen LC, Benders J, Medema G, Hofstra N. Global Cryptosporidium loads from livestock manure. Environ Sci Technol. 2017;51(15):8663–71. https://doi.org/10.1021/acs.est.7b00452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang L, Xu CC, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag. 2010;51(5):969–82. https://doi.org/10.1016/j.enconman.2009.11.038.

    Article  CAS  Google Scholar 

  75. Xu L, Shi C, He Z, Zhang H, Chen M, Fang Z, Zhang Y. Recent advances of producing biobased N-containing compounds via thermo-chemical conversion with ammonia process. Energy Fuel. 2020;34(9):10441–58. https://doi.org/10.1021/acs.energyfuels.0c01993.

    Article  CAS  Google Scholar 

  76. Lopez G, Artetxe M, Amutio M, Bilbao J, Olazar M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. a review. Renew Sust Energ Rev. 2017;73:346–68. https://doi.org/10.1016/j.rser.2017.01.142.

    Article  CAS  Google Scholar 

  77. Sabbas T, Polettini A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G, Magel G, Salhofer S, Speiser C, Heuss-Assbichler S, Klein R, Lechner P. Management of municipal solid waste incineration residues. Waste Manag. 2003;23(1):61–88. https://doi.org/10.1016/S0956-053X(02)00161-7.

    Article  CAS  PubMed  Google Scholar 

  78. Lu J, Zhang S, Hai J, Lei M. Status and perspectives of municipal solid waste incineration in China: a comparison with developed regions. Waste Manag. 2017;69:170–86. https://doi.org/10.1016/j.wasman.2017.04.014.

    Article  PubMed  Google Scholar 

  79. Wang P, Hu Y, Cheng H. Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China. Environ Pollut. 2019;252:461–75. https://doi.org/10.1016/j.envpol.2019.04.082.

    Article  CAS  PubMed  Google Scholar 

  80. Psaltis P, Komilis D. Environmental and economic assessment of the use of biodrying before thermal treatment of municipal solid waste. Waste Manag. 2019;83:95–103. https://doi.org/10.1016/j.wasman.2018.11.007.

    Article  PubMed  Google Scholar 

  81. Makarichi L, Jutidamrongphan W, Techato K. The evolution of waste-to-energy incineration: a review. Renew Sust Energ Rev. 2018;91:812–21. https://doi.org/10.1016/j.rser.2018.04.088.

    Article  CAS  Google Scholar 

  82. Panepinto D, Zanetti MC. Municipal solid waste incineration plant: a multi-step approach to the evaluation of an energy-recovery configuration. Waste Manag. 2018;73:332–41. https://doi.org/10.1016/j.wasman.2017.07.036.

    Article  CAS  PubMed  Google Scholar 

  83. Nyashina GS, Vershinina KY, Shlegel NE, Strizhak PA. Effective incineration of fuel-waste slurries from several related industries. Environ Res. 2019;176:108559. https://doi.org/10.1016/j.envres.2019.108559.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Y, Ma Z, Fang Z, Qian Y, Zhong P, Yan J. Review of harmless treatment of municipal solid waste incineration fly ash. Waste Disposal Sustain Energy. 2020;2(1):1–25. https://doi.org/10.1007/s42768-020-00033-0.

    Article  Google Scholar 

  85. Eriksson O, Finnveden G. Energy recovery from waste incineration—the importance of technology data and system boundaries on CO2 emissions. Energies. 2017;10(4):539. https://doi.org/10.3390/en10040539.

    Article  CAS  Google Scholar 

  86. Martínez JD, Puy N, Murillo R, Garcia T, Victoria Navarro M, Mastral MA. Waste tyre pyrolysis—a review. Renew Sust Energ Rev. 2013;23:179–213. https://doi.org/10.1016/j.rser.2013.02.038.

    Article  CAS  Google Scholar 

  87. Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK. A review on pyrolysis of plastic wastes. Energy Convers Manag. 2016;115:308–26. https://doi.org/10.1016/j.enconman.2016.02.037.

    Article  CAS  Google Scholar 

  88. Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev. 2016;57:1126–40. https://doi.org/10.1016/j.rser.2015.12.185.

    Article  CAS  Google Scholar 

  89. Liu C, Wang H, Karim AM, Sun J, Wang Y. Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev. 2014;43(22):7594–623. https://doi.org/10.1039/C3CS60414D.

    Article  CAS  PubMed  Google Scholar 

  90. Kumar R, Strezov V, Weldekidan H, He J, Singh S, Kan T, Dastjerdi B. Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels. Renew Sust Energ Rev. 2020;123:109763. https://doi.org/10.1016/j.rser.2020.109763.

    Article  CAS  Google Scholar 

  91. Perkins G, Bhaskar T, Konarova M. Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renew Sust Energ Rev. 2018;90:292–315. https://doi.org/10.1016/j.rser.2018.03.048.

    Article  CAS  Google Scholar 

  92. Kumar V, Nanda M. Biomass pyrolysis-current status and future directions. Energy Sources Part A: Recov Util Environ Effects. 2016;38(19):2914–21. https://doi.org/10.1080/15567036.2015.1098751.

    Article  CAS  Google Scholar 

  93. Dickerson T, Soria J. Catalytic fast pyrolysis: a review. Energies. 2013;6(1):514–38. https://doi.org/10.3390/en6010514.

    Article  CAS  Google Scholar 

  94. Venderbosch RH. A critical view on catalytic pyrolysis of biomass. ChemSusChem. 2015;8(8):1306–16. https://doi.org/10.1002/cssc.201500115.

    Article  CAS  PubMed  Google Scholar 

  95. Li B, Ou L, Dang Q, Meyer P, Jones S, Brown R, Wright M. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production. Bioresour Technol. 2015;196:49–56. https://doi.org/10.1016/j.biortech.2015.07.073.

    Article  CAS  PubMed  Google Scholar 

  96. Wan S, Wang Y. A review on ex situ catalytic fast pyrolysis of biomass. Front Chem Sci Eng. 2014;8(3):280–94. https://doi.org/10.1007/s11705-014-1436-8.

    Article  CAS  Google Scholar 

  97. Cai R, Pei X, Pan H, Wan K, Chen H, Zhang Z, Zhang Y. Biomass catalytic pyrolysis over zeolite catalysts with an emphasis on porosity and acidity: a state-of-the-art review. Energy Fuel. 2020;34(10):11771–90. https://doi.org/10.1021/acs.energyfuels.0c02147.

    Article  CAS  Google Scholar 

  98. Hameed S, Sharma A, Pareek V, Wu H, Yu Y. A review on biomass pyrolysis models: kinetic, network and mechanistic models. Biomass Bioenergy. 2019;123:104–22. https://doi.org/10.1016/j.biombioe.2019.02.008.

    Article  CAS  Google Scholar 

  99. Sansaniwal SK, Pal K, Rosen MA, Tyagi SK. Recent advances in the development of biomass gasification technology: a comprehensive review. Renew Sust Energ Rev. 2017;72:363–84. https://doi.org/10.1016/j.rser.2017.01.038.

    Article  CAS  Google Scholar 

  100. Molino A, Chianese S, Musmarra D. Biomass gasification technology: the state of the art overview. J Energy Chem. 2016;25(1):10–25. https://doi.org/10.1016/j.jechem.2015.11.005.

    Article  Google Scholar 

  101. Belgiorno V, De Feo G, Della Rocca C, Napoli RMA. Energy from gasification of solid wastes. Waste Manag. 2003;23(1):1–15. https://doi.org/10.1016/S0956-053X(02)00149-6.

    Article  CAS  PubMed  Google Scholar 

  102. Wilhelm DJ, Simbeck DR, Karp AD, Dickenson RL. Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Process Technol. 2001;71(1–3):139–48. https://doi.org/10.1016/S0378-3820(01)00140-0.

    Article  CAS  Google Scholar 

  103. Werle S, Wilk RK. A review of methods for the thermal utilization of sewage sludge: the Polish perspective. Renew Energy. 2010;35(9):1914–9. https://doi.org/10.1016/j.renene.2010.01.019.

    Article  CAS  Google Scholar 

  104. Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E, Schacht M. Hydrothermal gasification of biomass and organic wastes. J Supercrit Fluids. 2000;17(2):145–53. https://doi.org/10.1016/S0896-8446(99)00051-0.

    Article  CAS  Google Scholar 

  105. Guo L, Jin H, Lu Y. Supercritical water gasification research and development in China. J Supercrit Fluids. 2015;96:144–50. https://doi.org/10.1016/j.supflu.2014.09.023.

    Article  CAS  Google Scholar 

  106. Nanda S, Gong M, Hunter HN, Dalai AK, Gokalp I, Kozinski JA. An assessment of pinecone gasification in subcritical, near-critical and supercritical water. Fuel Process Technol. 2017;168:84–96. https://doi.org/10.1016/j.fuproc.2017.08.017.

    Article  CAS  Google Scholar 

  107. Wang D, Yuan W, Ji W. Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning. Appl Energy. 2011;88(5):1656–63. https://doi.org/10.1016/j.apenergy.2010.11.041.

    Article  CAS  Google Scholar 

  108. Xiang X, Gong G, Wang C, Cai N, Zhou X, Li Y. Exergy analysis of updraft and downdraft fixed bed gasification of village-level solid waste. Int J Hydrog Energy. 2021;46(1):221–33. https://doi.org/10.1016/j.ijhydene.2020.09.247.

    Article  CAS  Google Scholar 

  109. Minowa T, Murakami M, Dote Y, Ogi T, Yokoyama SY. Oil production from garbage by thermochemical liquefaction. Biomass Bioenergy. 1995;8(2):117–20. https://doi.org/10.1016/0961-9534(95)00017-2.

    Article  CAS  Google Scholar 

  110. Gollakota ARK, Kishore N, Gu S. A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev. 2018;81:1378–92. https://doi.org/10.1016/j.rser.2017.05.178.

    Article  Google Scholar 

  111. Dimitriadis A, Bezergianni S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review. Renew Sust Energ Rev. 2017;68:113–25. https://doi.org/10.1016/j.rser.2016.09.120.

    Article  CAS  Google Scholar 

  112. Meegoda JN, Li B, Patel K, Wang LB. A review of the processes, parameters, and optimization of anaerobic digestion. Int J Environ Res Public Health. 2018;15(10):2224. https://doi.org/10.3390/ijerph15102224.

    Article  CAS  PubMed Central  Google Scholar 

  113. Jenicek P, Koubova J, Bindzar J, Zabranska J. Advantages of anaerobic digestion of sludge in microaerobic conditions. Water Sci Technol. 2010;62(2):427–34. https://doi.org/10.2166/wst.2010.305.

    Article  CAS  PubMed  Google Scholar 

  114. Angelidaki I, Ellegaard L, Ahring BK. Applications of the anaerobic digestion process. Biomethanation II. 2003:1–33. https://doi.org/10.1007/3-540-45838-7_1.

  115. Neves NG, Berni M, Dragone G, Mussatto SI, Carneiro FT. Anaerobic digestion process: technological aspects and recent developments. Int J Environ Sci Technol. 2018;15(9):2033–46. https://doi.org/10.1007/s13762-018-1682-2.

    Article  CAS  Google Scholar 

  116. Mao C, Feng Y, Wang X, Ren G. Review on research achievements of biogas from anaerobic digestion. Renew Sust Energ Rev. 2015;45:540–55. https://doi.org/10.1016/j.rser.2015.02.032.

    Article  CAS  Google Scholar 

  117. Tran HT, Lin C, Bui XT, Ngo HH, Cheruiyot NK, Hoang HG, Vu CT. Aerobic composting remediation of petroleum hydrocarbon-contaminated soil. Curr Future Perspect Sci Total Environ. 2021;753:142250. https://doi.org/10.1016/j.scitotenv.2020.142250.

    Article  CAS  Google Scholar 

  118. Gómez RB, Lima FV, Ferrer AS. The use of respiration indices in the composting process: a review. Waste Manag Res. 2006;24(1):37–47. https://doi.org/10.1177/0734242X06062385.

    Article  Google Scholar 

  119. Himanen M, Hänninen K. Composting of bio-waste, aerobic and anaerobic sludges – effect of feedstock on the process and quality of compost. Bioresour Technol. 2011;102(3):2842–52. https://doi.org/10.1016/j.biortech.2010.10.059.

    Article  CAS  PubMed  Google Scholar 

  120. Sánchez ÓJ, Ospina DA, Montoya S. Compost supplementation with nutrients and microorganisms in composting process. Waste Manag. 2017;69:136–53. https://doi.org/10.1016/j.wasman.2017.08.012.

    Article  CAS  PubMed  Google Scholar 

  121. Singh S, Nain L. Microorganisms in the conversion of agricultural wastes to compost. Process Indian Natl Sci Acad. 2014;80(2):473–81. https://doi.org/10.16943/ptinsa/2014/v80i2/7.

    Article  Google Scholar 

  122. Azim K, Soudi B, Boukhari S, Perissol C, Roussos S, Thami AI. Composting parameters and compost quality: a literature review. Org Agric. 2018;8(2):141–58. https://doi.org/10.1007/s13165-017-0180-z.

    Article  Google Scholar 

  123. Hungría J, Gutiérrez MC, Siles JA, Martin MA. Advantages and drawbacks of OFMSW and winery waste co-composting at pilot scale. J Clean Prod. 2017;164:1050–7. https://doi.org/10.1016/j.jclepro.2017.07.029.

    Article  CAS  Google Scholar 

  124. Houfani AA, Anders N, Spiess AC, Baldrian P, Benallaoua S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars – a review. Biomass Bioenergy. 2020;134:105481. https://doi.org/10.1016/j.biombioe.2020.105481.

    Article  CAS  Google Scholar 

  125. Radenkovs V, Juhnevica-Radenkova K, Górnaś P, Seglina D. Non-waste technology through the enzymatic hydrolysis of agro-industrial by-products. Trends Food Sci Technol. 2018;77:64–76. https://doi.org/10.1016/j.tifs.2018.05.013.

    Article  CAS  Google Scholar 

  126. Arfi Y, Shamshoum M, Rogachev I, Peleg Y, Bayer EA. Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc Natl Acad Sci. 2014;111(25):9109–14. https://doi.org/10.1073/pnas.1404148111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Levine SE, Fox JM, Blanch HW, Clark DS. A mechanistic model of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng. 2010;107(1):37–51. https://doi.org/10.1002/bit.22789.

    Article  CAS  PubMed  Google Scholar 

  128. Modenbach AA, Nokes SE. Enzymatic hydrolysis of biomass at high-solids loadings – a review. Biomass Bioenergy. 2013;56:526–44. https://doi.org/10.1016/j.biombioe.2013.05.031.

    Article  CAS  Google Scholar 

  129. Yu Y, Lou X, Wu H. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuel. 2008;22(1):46–60. https://doi.org/10.1021/ef700292p.

    Article  CAS  Google Scholar 

  130. Kumar S, Panda AK, Singh RK. A review on tertiary recycling of high-density polyethylene to fuel. Resour Conserv Recycl. 2011;55(11):893–910. https://doi.org/10.1016/j.resconrec.2011.05.005.

    Article  Google Scholar 

  131. Oliveux G, Dandy LO, Leeke GA. Current status of recycling of fibre reinforced polymers: review of technologies, reuse and resulting properties. Prog Mater Sci. 2015;72:61–99. https://doi.org/10.1016/j.pmatsci.2015.01.004.

    Article  CAS  Google Scholar 

  132. Zhang F, Zhao Y, Wang D, Yan M, Zhang J, Zhang P, Ding T, Chen L, Chen C. Current technologies for plastic waste treatment: a review. J Clean Prod. 2020;124523 https://doi.org/10.1016/j.jclepro.2020.124523.

  133. Pardal F, Tersac G. Comparative reactivity of glycols in PET glycolysis. Polym Degrad Stab. 2006;91(11):2567–78. https://doi.org/10.1016/j.polymdegradstab.2006.05.016.

    Article  CAS  Google Scholar 

  134. Demarteau J, Olazabal I, Jehanno C, Sardon H. Aminolytic upcycling of poly (ethylene terephthalate) wastes using a thermally-stable organocatalyst. Polym Chem. 2020;11(30):4875–82. https://doi.org/10.1039/D0PY00067A.

    Article  CAS  Google Scholar 

  135. Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F. Recycling of plastic solid waste: a state of art review and future applications. Compos Part B. 2017;115:409–22. https://doi.org/10.1016/j.compositesb.2016.09.013.

    Article  CAS  Google Scholar 

  136. Payne J, McKeown P, Jones MD. A circular economy approach to plastic waste. Polym Degrad Stab. 2019;165:170–81. https://doi.org/10.1016/j.polymdegradstab.2019.05.014.

    Article  CAS  Google Scholar 

  137. Gaudino EC, Cravotto G, Manzoli M, Tabasso S. Sono-and mechanochemical technologies in the catalytic conversion of biomass. Chem Soc Rev. 2021;50:1785–812. https://doi.org/10.1039/D0CS01152E.

    Article  Google Scholar 

  138. Shen F, Xiong X, Fu J, Yang J, Qiu M, Qi X, Tsang DCW. Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources. Renew Sust Energ Rev. 2020;130:109944. https://doi.org/10.1016/j.rser.2020.109944.

    Article  CAS  Google Scholar 

  139. Singh B, Sharma N. Mechanistic implications of plastic degradation. Polym Degrad Stab. 2008;93(3):561–84. https://doi.org/10.1016/j.polymdegradstab.2007.11.008.

    Article  CAS  Google Scholar 

  140. Bychkov A, Podgorbunskikh E, Bychkova E, Lomovsky O. Current achievements in the mechanically pretreated conversion of plant biomass. Biotechnol Bioeng. 2019;116(5):1231–44. https://doi.org/10.1002/bit.26925.

    Article  CAS  PubMed  Google Scholar 

  141. Ten G-BF. Chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable. Chem Int. 2019;41(2):12–7. https://doi.org/10.1515/ci-2019-0203.

    Article  CAS  Google Scholar 

  142. Ravelli D, Protti S, Fagnoni M. Carbon–carbon bond forming reactions via photogenerated intermediates. Chem Rev. 2016;116(17):9850–913. https://doi.org/10.1021/acs.chemrev.5b00662.

    Article  CAS  PubMed  Google Scholar 

  143. Bracco P, Costa L, Luda MP, Billingham N. A review of experimental studies of the role of free-radicals in polyethylene oxidation. Polym Degrad Stab. 2018;155:67–83. https://doi.org/10.1016/j.polymdegradstab.2018.07.011.

    Article  CAS  Google Scholar 

  144. Chatani S, Kloxin CJ, Bowman CN. The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties. Polym Chem. 2014;5(7):2187–201. https://doi.org/10.1039/C3PY01334K.

    Article  CAS  Google Scholar 

  145. Santoro C, Arbizzani C, Erable B, Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. J Power Sources. 2017;356:225–44. https://doi.org/10.1016/j.jpowsour.2017.03.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhao Q, Yu H, Zhang W, Kabutey FT, Jiang J, Zhang Y, Wang K, Ding J. Microbial fuel cell with high content solid wastes as substrates: a review. Front Environ Sci Eng. 2017;11(2):13. https://doi.org/10.1007/s11783-017-0918-6.

    Article  CAS  Google Scholar 

  147. Cesaro A, Belgiorno V. Sonolysis and ozonation as pretreatment for anaerobic digestion of solid organic waste. Ultrason Sonochem. 2013;20(3):931–6. https://doi.org/10.1016/j.ultsonch.2012.10.017.

    Article  CAS  PubMed  Google Scholar 

  148. Li J, Zhao L, Qin L, Tian X, Wang A, Zhou Y, Meng L, Chen Y. Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo–Fenton processes. Chemosphere. 2016;146:442–9. https://doi.org/10.1016/j.chemosphere.2015.12.069.

    Article  CAS  PubMed  Google Scholar 

  149. Liu P, Qian L, Wang H, Zhan X, Lu K, Gu C, Gao S. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes. Environ Sci Technol. 2019;53(7):3579–88. https://doi.org/10.1021/acs.est.9b00493.

    Article  CAS  PubMed  Google Scholar 

  150. Khandelwal H, Dhar H, Thalla AK, Kumar S. Application of life cycle assessment in municipal solid waste management: a worldwide critical review. J Clean Prod. 2019;209:630–54. https://doi.org/10.1016/j.jclepro.2018.10.233.

    Article  Google Scholar 

  151. Winkler J, Bilitewski B. Comparative evaluation of life cycle assessment models for solid waste management. Waste Manag. 2007;27:1021–31. https://doi.org/10.1016/j.wasman.2007.02.023.

    Article  PubMed  Google Scholar 

  152. Dastjerdi B, Strezov V, Ali Rajaeifar M, Kumar R, Behnia M. A systematic review on life cycle assessment of different waste to energy valorization technologies. J Clean Prod. 2021;290:125747. https://doi.org/10.1016/j.jclepro.2020.125747.

    Article  CAS  Google Scholar 

  153. El Hanandeh A, El Zein A. Are the aims of increasing the share of green electricity generation and reducing GHG emissions always compatible? Renew Energy. 2011;36:3031–6. https://doi.org/10.1016/j.renene.2011.03.034.

    Article  Google Scholar 

  154. Fernandez-Gonzalez JM, Grindlay AL, Serrano-Bernardo F, Rodriguez-Rojas MI, Zamorano M. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small munic-ipalities. Waste Manag. 2017;67:360–74. https://doi.org/10.1016/j.wasman.2017.05.003.

    Article  CAS  PubMed  Google Scholar 

  155. Leme MMV, Rocha MH, Lora EES, Venturini OJ, Lopes BM, Ferreira CH. Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil. Resource Conserv Recycl. 2014;87:8–20. https://doi.org/10.1016/j.resconrec.2014.03.003.

    Article  Google Scholar 

  156. Di Maria F, Fantozzi F. Life cycle assessment of waste to energy micro-pyrolysis system: case study for an Italian town. Int J Energy Res. 2004;28:449–61. https://doi.org/10.1002/er.977.

    Article  CAS  Google Scholar 

  157. Thyberg KL, Tonjes DJ. The environmental impacts of alternative food waste treatment technologies in the US. J Clean Prod. 2017;158:101–8. https://doi.org/10.1016/j.jclepro.2017.04.169.

    Article  CAS  Google Scholar 

  158. Ebner J, Babbitt C, Winer M, Hilton B, Williamson A. Life cycle green-house gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products. Apply Energy. 2014;130:86–93. https://doi.org/10.1016/j.apenergy.2014.04.099.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, L., Zhou, X., Dong, C., Fang, Z., Smith, R.L. (2022). Sustainable Technologies for Recycling Organic Solid Wastes. In: Fang, Z., Smith Jr., R.L., Xu, L. (eds) Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste. Biofuels and Biorefineries, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-16-6162-4_1

Download citation

Publish with us

Policies and ethics