Skip to main content
Log in

Microbial fuel cell with high content solid wastes as substrates: a review

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

With the increasing concern about the serious global energy crisis and high energy consumption during high content solid wastes (HCSWs) treatment, microbial fuel cell (MFC) has been recognized as a promising resource utilization approach for HCSW stabilization with simultaneous electrical energy recovery. In contrast to the conventional HCSW stabilization processes, MFC has its unique advantages such as direct bio-energy conversion in a single step and mild reaction conditions (viz., ambient temperature, normal pressure, and neutral pH). This review mainly introduces some important aspects of electricity generation from HCSWand its stabilization in MFC, focusing on: (1) MFCs with different fundamentals and configurations designed and constructed to produce electricity from HCSW; (2) performance of wastes degradation and electricity generation; (3) prospect and deficiency posed by MFCs with HCSWas substrates. To date, the major drawback of MFCs fueled by HCSW is the lower power output than those using simple substrates. HCSW hydrolysis and decomposition would be a major tool to improve the performance of MFCs. The optimization of parameters is needed to push the progress of MFCs with HCSW as fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang G, Zhang G, Wang H. Current state of sludge production, management, treatment and disposal in China. Water Research, 2015, 78: 60–73

    Article  CAS  Google Scholar 

  2. Wang X, Feng Y, Wang H, Qu Y, Yu Y, Ren N, Li N, Wang E, Lee H, Logan B E. Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environmental Science & Technology, 2009, 43(15): 6088–6093

    Article  CAS  Google Scholar 

  3. Hassan S H A, El-Rab SMF G, Rahimnejad M, Ghasemi M, Joo J, Sik-Ok Y, Kim I S, Oh S. Electricity generation from rice straw using a microbial fuel cell. International Journal of Hydrogen Energy, 2014, 39(17): 9490–9496

    Article  CAS  Google Scholar 

  4. Zhang Y, Min B, Huang L, Angelidaki I. Generation of electricity and analysis of microbial communities in wheat straw biomasspowered microbial fuel cells. Applied and Environmental Microbiology, 2009, 75(11): 3389–3395

    Article  CAS  Google Scholar 

  5. Butkovskyi A, Ni G, Hernandez Leal L, Rijnaarts H H M, Zeeman G. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge. Journal of Hazardous Materials, 2016, 303: 41–47

    Article  CAS  Google Scholar 

  6. Katami T, Yasuhara A, Shibamoto T. Formation of dioxins from incineration of foods found in domestic garbage. Environmental Science & Technology, 2004, 38(4): 1062–1065

    Article  CAS  Google Scholar 

  7. Chon D H, Rome M, Kim Y M, Park K Y, Park C. Investigation of the sludge reduction mechanism in the anaerobic side-stream reactor process using several control biological wastewater treatment processes. Water Research, 2011, 45(18): 6021–6029

    Article  CAS  Google Scholar 

  8. Oh S T, Kim J R, Premier G C, Lee T H, Kim C, Sloan W T. Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnology Advances, 2010, 28(6): 871–881

    Article  CAS  Google Scholar 

  9. Mohan S V, Velvizhi G, Modestra J A, Srikanth S. Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renewable & Sustainable Energy Reviews, 2014, 40: 779–797

    Article  CAS  Google Scholar 

  10. Dentel S K, Strogen B, Chiu P. Direct generation of electricity from sludges and other liquid wastes. Water Science and Technology, 2004, 50(9): 161–168

    CAS  Google Scholar 

  11. Lu Z, Chang D, Ma J, Huang G, Cai L, Zhang L. Behavior of metal ions in bioelectrochemical systems: a review. Journal of Power Sources, 2015, 275: 243–260

    Article  CAS  Google Scholar 

  12. Lu L, Yazdi H, Jin S, Zuo Y, Fallgren P H, Ren Z J. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems. Journal of Hazardous Materials, 2014, 274: 8–15

    Article  CAS  Google Scholar 

  13. Md Khudzari J, Tartakovsky B, Raghavan G S V. Effect of C/N ratio and salinity on power generation in compost microbial fuel cells. Waste Management (New York, N.Y.), 2016, 48: 135–142

    Article  CAS  Google Scholar 

  14. Scott K, Murano C. A study of a microbial fuel cell battery using manure sludge waste. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2007, 82(9): 809–817

    Article  CAS  Google Scholar 

  15. Zhang G, Zhao Q, Jiao Y, Wang K, Lee D J, Ren N. Efficient electricity generation from sewage sludge using biocathode microbial fuel cell. Water Research, 2012, 46(1): 43–52

    Article  CAS  Google Scholar 

  16. Meng F, Jiang J, Zhao Q, Wang K, Zhang G, Fan Q, Wei L, Ding J, Zheng Z. Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel. Bioresource Technology, 2014, 157: 120–126

    Article  CAS  Google Scholar 

  17. Yu J, Park Y, Lee T. Effect of separator and inoculum type on electricity generation and microbial community in single-chamber microbial fuel cells. Bioprocess and Biosystems Engineering, 2014, 37(4): 667–675

    Article  CAS  Google Scholar 

  18. Mei X, Guo C, Liu B, Tang Y, Xing D. Shaping of bacterial community structure in microbial fuel cells by different inocula. RSC Advances, 2015, 5(95): 78136–78141

    Article  CAS  Google Scholar 

  19. Kondaveeti S, Choi K S, Kakarla R, Min B. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs). Frontiers of Environmental Science & Engineering, 2014, 8(5): 784–791

    Article  CAS  Google Scholar 

  20. Wang N, Chen Z, Li H, Su J, Zhao F, Zhu Y. Bacterial community composition at anodes of microbial fuel cells for paddy soils: the effects of soil properties. Journal of Soils and Sediments, 2015, 15(4): 926–936

    Article  CAS  Google Scholar 

  21. Sun Y, Wei J, Liang P, Huang X. Microbial community analysis in biocathode microbial fuel cells packed with different materials. AMB Express, 2012, 2(1): 21

    Article  CAS  Google Scholar 

  22. Zhang G, Wang K, Zhao Q, Jiao Y, Lee D J. Effect of cathode types on long-term performance and anode bacterial communities in microbial fuel cells. Bioresource Technology, 2012, 118: 249–256

    Article  CAS  Google Scholar 

  23. Jiang J, Zhao Q, Zhang J, Zhang G, Lee D J. Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresource Technology, 2009, 100(23): 5808–5812

    Article  CAS  Google Scholar 

  24. Karthikeyan R, Selvam A, Cheng K Y, Wong J W. Influence of ionic conductivity in bioelectricity production from saline domestic sewage sludge in microbial fuel cells. Bioresource Technology, 2016, 200: 845–852

    Article  CAS  Google Scholar 

  25. Behera M, Ghangrekar M M. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology, 2009, 100(21): 5114–5121

    Article  CAS  Google Scholar 

  26. Martin E, Savadogo O, Guiot S R, Tartakovsky B. The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge. Biochemical Engineering Journal, 2010, 51(3): 132–139

    Article  CAS  Google Scholar 

  27. Zhang Y, Olias L G, Kongjan P, Angelidaki I. Submersible microbial fuel cell for electricity production from sewage sludge. Water Science and Technology, 2011, 64(1): 50–55

    Article  CAS  Google Scholar 

  28. Oh S E, Yoon J Y, Gurung A, Kim D J. Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells. Bioresource Technology, 2014, 165: 21–26

    Article  CAS  Google Scholar 

  29. Wang Z, Ma J, Xu Y, Yu H, Wu Z. Power production from different types of sewage sludge using microbial fuel cells: a comparative study with energetic and microbiological perspectives. Journal of Power Sources, 2013, 235: 280–288

    Article  CAS  Google Scholar 

  30. Jiang J Q, Zhao Q L, Wang K, Wei L L, Zhang G D, Zhang J N. Effect of ultrasonic and alkaline pretreatment on sludge degradation and electricity generation by microbial fuel cell. Water Science and Technology, 2010, 61(11): 2915–2921

    Article  CAS  Google Scholar 

  31. Yusoff M Z M, Hu A, Feng C, Maeda T, Shirai Y, Hassan MA, Yu C P. Influence of pretreated activated sludge for electricity generation in microbial fuel cell application. Bioresource Technology, 2013, 145: 90–96

    Article  CAS  Google Scholar 

  32. Jayashree C, Janshi G, Yeom I T, Kumar S A, Banu J R. Effect of low temperature thermo-chemical pretreatment of dairy waste activated sludge on the performance of microbial fuel cell. International Journal of Electrochemical Science, 2014, 9: 5732–5742

    Google Scholar 

  33. Yang F, Ren L, Pu Y, Logan B E. Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells. Bioresource Technology, 2013, 128: 784–787

    Article  CAS  Google Scholar 

  34. Chen Y, Jiang J, Zhao Q. Freezing/thawing effect on sewage sludge degradation and electricity generation in microbial fuel cell. Water Science and Technology, 2014, 70(3): 444–449

    Article  CAS  Google Scholar 

  35. Xiao B, Yang F, Liu J. Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments. Journal of Hazardous Materials, 2011, 189(1-2): 444–449

    Article  CAS  Google Scholar 

  36. Fischer F, Bastian C, Happe M, Mabillard E, Schmidt N. Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresource Technology, 2011, 102(10): 5824–5830

    Article  CAS  Google Scholar 

  37. Happe M, Sugnaux M, Cachelin C P, Stauffer M, Zufferey G, Kahoun T, Salamin P A, Egli T, Comninellis C, Grogg A F, Fischer F. Scale-up of phosphate remobilization from sewage sludge in a microbial fuel cell. Bioresource Technology, 2016, 200: 435–443

    Article  CAS  Google Scholar 

  38. Ghadge A N, Jadhav D A, Pradhan H, Ghangrekar M M. Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell. Bioresource Technology, 2015, 182: 225–231

    Article  CAS  Google Scholar 

  39. Jiang J, Zhao Q, Wei L, Wang K, Lee D J. Degradation and characteristic changes of organic matter in sewage sludge using microbial fuel cell with ultrasound pretreatment. Bioresource Technology, 2011, 102(1 1SI): 272–277

    Article  CAS  Google Scholar 

  40. Jiang J, Zhao Q, Wei L, Wang K. Extracellular biological organic matters in microbial fuel cell using sewage sludge as fuel. Water Research, 2010, 44(7): 2163–2170

    Article  CAS  Google Scholar 

  41. Zhao G, Ma F, Wei L, Chua H, Chang C C, Zhang X J. Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations. Waste Management (New York, N.Y.), 2012, 32(9): 1651–1658

    Article  CAS  Google Scholar 

  42. Xue S, Zhao Q, Wei L, Jia T. Trihalomethane formation potential of organic fractions in secondary effluent. Journal of Environmental Sciences (China), 2008, 20(5): 520–527

    Article  CAS  Google Scholar 

  43. Li H, Tian Y, Zuo W, Zhang J, Pan X, Li L, Su X. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell. Bioresource Technology, 2016, 205: 104–110

    Article  CAS  Google Scholar 

  44. Di Palma L, Geri A, Maccioni M, Paoletti C, Petroni G, Di Battista A, Varrone C. Experimental Assessment of a Process Including Microbial Fuel Cell for Nitrogen Removal from Digestate of Anaerobic Treatment of Livestock Manure and Agricultural Wastes. Chemical Engineering Transactions: AIDIC, 2015, 43: 2239–2244

    Google Scholar 

  45. Zheng X, Nirmalakhandan N. Cattle wastes as substrates for bioelectricity production via microbial fuel cells. Biotechnology Letters, 2010, 32(12): 1809–1814

    Article  CAS  Google Scholar 

  46. Lee Y, Nirmalakhandan N. Electricity production in membraneless microbial fuel cell fed with livestock organic solid waste. Bioresource Technology, 2011, 102(10): 5831–5835

    Article  CAS  Google Scholar 

  47. Mohan S V, Chandrasekhar K. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity. Bioresource Technology, 2011, 102(14): 7077–7085

    Article  CAS  Google Scholar 

  48. Cercado-Quezada B, Delia M, Bergel A. Treatment of dairy wastes with a microbial anode formed from garden compost. Journal of Applied Electrochemistry, 2010, 40(2): 225–232

    Article  CAS  Google Scholar 

  49. Blanchet E, Desmond E, Erable B, Bridier A, Bouchez T, Bergel A. Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: Application to food waste treatment. Bioresource Technology, 2015, 185: 106–115

    Article  CAS  Google Scholar 

  50. Zhang G, Zhao Q, Jiao Y, Lee D J. Long-term operation of manure-microbial fuel cell. Bioresource Technology, 2015, 180: 365–369

    Article  CAS  Google Scholar 

  51. Bridier A, Desmond-Le Quemener E, Bureau C, Champigneux P, Renvoise L, Audic J M, Blanchet E, Bergel A, Bouchez T. Successive bioanode regenerations to maintain efficient current production from biowaste. Bioelectrochemistry (Amsterdam, Netherlands), 2015, 106(Pt A): 133–140

    Article  CAS  Google Scholar 

  52. Lakaniemi A, Tuovinen O H, Puhakka J A. Production of electricity and butanol from microalgal biomass in microbial fuel cells. BioEnergy Research, 2012, 5(2): 481–491

    Article  CAS  Google Scholar 

  53. Wang H, Lu L, Liu D, Cui F, Wang P. Characteristic changes in algal organic matter derived from Microcystis aeruginosa in microbial fuel cells. Bioresource Technology, 2015, 195: 25–30

    Article  CAS  Google Scholar 

  54. Wang H, Lu L, Cui F, Liu D, Zhao Z, Xu Y. Simultaneous bioelectrochemical degradation of algae sludge and energy recovery in microbial fuel cells. RSC Advances, 2012, 2(18): 7228–7234

    Article  CAS  Google Scholar 

  55. Zhao J, Li X, Ren Y, Wang X, Jian C. Electricity generation from Taihu Lake cyanobacteria by sediment microbial fuel cells. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2012, 87(11): 1567–1573

    Article  CAS  Google Scholar 

  56. Reimers C E, Girguis P, Stecher H A I, Tender LM, Ryckelynck N, Whaling P. Microbial fuel cell energy from an ocean cold seep. Geobiology, 2006, 4(2): 123–136

    Article  CAS  Google Scholar 

  57. Zhang Y, Angelidaki I. Self-stacked submersible microbial fuel cell (SSMFC) for improved remote power generation from lake sediments. Biosensors & Bioelectronics, 2012, 35(1): 265–270

    Article  CAS  Google Scholar 

  58. Zhao S, Li Y, Yin H, Liu Z, Luan E, Zhao F, Tang Z, Liu S. Threedimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Science Advances, 2015, 1(10): e1500372

    Article  CAS  Google Scholar 

  59. Hong S W, Kim H S, Chung T H. Alteration of sediment organic matter in sediment microbial fuel cells. Environmental Pollution, 2010, 158(1): 185–191

    Article  CAS  Google Scholar 

  60. Morris J M, Jin S. Enhanced biodegradation of hydrocarboncontaminated sediments using microbial fuel cells. Journal of Hazardous Materials, 2012, 213-214: 474–477

    Article  CAS  Google Scholar 

  61. Song T S, Jiang H L. Effects of sediment pretreatment on the performance of sediment microbial fuel cells. Bioresource Technology, 2011, 102(22): 10465–10470

    Article  CAS  Google Scholar 

  62. Rezaei F, Richard T L, Brennan R A, Logan B E. Substrateenhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environmental Science & Technology, 2007, 41(11): 4053–4058

    Article  CAS  Google Scholar 

  63. Sajana T K, Ghangrekar M M, Mitra A. Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell. Bioresource Technology, 2014, 155: 84–90

    Article  CAS  Google Scholar 

  64. Xia C, Xu M, Liu J, Guo J, Yang Y. Sediment microbial fuel cell prefers to degrade organic chemicals with higher polarity. Bioresource Technology, 2015, 190: 420–423

    Article  CAS  Google Scholar 

  65. Xu X, Zhao Q L, Wu M S. Improved biodegradation of total organic carbon and polychlorinated biphenyls for electricity generation by sediment microbial fuel cell and surfactant addition. RSC Advances, 2015, 5(77): 62534–62538

    Article  CAS  Google Scholar 

  66. Jeon H J, Seo K W, Lee S H, Yang Y H, Kumaran R S, Kim S, Hong S W, Choi Y S, Kim H J. Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells. Bioresource Technology, 2012, 109: 308–311

    Article  CAS  Google Scholar 

  67. Zhou Y L, Jiang H L, Cai H Y. To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell. Journal of Hazardous Materials, 2015, 287: 7–15

    Article  CAS  Google Scholar 

  68. Wolinska A, Stepniewska Z, Bielecka A, Ciepielski J. Bioelectricity production from soil using microbial fuel cells. Applied Biochemistry and Biotechnology, 2014, 173(8): 2287–2296

    Article  CAS  Google Scholar 

  69. Deng H, Wu Y, Zhang F, Huang Z, Chen Z, Xu H, Zhao F. Factors affecting the performance of single-chamber soil microbial fuel cells for power generation. Pedosphere, 2014, 24(3): 330–338

    Article  CAS  Google Scholar 

  70. Domínguez-Garay A, Berná A, Ortiz-Bernad I, Esteve-Núñez A. Silica colloid formation enhances performance of sediment microbial fuel cells in a low conductivity soil. Environmental Science & Technology, 2013, 47(4): 2117–2122

    Article  CAS  Google Scholar 

  71. Logrono W, Ramirez G, Recalde C, Echeverria M, Cunachib A. Bioelectricity generation from vegetables and fruits wastes by using single chamber microbial fuel cells with high Andean soils. Clean. Energy Procedia: Elsevier, 2015, 75: 2009–2014

    Article  CAS  Google Scholar 

  72. Doherty L, Zhao Y, Zhao X, Hu Y, Hao X, Xu L, Liu R. A review of a recently emerged technology: Constructed wetland—Microbial fuel cells. Water Research, 2015, 85: 38–45

    Article  CAS  Google Scholar 

  73. Zhao Y, Collum S, Phelan M, Goodbody T, Doherty L, Hu Y. Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chemical Engineering Journal, 2013, 229: 364–370

    Article  CAS  Google Scholar 

  74. Doherty L, Zhao Y, Zhao X, Wang W. Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland Incorporating microbial fuel cell technology. Chemical Engineering Journal, 2015, 266: 74–81

    Article  CAS  Google Scholar 

  75. Doherty L, Zhao Y. Operating a two-stage microbial fuel cellconstructed wetland for fuller wastewater treatment and more efficient electricity generation. Water Science and Technology, 2015, 72(3): 421–428

    Article  CAS  Google Scholar 

  76. Corbella C, Guivernau M, Viñas M, Puigagut J. Operational, design and microbial aspects related to power production with microbial fuel cells implemented in constructed wetlands. Water Research, 2015, 84: 232–242

    Article  CAS  Google Scholar 

  77. Kouzuma A, Kaku N, Watanabe K. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells. Applied Microbiology and Biotechnology, 2014, 98(23): 9521–9526

    Article  CAS  Google Scholar 

  78. Timmers R A, Strik D P B T, Hamelers H V M, Buisman C J N. Electricity generation by a novel design tubular plant microbial fuel cell. Biomass and Bioenergy, 2013, 51: 60–67

    Article  CAS  Google Scholar 

  79. Timmers R A, Strik D P B T, Hamelers H V M, Buisman C J N. Long-term performance of a plant microbial fuel cell with Spartina anglica. Applied Microbiology and Biotechnology, 2010, 86(3): 973–981

    Article  CAS  Google Scholar 

  80. Helder M, Strik D P B T, Hamelers H V M, Kuijken R C P, Buisman C J N. New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresource Technology, 2012, 104: 417–423

    Article  CAS  Google Scholar 

  81. Moqsud M A, Yoshitake J, Bushra Q S, Hyodo M, Omine K, Strik D. Compost in plant microbial fuel cell for bioelectricity generation. Waste Management (New York, N.Y.), 2015, 36: 63–69

    Article  CAS  Google Scholar 

  82. De Schamphelaire L, Van den Bossche L, Dang H S, Höfte M, Boon N, Rabaey K, Verstraete W. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environmental Science & Technology, 2008, 42(8): 3053–3058

    Article  CAS  Google Scholar 

  83. Zhou Y, Wu H, Yan Z, Cai H, Jiang H. The enhanced survival of submerged macrophyte Potamogeton malaianus by sediment microbial fuel cells. Ecological Engineering, 2016, 87: 254–262

    Article  Google Scholar 

  84. van Loosdrecht M C M, Brdjanovic D. Anticipating the next century of wastewater treatment. Science, 2014, 344(6191): 1452–1453

    Article  Google Scholar 

  85. Liu XW, Wang Y P, Huang Y X, Sun X F, Sheng G P, Zeng R J, Li F, Dong F, Wang S G, Tong Z H, Yu H Q. Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: taking a sequencing batch reactor as an example. Biotechnology and Bioengineering, 2011, 108(6): 1260–1267

    Article  CAS  Google Scholar 

  86. Gajaraj S, Hu Z. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production. Chemosphere, 2014, 117: 151–157

    Article  CAS  Google Scholar 

  87. Yoshizawa T, Miyahara M, Kouzuma A, Watanabe K. Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation. Journal of Bioscience and Bioengineering, 2014, 118(5): 533–539

    Article  CAS  Google Scholar 

  88. Xie B, Dong W, Liu B, Liu H. Enhancement of pollutants removal from real sewage by embedding microbial fuel cell in anaerobicanoxic-oxic wastewater treatment process. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2014, 89(3): 448–454

    Article  CAS  Google Scholar 

  89. Gong D, Qin G. Treatment of oilfield wastewater using a microbial fuel cell integrated with an up-flow anaerobic sludge blanket reactor. Desalination and Water Treatment, 2012, 49(1–3): 272–280

    Article  CAS  Google Scholar 

  90. Yang P, Chen T, Li H. Aerobic granular sludge stabilization in biocathode chamber of newly constructed continue flow microbial fuel cell system treating synthetic and pharmaceutical wastewater. Desalination and Water Treatment, 2016, 57(8): 3414–3423

    Article  CAS  Google Scholar 

  91. Li Z, Lu H, Ren L, He L. Experimental and modeling approaches for food waste composting: a review. Chemosphere, 2013, 93(7): 1247–1257

    Article  CAS  Google Scholar 

  92. Hao R, Lu A, Wang G. Crude-oil-degrading thermophilic bacterium isolated from an oil field. Canadian Journal of Microbiology, 2004, 50(3): 175–182

    Article  CAS  Google Scholar 

  93. Lee I B, Kim P J, Chang K W. Evaluation of stability of compost prepared with Korean food wastes. Soil Science and Plant Nutrition, 2002, 48(1): 1–8

    Article  CAS  Google Scholar 

  94. Yu H, Jiang J, Zhao Q, Wang K, Zhang Y, Zheng Z, Hao X. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation. Bioresource Technology, 2015, 193: 1–7

    Article  CAS  Google Scholar 

  95. Wang C, Lee Y, Liao F. Effect of composting parameters on the power performance of solid microbial fuel cells. Sustainability, 2015, 7(9): 12634–12643

    Article  Google Scholar 

  96. Parot S, Delia M, Bergel A. Acetate to enhance electrochemical activity of biofilms from garden compost. Electrochimica Acta, 2008, 53(6): 2737–2742

    Article  CAS  Google Scholar 

  97. Wang C, Liao F, Liu K. Electrical analysis of compost solid phase microbial fuel cell. International Journal of Hydrogen Energy, 2013, 38(25): 11124–11130

    Article  CAS  Google Scholar 

  98. Li W W, Yu H Q. Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnology Advances, 2015, 33(1): 1–12

    Article  CAS  Google Scholar 

  99. Wang X, Cai Z, Zhou Q, Zhang Z, Chen C. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Biotechnology and Bioengineering, 2012, 109(2): 426–433

    Article  CAS  Google Scholar 

  100. Mohan S V, Chandrasekhar K. Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresource Technology, 2011, 102(20): 9532–9541

    Article  CAS  Google Scholar 

  101. Sherafatmand M, Ng H Y. Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresource Technology, 2015, 195: 122–130

    Article  CAS  Google Scholar 

  102. Huang D, Zhou S, Chen Q, Zhao B, Yuan Y, Zhuang L. Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chemical Engineering Journal, 2011, 172(2–3): 647–653

    Article  CAS  Google Scholar 

  103. Cao X, Song H L, Yu C Y, Li X N. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell. Bioresource Technology, 2015, 189: 87–93

    Article  CAS  Google Scholar 

  104. Wang C, Deng H, Zhao F. The remediation of Chromium (VI)— Contaminated soils using microbial fuel cells. Soil & Sediment Contamination, 2016, 25(1): 1–12

    Article  CAS  Google Scholar 

  105. Ryu E Y, Kim M, Lee S J. Characterization of microbial fuel cells enriched using Cr(VI)-containing sludge. Journal of Microbiology and Biotechnology, 2011, 21(2): 187–191

    Article  CAS  Google Scholar 

  106. Li X, Wang X, Ren Z J, Zhang Y, Li N, Zhou Q. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil. Chemosphere, 2015, 141: 62–70

    Article  CAS  Google Scholar 

  107. Zhang Y, Wang X, Li X, Cheng L, Wan L, Zhou Q. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil. Environmental Science and Pollution Research International, 2015, 22(3): 2335–2341

    Article  CAS  Google Scholar 

  108. Habibul N, Hu Y, Wang Y K, Chen W, Yu H Q, Sheng G P. Bioelectrochemical Chromium(VI) removal in plant-microbial fuel cells. Environmental Science & Technology, 2016, 50(7): 3882–3889

    Article  CAS  Google Scholar 

  109. Yang H, Zhou M, Liu M, Yang W, Gu T. Microbial fuel cells for biosensor applications. Biotechnology Letters, 2015, 37(12): 2357–2364

    Article  CAS  Google Scholar 

  110. Sun J Z, Peter Kingori G, Si R W, Zhai D D, Liao Z H, Sun D Z, Zheng T, Yong Y C. Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Science and Technology, 2015, 71(6): 801–809

    Article  CAS  Google Scholar 

  111. Khater D Z, El-Khatib K M, Hazaa M M, Hassan R Y A. Development of bioelectrochemical system for monitoring the biodegradation performance of activated sludge. Applied Biochemistry and Biotechnology, 2015, 175(7): 3519–3530

    Article  CAS  Google Scholar 

  112. Liu Z, Liu J, Li B, Zhang Y, Xing X. Focusing on the process diagnosis of anaerobic fermentation by a novel sensor system combining microbial fuel cell, gas flow meter and pH meter. International Journal of Hydrogen Energy, 2014, 39(25): 13658–13664

    Article  CAS  Google Scholar 

  113. Ma J, Wang Z, Zhu C, Xu Y, Wu Z. Electrogenesis reduces the combustion efficiency of sewage sludge. Applied Energy, 2014, 114(SI): 283–289

    Article  CAS  Google Scholar 

  114. Touch N, Hibino T, Nagatsu Y, Tachiuchi K. Characteristics of electricity generation and biodegradation in tidal river sludge-used microbial fuel cells. Bioresource Technology, 2014, 158: 225–230

    Article  CAS  Google Scholar 

  115. Jiang J Q, Zhao Q L, Wang K, Wei L L, Zhang G D, Zhang J N. Effect of ultrasonic and alkaline pretreatment on sludge degradation and electricity generation by microbial fuel cell. Water Science and Technology, 2010, 61(11): 2915–2921

    Article  CAS  Google Scholar 

  116. Sui P, Nishimura F, Nagare H, Hidaka T, Nakagawa Y, Tsuno H. Behavior of inorganic elements during sludge ozonation and their effects on sludge solubilization. Water Research, 2011, 45(5): 2029–2037

    Article  CAS  Google Scholar 

  117. Gardoni D, Ficara E, Fornarelli R, Parolini M, Canziani R. Longterm effects of the ozonation of the sludge recycling stream on excess sludge reduction and biomass activity at full-scale. Water Science and Technology, 2011, 63(9): 2032–2038

    Article  CAS  Google Scholar 

  118. Chen W, Jia Y Y, Zheng W, Li X M, Zhou J, Yang Q, Luo K. Influence of extracellular polymeric substance on enzyme hydrolysis of sludge under anaerobic condition. Environmental Sciences, 2011, 32(8): 2334–2339 (in Chinese)

    CAS  Google Scholar 

  119. Sa Da Rocha O R, Dantas R F, Menezes B, Duarte M M. Sludge treatment by photocatalysis applying black and white light. Chemical Engineering Journal, 2010, 157(1): 80–85

    Article  CAS  Google Scholar 

  120. Wang L, Ma J, Liu T Z, Li C M, Zhang H Y. Efficacy of ferrate oxidation and hydrolyze remnant activated sludge. Environmental Sciences, 2011, 32(7): 2019–2022 (in Chinese)

    CAS  Google Scholar 

  121. Yu Y, ChanWI, Liao P H, Lo K V. Disinfection and solubilization of sewage sludge using the microwave enhanced advanced oxidation process. Journal of Hazardous Materials, 2010, 181(1-3): 1143–1147

    Article  CAS  Google Scholar 

  122. Zhang Y, Angelidaki I. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors. Water Research, 2012, 46(8): 2727–2736

    Article  CAS  Google Scholar 

  123. Zhang Y, Angelidaki I. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Research, 2014, 56: 11–25

    Article  CAS  Google Scholar 

  124. Xiao B, Han Y, Liu X, Liu J. Relationship of methane and electricity production in two-chamber microbial fuel cell using sewage sludge as substrate. International Journal of Hydrogen Energy, 2014, 39(29): 16419–16425

    Article  CAS  Google Scholar 

  125. Gao C, Wang A, Wu WM, Yin Y, Zhao Y G. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells. Bioresource Technology, 2014, 167: 124–132

    Article  CAS  Google Scholar 

  126. Yoshizawa T, Miyahara M, Kouzuma A, Watanabe K. Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation. Journal of Bioscience and Bioengineering, 2014, 118(5): 533–539

    Article  CAS  Google Scholar 

  127. Li X M, Cheng K Y, Selvam A, Wong J W C. Bioelectricity production from acidic food waste leachate using microbial fuel cells: Effect of microbial inocula. Process Biochemistry, 2013, 48(2): 283–288

    Article  CAS  Google Scholar 

  128. Jia J, Tang Y, Liu B, Wu D, Ren N, Xing D. Electricity generation from food wastes and microbial community structure in microbial fuel cells. Bioresource Technology, 2013, 144: 94–99

    Article  CAS  Google Scholar 

  129. Zhang G, Zhao Q, Jiao Y, Wang K, Lee D J, Ren N. Biocathode microbial fuel cell for efficient electricity recovery from dairy manure. Biosensors & Bioelectronics, 2012, 31(1): 537–543

    Article  CAS  Google Scholar 

  130. Vilajeliu-Pons A, Puig S, Pous N, Salcedo-Dávila I, Bañeras L, Balaguer M D, Colprim J. Microbiome characterization of MFCs used for the treatment of swine manure. Journal of Hazardous Materials, 2015, 288: 60–68

    Article  CAS  Google Scholar 

  131. Miran W, Nawaz M, Jang J, Lee D S. Conversion of orange peel waste biomass to bioelectricity using a mediator-less microbial fuel cell. Science of the Total Environment, 2016, 547: 197–205

    Article  CAS  Google Scholar 

  132. Lakaniemi A M, Tuovinen O H, Puhakka J A. Anaerobic conversion of microalgal biomass to sustainable energy carriers: a review. Bioresource Technology, 2013, 135: 222–231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gracefully acknowledge funding supported by the National Nature Science Foundation of China (Grant No. 51378144), and the support by State Key Laboratory of Urban Water Resource and Environment (2016DX05), Harbin Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingliang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Yu, H., Zhang, W. et al. Microbial fuel cell with high content solid wastes as substrates: a review. Front. Environ. Sci. Eng. 11, 13 (2017). https://doi.org/10.1007/s11783-017-0918-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0918-6

Keywords

Navigation