Skip to main content

Effects of Aging on Skeletal Fragility

  • Chapter
  • First Online:
Osteoporotic Fracture and Systemic Skeletal Disorders

Abstract

Although bone loss is a natural accompaniment to aging in both men and women, most older people who fracture are not osteoporotic. Part of this is because of the nonlinear relationship between mass and strength; strength and stiffness decline faster than bone mass at any given age. However, the weakness of bone that develops with age also suggests there are many more facets to skeletal fragility than simply bone mass alone. The distribution of bone (its cortical geometry and cancellous architecture) can either partially offset the effects of bone loss (as in the case of periosteal apposition) or exacerbate it (as in the case of lower trabecular connectivity). Additionally, bone tissue changes with age in ways that make it less elastic and more brittle, and this in combination with increased porosity contributes to bone fragility, especially in cases of impact such as those that occur in a fall. Consequently, bone is at greater risk of fracture as one ages, even to some degree independent of bone mass. Unfortunately, techniques to measure these changes outside of bone mineral density are not well developed and cannot readily be used clinically. Given that, a health care worker should take care to consider both bone mineral density and the age of the patient in developing a treatment plan.

The present invited review was completed and submitted to the publisher on 09-May-19. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCalden RW, McGeough JA, Barker MB, Court-Brown CM. Age-related changes in the tensile properties of cortical bone. The relative changes in porosity, mineralization, and microstructure. J Bone Jt Surg Am. 1993;75:1193–205.

    Article  CAS  Google Scholar 

  2. Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone. 1998;22:57–66.

    Article  CAS  PubMed  Google Scholar 

  3. Rubin CD. Southwestern internal medicine conference: age-related osteoporosis. Am J Med Sci. 1991;301:281–98.

    Article  CAS  PubMed  Google Scholar 

  4. Mayhew P, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J. Relations between age, femoral neck cortical stability, and hip fracture risk. Lancet. 2005;366:129–35.

    Article  PubMed  Google Scholar 

  5. Poole KES, Skingle L, Gee AH, Turmezei TD, Johannesdottir F, Blesic K, Rose C, Vindlacheruvu M, Conell S, Vaculik J, Dungl P, Horak M, Stepan JJ, Reeve J, Treece GM. Focal osteoporosis defects play a key role in hip fracture. Bone. 2017;94:124–34.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Power J, Loveridge N, Kröger H, Parker M, Reeve J. Femoral neck cortical bone in female and male hip fracture cases: differential contrasts in cortical width and sub-periosteal porosity in 112 cases and controls. Bone. 2018;114:81–9.

    Article  PubMed  Google Scholar 

  7. Mosekilde L, Mosekilde L, Danielson CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone. 1987;8:79–85.

    Article  CAS  PubMed  Google Scholar 

  8. Greenspan SL, Maitland LA, Myers ER, Krasnow MB, Kido TH. Femoral bone loss progresses with age: a longitudinal study in women over 65. J Bone Miner Res. 1994;9:1959–65.

    Article  CAS  PubMed  Google Scholar 

  9. McCalden RW, McGeough JA, Court-Brown CM. Age-related changes in the compressive strength of cancellous bone. J Bone Jt Surg. 1997;79A:421–7.

    Article  Google Scholar 

  10. Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19:1945–54.

    Article  PubMed  Google Scholar 

  11. Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S. A population based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res. 2008;23:205–14.

    Article  PubMed  Google Scholar 

  12. Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO. Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone. 2004;35:1240–6.

    Article  CAS  PubMed  Google Scholar 

  13. Koester KJ, Barth HD, Ritchie RO. Effect of aging on the transverse toughness of human cortical bone: Evaluation by R-curves J. Mech Behav Biomed Mat. 2011;4:1504–13.

    Article  CAS  Google Scholar 

  14. Zimmerman EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, Busse B, Alliston T, Ager JW III, Ritchie RO. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci U S A. 2011;108:14416–21.

    Article  Google Scholar 

  15. Hernandez CJ, van der Meulen MCH. Understanding bone strength is not enough. J Bone Miner Res. 2017;32:1157–62.

    Article  PubMed  Google Scholar 

  16. Hui S, Slemenda CW, Johnston CC Jr. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest. 1988;81:1804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burr DB. Changes in bone matrix properties aging. Bone. 2019;120:85–93.

    Article  CAS  PubMed  Google Scholar 

  18. Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. 2001;12:989–95.

    Article  CAS  PubMed  Google Scholar 

  19. DeLaet CEDH, van Hout BA, Burger H, Hofman A, Pols HAP. Bone density and risk of hip fracture in men and women: cross-sectional analysis. BMJ. 1997;315:221–5.

    Article  CAS  Google Scholar 

  20. Patton DM, Bigelow EMR, Schlecht SH, Kohn DH, Bredbenner TL, Jepsen KJ. The relationship between whole bone stiffness and strength is age and sex dependent. J Biomech. 2019:125–33.

    Google Scholar 

  21. Burr DB, Allen MA. Forward: calcified tissue international and musculoskeletal research special issue. Calcif Tiss Int. 2015;97:199–200.

    Article  CAS  Google Scholar 

  22. Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporosis and stress fractures. J Bone Miner Res. 1997;12:6–15.

    Article  CAS  PubMed  Google Scholar 

  23. Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone. 1995;17:521–5.

    Article  CAS  PubMed  Google Scholar 

  24. Follet H, Viguet-Carrin S, Burt-Pichat B, Dépalle B, Bala Y, Gineyts E, Munoz F, Arlot M, Boivin G, Chapurlat RD, Delmas PD, Bouxsein ML. Effects of preexisting microdamage, collagen coross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone. J Orthop Res. 2011;29:481–8.

    Article  PubMed  Google Scholar 

  25. Meier C, Nguyen TV, Center JR, Seibel MJ, Eisman JA. Bone resorption and osteoporotic fractures in elderly men: the Dubbo osteoporosis epidemiology study. J Bone Miner Res. 2005;20:579–87.

    Article  PubMed  Google Scholar 

  26. Martin RB, Burr DB. Structure, function and adaptation of compact bone. New York: Raven Press; 1989.

    Google Scholar 

  27. Hannan MT, Felson DT, Anderson JJ. Bone mineral density in elderly man and women: results from the Framingham osteoporosis study. J Bone Miner Res. 1992;7:546–63.

    Google Scholar 

  28. Steiger P, Cummings SR, Black DM, Spencer NE, Genant HL. Age-related decrements in bone mineral density in women over 65. J Bone Miner Res. 1992;7:625–32.

    Article  CAS  PubMed  Google Scholar 

  29. Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Jt Surg. 1977;59A:954–62.

    Article  Google Scholar 

  30. Schaffler MB, Burr DB. Stiffness of compact bone: effects of porosity and density. J Biomech. 1988;21:13–6.

    Article  CAS  PubMed  Google Scholar 

  31. Silva MJ, Jepsen KJ. Age-related changes in whole-bone structure and strength, Chapter 1. In: Silva MJ, editor. Skeletal aging and osteoporosis. Berlin: Springer; 2013. p. 1–30.

    Chapter  Google Scholar 

  32. Smith RW Jr, Walker RR. Femoral expansion in aging women: implications for osteoporosis and fractures. Science. 1964;145:156–7.

    Article  PubMed  Google Scholar 

  33. Martin RB, Atkinson PJ. Age and sex-related changes in the structure and strength of the human femoral shaft. J Biomech. 1977;10:223–31.

    Article  CAS  PubMed  Google Scholar 

  34. Mosekilde L, Mosekilde L. Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength. Bone. 1986;7:207–12.

    Article  CAS  PubMed  Google Scholar 

  35. Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouzsein ML, Khosla S. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19:1945–54.

    Article  PubMed  Google Scholar 

  36. Mosekilde L. Normal age-related changes in bone mass, structure, and strength – consequences of the remodeling process. Danish Med Bull. 1993:65–83.

    Google Scholar 

  37. Ruhli FJ, Muntener M, Henneberg M. Age-dependent changes of the normal human spine during adulthood. Am J Hum Biol. 2005;17:460–9.

    Article  CAS  PubMed  Google Scholar 

  38. Jepsen KJ, Centi A, Duarte GF, Galloway K, Goldman H, Hampson N, Lappe JM, Cullen DM, Greeves J, Izard R, Nindl BC, Kraemer WJ, Negus CH, Evans RK. Biological constraints that limit compensation of a common skeletal trait variant lead to inequivalence of tibial function among healthy young adults. J Bone Miner Res. 2011;26:2872–85.

    Article  PubMed  Google Scholar 

  39. Turner CH. Age, bone mate4rial properties and bone strength. Calcif Tiss Int. 1993;53(Suppl 1):S32–3.

    Article  Google Scholar 

  40. Goldstein SA, Goulet R, McCubbrey D. Measurements and significance of three-dimensional architecture of the mechanical integrity of trabecular bone. Calcif Tiss Int. 1993;53(Suppl 1):S127–33.

    Article  Google Scholar 

  41. Burr DB, Turner CH. Biomechanical measurements in age-related bone loss. In: Rosen CJ, Glowacki J, Bilezikian JP, editors. The aging skeleton. San Diego: Academic; 1999. p. 301–11.

    Chapter  Google Scholar 

  42. Currey JD. Physical characteristics affecting the tensile failure properties of compact bone. J Biomech. 1990;22:837–44.

    Article  Google Scholar 

  43. Currey JD, Brear K, Zioupos P. The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech. 1996;29:257–60.

    Article  CAS  PubMed  Google Scholar 

  44. Tang SY, Zeenath U, Vashishth D. Effects of non-enzymatic glycation on cancellous bone fragility. Bone. 2007;40:1144–51.

    Article  CAS  PubMed  Google Scholar 

  45. Jordan GR, LKoveridge N, Bell KL, Power J, Rusion N, Reeve J. Spatial clustering of remodeling osteons in the femoral neck cortex: a cause of weakness in hip fracture? Bone. 2000;26:305–13.

    Article  CAS  PubMed  Google Scholar 

  46. Ural A, Vashishth D. Effects of intracortical porosity on fracture toughness in aging human bone: a μCT-based cohesive finite element study. J Biomech Eng. 2007;129:625–31.

    Article  PubMed  Google Scholar 

  47. Wainwright SA, Biggs WD, Currey JD, Gosline JM. Mechanical design in organisms. Princeton: Princeton University Press; 1976.

    Google Scholar 

  48. Yeni YN, Brown CU, Norman TL. Influence of bone composition and apparent density on fracture toughness of human femur and tibia. Bone. 1998;22:79–84.

    Article  CAS  PubMed  Google Scholar 

  49. Boivin G, Meunier PJ. The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tiss Int. 2002;70:503–11.

    Article  CAS  Google Scholar 

  50. Milovanovic P, Rakocevic Z, Djonic D, Zivkovic V, Hahn M, Nikolic S, Amling M, Busse B, Djuric M. Nano-structural, compositional and microarchitectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs. healthy aged controls. Exp Gerontol. 2014;55:19–28.

    Article  PubMed  Google Scholar 

  51. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tiss Int. 1997;61:487–92.

    Article  CAS  Google Scholar 

  52. Akkus O, Adar F, Schaffler MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004;34:443–53.

    Article  CAS  PubMed  Google Scholar 

  53. Demul FFM, Otto C, Greve J, Arends J, Tenbosch JJ. Calculation of the Raman line broadening on carbonation in synthetic hydroxyapatite. J Raman Spectrosc. 1988;19:13–21.

    Article  CAS  Google Scholar 

  54. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of human osteonal bone. Calcif Tiss Int. 1996;59:480–7.

    Article  CAS  Google Scholar 

  55. Yerramshetty J, Akkus O. Changes in cortical bone mineral and microstructure with aging and osteoporosis. In: Silva MJ, editor. Skeletal aging and osteoporosis. Heidelberg: Springer; 2012. p. 105–31.

    Chapter  Google Scholar 

  56. Fratzl-Zelman N, Roschger P, Gourrier A, Weber M, Misof BM, Loveridge N, Reeve J, Klaushofer K, Fratzl P. Combination of nanoindentation and quantitative backscattered electron imaging revealed altered bone material properties associated with femoral neck fragility. Calcif Tiss Int. 2009;85:335–43.

    Article  CAS  Google Scholar 

  57. Willett TL, Depaah DY, Uppuganti S, Granke M, Nyman JS. Bone collagen network integrity and transverse fracture toughness of human cortical bone. Bone. 2019;120:187–93.

    Article  CAS  PubMed  Google Scholar 

  58. Zioupos P, Currey JD, Hamer AJ. The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res. 1999;45:108–16.

    Article  CAS  PubMed  Google Scholar 

  59. Wang X, Shen X, Li S, Agrawal CM. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7.

    Article  PubMed  Google Scholar 

  60. Oxlund H, Mosekilde L, Ortoft G. Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone. 1996;19:479–84.

    Article  CAS  PubMed  Google Scholar 

  61. Follet H, Farlay D, Bala Y, Viguet-Carrin S, Gineyts E, Burt-Pichat B, Wegrzyn J, Delmas P, Boivin G, Chapurlat R. Determinants of microdamage in elderly human vertebral trabecular bone. PLoS One. 2013;8:e55232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Depalle B, Duarte AG, Fiedler IAK, Pujo-Manjouet L, Buehler MJ, Berteau J-P. The different distribution of enzymatic collagen cross-links found in adult and children bone result in different mechanical behavior of collagen. Bone. 2018;110:107–14.

    Article  CAS  PubMed  Google Scholar 

  63. Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliano M, Federici M, Federici A. Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci. 2005;1043:710–7.

    Article  CAS  PubMed  Google Scholar 

  64. Hernandez CJ, Tang SY, Baumbach BM, Hwu PB, Sakkee AN, van der Ham F, De Groot J, Bank RA, Keaveny TM. Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone. 2005;37:825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Karim L, Vashishth D. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility. PLoS One. 2012;7:e35047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nikel O, Laurencin D, Bonhomme C, Sroga GE, Besdo S, Lorenz A, Vashishth D. Solid state NMR investigation of intact human bone quality: balancing issues and insight into the structure at the organic mineral interface. J Phys Chem C Nanomater Interfaces. 2012;116:6320–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Almeida M, Han L, Martin-Miller M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282:27285–97.

    Article  CAS  PubMed  Google Scholar 

  68. Buehler MJ. Molecular nanomechanics of nascent bone: fibrillary toughening by mineralization. Nanotechnology. 2007;18:295102.

    Article  Google Scholar 

  69. Fritsch A, Hellmich C, Dormieux L. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol. 2009;260:230–52.

    Article  CAS  PubMed  Google Scholar 

  70. Wang F-C, Zhou Y-P. Slip boundary conditions based on molecular kinetic theory: the critical shear stress and the energy dissipation at the liquid-solid interface. Soft Matter. 2011;7:8628–34.

    Article  CAS  Google Scholar 

  71. Stock SR. The mineral-collagen interface in bone. Calcif Tiss Int. 2015;97:262–80.

    Article  CAS  Google Scholar 

  72. Samuel J, Park J-S, Almer J, Wang X. Effect of water on nanomechanics of bone is different between tension and compression. J Mech Behav Biomed Mater. 2016;57:128–38.

    Article  PubMed  Google Scholar 

  73. Bae WC, Chen PC, Chung CB, Masuda K, D’Lima D, Du J. Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res. 2012;27:848–57.

    Article  PubMed  Google Scholar 

  74. Manhard MK, Uppuganti S, Granke M, Gochberg DF, Nyman JS, Does MD. MRI-derived bound and pore water concentrations as predictors of fracture resistance. Bone. 2016;87:1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zioupos P. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone. J Microsc. 2001;201:270–8.

    Article  CAS  PubMed  Google Scholar 

  76. Nyman JS, Ni Q, Nicolella DP, Wang X. Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone. 2008;42:193–9.

    Article  CAS  PubMed  Google Scholar 

  77. Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS. Identifying novel clinical surrogates to assess human bone fracture toughness. J Bone Miner Res. 2015;30:1290–300.

    Article  CAS  PubMed  Google Scholar 

  78. Wang Z, Vashishth D, Picu RC. Bone toughening through stress-induced non-collagenous denaturation. Biomech Model Mechanobiol. 2018; https://doi.org/10.1007/s10237-018-1016-9.

  79. Sroga GE, Vashishth D. Phosphorylation of extracellular bone matrix proteins and its contribution to bone fragility. J Bone Miner Res. 2018;33:2214–29.

    Article  CAS  PubMed  Google Scholar 

  80. Ural A, Janeiro C, Karim L, Diab T, Vashishth D. Association between non-enzymatic glycation, resorption, and microdamage in human tibial cortices. Osteoporos Int. 2015;26:865–73.

    Article  CAS  PubMed  Google Scholar 

  81. Mori S, Harruff R, Ambrosius W, Burr DB. Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone. 1997;21:521–6.

    Article  CAS  PubMed  Google Scholar 

  82. Fazzalari NL, Forwood MR, Smith K, Manthey BA, Herreen P. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. Bone. 1998;22:381–8.

    Article  CAS  PubMed  Google Scholar 

  83. Norman TL, Wang Z. Microdamage of human cortical bone: incidence and morphology in long bones. Bone. 1997;20:375–9.

    Article  CAS  PubMed  Google Scholar 

  84. Wenzel TE, Schaffler MB, Fyhrie DP. In vivo trabecular microcracks in human vertebral bone. Bone. 1996;19:89–95.

    Article  CAS  PubMed  Google Scholar 

  85. Arlot ME, Burt-Pichat B, Roux JP, Vashishth D, Bouxsein ML, Delmas PD. Microarchitecture influences microdamage accumulation in human vertebral trabecular bone. J Bone Miner Res. 2008;23:1613–8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hasegawa K, Turner CH, Chen J, Burr DB. Effects of disc lesion on microdamage accumulation in lumbar vertebrae under cyclic compression loading. Clin Orthop Rel Res. 1995;311:190–8.

    Google Scholar 

  87. Diab T, Vashishth D. Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone. 2007;40:612–8.

    Article  PubMed  Google Scholar 

  88. Diab T, Condon KW, Burr DB, Vashishth D. Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone. 2006;38:427–31.

    Article  PubMed  Google Scholar 

  89. Green JO, Wang J, Diab T, Vidakovic B, Guldberg RE. Age-related differences in the morphology of microdamage propagation in trabecular bone. J Biomech. 2011;44:2659–66.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Diab T, Vashishth D. Effects of damage morphology on cortical bone fragility. Bone. 2005;37:96–102.

    Article  CAS  PubMed  Google Scholar 

  91. Nyman JS, Roy A, Acuna RL, Gayle HJ, Reyes MJ, Tyler JH, Dean DD, Wang X. Age-related effects on the concentration of collagen crosslinks in human osteonal and interstitial bone tissue. Bone. 2006;39:1210–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Karim L, Tang SY, Sroga GE, Vashishth D. Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone. Osteoporos Int. 2013;24:2441–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Burr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burr, D.B. (2022). Effects of Aging on Skeletal Fragility. In: Takahashi, H.E., Burr, D.B., Yamamoto, N. (eds) Osteoporotic Fracture and Systemic Skeletal Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-5613-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5613-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5612-5

  • Online ISBN: 978-981-16-5613-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics