Skip to main content

Advertisement

Log in

Association between non-enzymatic glycation, resorption, and microdamage in human tibial cortices

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

To better understand the association between different components of bone quality, we investigated the relationship among in vivo generated non-enzymatic glycation, resorption, and microdamage. The results showed negative correlation between advanced glycation end-products (AGEs) and resorption independent of age highlighting the interaction between these parameters that may lead to bone fragility.

Introduction

Changes in the quality of bone material contribute significantly to bone fragility. In order to establish a better understanding of the interaction of the different components of bone quality and their influence on bone fragility, we investigated the relationship between non-enzymatic glycation, resorption, and microdamage generated in vivo in cortical bone using bone specimens from the same donors.

Methods

Total fluorescent advanced glycation end-products (AGEs) were measured in 96 human cortical bone samples from 83 donors. Resorption pit density, average resorption pit area, and percent resorption area were quantified in samples from 48 common donors with AGE measurements. Linear microcrack density and diffuse damage were measured in 21 common donors with AGE and resorption measurements. Correlation analyses were performed between all measured variables to establish the relationships among them and their variation with age.

Results

We found that average resorption pit area and percent resorption area decreased with increasing AGEs independently of age. Resorption pit density and percent resorption area demonstrated negative age-adjusted correlation with diffuse damage. Furthermore, average resorption pit area, resorption pit density, and percent resorption area were found to decrease significantly with age.

Conclusions

The current study demonstrated the in vivo interrelationship between the organic constituents, remodeling, and damage formation in cortical bone. In addition to the age-related reduction in resorption, there is a negative correlation between AGEs and resorption independent of age. This inverse relationship indicates that AGEs alter the resorption process and/or accumulate in the tissue as a result of reduced resorption and may lead to bone fragility by adversely affecting fracture resistance through altered bone matrix properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261

    Article  CAS  PubMed  Google Scholar 

  2. Hui SL, Slemenda CW, Johnston CC Jr (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Investig 81(6):1804–1809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Vashishth D (2005) Age-dependent biomechanical modifications in bone. Crit Rev Eukaryot Gene Expr 15(4):343–358

    Article  PubMed  Google Scholar 

  4. Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28(2):195–201

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Shen X, Li X, Mauli Agrawal C (2002) Age-related changes in the collagen network and toughness of bone. Bone 31(1):1–7

    Article  PubMed  Google Scholar 

  6. McCarthy AD, Etcheverry SB, Cortizo AM (1999) Advanced glycation endproduct-specific receptors in rat and mouse osteoblast-like cells: Regulation with stages of differentiation. Acta Diabetol 36(1):45–52

    Article  CAS  PubMed  Google Scholar 

  7. Dong XN, Qin A, Xu J, Wang X (2011) In situ accumulation of advanced glycation endproducts (AGEs) in bone matrix and its correlation with osteoclastic bone resorption. Bone 49(2):174–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Miyata T, Notoya K, Yoshida K, Horie K, Maeda K, Kurokawa K, Taketomi S (1997) Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 8(2):260–270

    CAS  PubMed  Google Scholar 

  9. Valcourt U, Merle B, Gineyts E, Viguet-Carrin S, Delmas PD, Garnero P (2007) Non-enzymatic glycation of bone collagen modifies osteoclastic activity and differentiation. J Biol Chem 282(8):5691–5703

    Article  CAS  PubMed  Google Scholar 

  10. Tang SY, Vashishth D (2010) Non-enzymatic glycation alters microdamage formation in human cancellous bone. Bone 46(1):148–154

    Article  CAS  PubMed  Google Scholar 

  11. Tang SY, Zeenath U, Vashishth D (2007) Effects of non-enzymatic glycation on cancellous bone fragility. Bone 40(4):1144–1151

    Article  CAS  PubMed  Google Scholar 

  12. Bentolila V, Boyce TM, Fyhrie DP, Drumb R, Skerry TM, Schaffler MB (1998) Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23(3):275–281

    Article  CAS  PubMed  Google Scholar 

  13. Herman BC, Cardoso L, Majeska RJ, Jepsen KJ, Schaffler MB (2010) Activation of bone remodeling after fatigue: Differential response to linear microcracks and diffuse damage. Bone 47(4):766–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15(4):613–620

    Article  CAS  PubMed  Google Scholar 

  15. Diab T, Vashishth D (2007) Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone 40(3):612–618

    Article  PubMed Central  PubMed  Google Scholar 

  16. Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, Vashishth D (2012) Dilatational band formation in bone. Proc Natl Acad Sci 109(47):19178–19183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Karim L, Vashishth D (2012) Heterogeneous glycation of cancellous bone and its association with bone quality and fragility. PLoS One 7(4):e35047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gross J (1958) Studies on the formation of collagen. I. Properties and fractionation of neutral salt extracts of normal guinea pig connective tissue. J Exp Med 107(2):247–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Burr DB, Stafford T (1990) Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin Orthop Relat Res 260:305–308

    PubMed  Google Scholar 

  20. Boyce TM, Fyhrie DP, Glotkowski MC, Radin EL, Schaffler MB (1998) Damage type and strain mode associations in human compact bone bending fatigue. J Orthop Res 16(3):322–329

    Article  CAS  PubMed  Google Scholar 

  21. Tang S, Allen M, Phipps R, Burr D, Vashishth D (2009) Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int 20(6):887–894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yamagishi S-i (2011) Role of Advanced Glycation End Products (AGEs) in osteoporosis in diabetes. Curr Drug Targets 12(14):2096–2102

    Article  CAS  PubMed  Google Scholar 

  23. Semba RD, Nicklett EJ, Ferrucci L (2010) Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A: Biol Med Sci 65A(9):963–975

    Article  CAS  Google Scholar 

  24. Weinberg E, Maymon T, Weinreb M (2014) AGEs induce caspase-mediated apoptosis of rat BMSCs via TNFα production and oxidative stress. J Mol Endocrinol 52(1):67–76

    CAS  PubMed  Google Scholar 

  25. Hein GE (2006) Glycation endproducts in osteoporosis—Is there a pathophysiologic importance? Clin Chim Acta 371(1–2):32–36

    Article  CAS  PubMed  Google Scholar 

  26. Saito M, Marumo K, Soshi S, Kida Y, Ushiku C, Shinohara A (2010) Raloxifene ameliorates detrimental enzymatic and nonenzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int 21(4):655–666

    Article  CAS  PubMed  Google Scholar 

  27. Hein G, Weiss C, Lehmann G, Niwa T, Stein G, Franke S (2006) Advanced glycation end product modification of bone proteins and bone remodelling: Hypothesis and preliminary immunohistochemical findings. Ann Rheum Dis 65(1):101–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hein G, Wiegand R, Lehmann G, Stein G, Franke S (2003) Advanced glycation end-products pentosidine and Nϵ-carboxymethyllysine are elevated in serum of patients with osteoporosis. Rheumatology 42(10):1242–1246

    Article  CAS  PubMed  Google Scholar 

  29. Franke S, Siggelkow H, Wolf G, Hein G (2007) Advanced glycation endproducts influence the mRNA expression of RAGE, RANKL and various osteoblastic genes in human osteoblasts. Arch Physiol Biochem 113(3):154–161

    Article  CAS  PubMed  Google Scholar 

  30. Ding K-H, Wang Z-Z, Hamrick MW, Deng Z-B, Zhou L, Kang B, Yan S-L, She J-X, Stern DM, Isales CM, Mi Q-S (2006) Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun 340(4):1091–1097

    Article  CAS  PubMed  Google Scholar 

  31. Fatayerji D, Eastell R (1999) Age-related changes in bone turnover in men. J Bone Miner Res 14(7):1203–1210

    Article  CAS  PubMed  Google Scholar 

  32. Minisola S, Dionisi S, Pacitti MT, Paglia F, Carnevale V, Scillitani A, Mazzaferro S, De Geronimo S, Pepe J, D’Erasmo E, Romagnoli E (2002) Gender differences in serum markers of bone resorption in healthy subjects and patients with disorders affecting bone. Osteoporos Int 13(2):171–175

    Article  CAS  PubMed  Google Scholar 

  33. Rehman MTA, Hoyland JA, Denton J, Freemont AJ (1994) Age related histomorphometric changes in bone in normal British men and women. J Clin Pathol 47(6):529–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wishart JM, Need AO, Horowitz M, Morris HA, Nordin BEC (1995) Effect of age on bone density and bone turnover in men. Clin Endocrinol 42(2):141–146

    Article  CAS  Google Scholar 

  35. Martin RB, Pickett JC, Zinaich S (1980) Studies of skeletal remodeling in aging men. Clin Orthop Relat Res 149:268–282

    PubMed  Google Scholar 

  36. Cooper DML, Thomas CDL, Clement JG, Hallgrímsson B (2006) Three-dimensional microcomputed tomography imaging of basic multicellular unit-related resorption spaces in human cortical bone. Anat Rec A: Discov Mol Cell Evol Biol 288A(7):806–816

    Article  Google Scholar 

  37. Bernhard A, Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Krause M, Breer S, Püschel K, Djuric M, Amling M, Busse B (2013) Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women. Osteoporos Int 24(10):2671–2680

    Article  CAS  PubMed  Google Scholar 

  38. Ural A, Vashishth D (2006) Interactions between microstructural and geometrical adaptation in human cortical bone. J Orthop Res 24(7):1489–1498

    Article  PubMed  Google Scholar 

  39. Qiu S, Rao DS, Palnitkar S, Parfitt AM (2010) Dependence of bone yield (volume of bone formed per unit of cement surface area) on resorption cavity size during osteonal remodeling in human rib: implications for osteoblast function and the pathogenesis of age-related bone loss. J Bone Miner Res 25(2):423–430

    Article  PubMed Central  PubMed  Google Scholar 

  40. Vashishth D, Koontz J, Qiu SJ, Lundin-Cannon D, Yeni YN, Schaffler MB, Fyhrie DP (2000) In vivo diffuse damage in human vertebral trabecular bone. Bone 26(2):147–152

    Article  CAS  PubMed  Google Scholar 

  41. Karim L, Tang S, Sroga G, Vashishth D (2013) Differences in non-enzymatic glycation and collagen crosslinks between human cortical and cancellous bone. Osteoporos Int 24(9):2441–2447

    Article  CAS  PubMed  Google Scholar 

  42. Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M, Federici A (2005) Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci 1043(1):710–717

    Article  CAS  PubMed  Google Scholar 

  43. Diab T, Condon KW, Burr DB, Vashishth D (2006) Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone 38(3):427–431

    Article  PubMed  Google Scholar 

  44. Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17(6):521–525

    Article  CAS  PubMed  Google Scholar 

  45. Norman TL, Wang Z (1997) Microdamage of human cortical bone: Incidence and morphology in long bones. Bone 20(4):375–379

    Article  CAS  PubMed  Google Scholar 

  46. Arlot ME, Burt-Pichat B, Roux J-P, Vashishth D, Bouxsein ML, Delmas PD (2008) Microarchitecture influences microdamage accumulation in human vertebral trabecular bone. J Bone Miner Res 23(10):1613–1618

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) and National Institute on Aging (NIA), part of the National Institutes of Health, under Award Numbers AR49635 and AG020618. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We acknowledge the use of core facilities at the Center for Biotechnology and Interdisciplinary Studies at Rensselaer Polytechnic Institute.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vashishth.

Additional information

Ani Ural and Colleen Janeiro have contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ural, A., Janeiro, C., Karim, L. et al. Association between non-enzymatic glycation, resorption, and microdamage in human tibial cortices. Osteoporos Int 26, 865–873 (2015). https://doi.org/10.1007/s00198-014-2938-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2938-4

Keywords

Navigation