Skip to main content

Advertisement

Log in

The Mineral–Collagen Interface in Bone

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For these ballpark estimates, values from [2] are used for human osteocytes (6 × 104 osteocytes per mm3 and radii of 8, 3 and 3 μm for an ellipsoid of volume equivalent to those measured experimentally) and from [3] for human canaliculi (50-nm canaliculi radius, 40-μm mean canaliculi length and 40 canaliculi per osteocyte).

  2. For purposes of this estimate, nanoplatelet dimensions of 40 nm × 20 nm × 4 nm and 0.4 volume fraction of mineral were assumed.

  3. Zeolites are a group of nanoporous aluminosilicate materials typified by surface area of ~900 m2/g and density of ~0.8 g [5].

  4. The crystal’s unit cell is the parallelepiped defined by the lattice vectors (c, a 1 and a 2 in the hexagonal axial system) and thus is the building block of the crystal lattice.

  5. Dislocations are linear defects in the ordered lattice of crystals, and their motion and multiplication produce the ductility typical of many metals. As such, dislocations and their characterization are a significant topic in materials science. It is with great difficulty that crystals such as Si for semiconductor wafers can be grown dislocation-free. Dislocations are surrounded by strain fields extending micrometers or more from their axes. In crystals as small as those in bone, the physical meaning of crystal defects such as dislocations is difficult to imagine. However, one growth dislocation per nanoplatelet would correspond to a dislocation density as high as in heavily worked metals and could produce the measured broadening.

  6. The papers by Garnero in this issue [41, 42] cover fibrillar collagen in much more detail.

  7. The c-axis of the cAp crystal lattice is along the longest nanoplatelet dimension and the collagen molecule axes. The a-axes (there are two of them in the hexagonal crystal system) are along the shorter nanoplatelet edges.

  8. The original report attributed the change to replacement of formalin with phosphate-buffered saline via diffusion.

  9. That is, the lattice plane perpendicular to the cAp c-axis. (100) is the lattice plane normal to the a-axis.

  10. Crystalline solids scatter x-rays over specific, very narrow angular ranges because of their long range order and sharp periodicities. Amorphous materials do not have such tightly defined periodicities but do possess some short range order at the level of a very few atomic diameters. This very limited ordering suffices to produce broad but relatively weak maxima in scattered intensity, which, when intercepted by an x-ray area detector, appear to be diffuse halos (as opposed to relatively sharp diffraction rings).

  11. In continuum mechanics, the classic Eshelby inclusion problem involves an ellipsoidal linear elastic inclusion embedded in an infinite linear elastic body. The original formulation was for an inclusion that has undergone a transformation and whose size and shape are constrained by the surrounding material. The resulting strain fields are inhomogeneous, and fields neighboring inclusions could influence other particles’ growth.

References

  1. Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    CAS  Google Scholar 

  2. Mullender MG, van der Meer DD, Huiskes R, Lips P (1996) Osteocyte density changes in aging and osteoporosis. Bone 18:109–113

    CAS  PubMed  Google Scholar 

  3. Beno T, Yoon Y-J, Cowin SC, Fritton SP (2006) Estimation of bone permeability using accurate microstructural measurements. J Biomech 39:2378–2387

    PubMed  Google Scholar 

  4. Posner AS (1985) The structure of bone apatite surfaces. J Biomed Mater Res 19:241–250

    CAS  PubMed  Google Scholar 

  5. http://www.zeolyst.com/our-products/standard-zeolite-powders/zeolite-y.aspx. Accessed 24 Oct 2014

  6. Dorvee JR, Veis A (2013) Biomineralization mechanisms: a new paradigm for crystal nucleation in organic matrices. Calcif Tiss Int 93:307–315

    Google Scholar 

  7. Weiner S (2006) Transient precursor strategy in mineral formation of bone. Bone 39:431–433

    CAS  PubMed  Google Scholar 

  8. Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Nat Acad Sci 105:12748–12753

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Lucchinetti E (2001) Composite models of bone properties. In: Cowin SC (ed) Bone mechanics handbook. 2nd edn. CRC Press, Boca Raton, 12-1 to 12-19.SRS7

  10. Powder Diffraction File (PDF) card 86-1201, JCPDS

  11. Hanschin RG, Stern WB (1995) X-ray diffraction studies on the lattice perfection of human bone apatite (crista iliaca). Bone 16:355S–363S

    CAS  PubMed  Google Scholar 

  12. Schwarcz HP, Agur K, Jantz LM (2010) A new method for determination of postmortem interval: citrate content of bone. J Forensic Sci 55:1515–1522

    Google Scholar 

  13. de Jong WF (1926) La substance minerale dans les os. Recl Trav Chim Pays—Bas Belg 45:445–448

  14. Almer JD, Stock SR (2005) Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction. J Struct Biol 152:14–27

    CAS  PubMed  Google Scholar 

  15. Baig AA, Fox JL, Young RA, Wang Z, Hsu J, Higuchi WL, Chhettry A, Zhuang H, Otsuka M (1999) Relationship among carbonated apatite solubility, crystallite size and microstrain parameter. Calcif Tiss Int 64:437–449

    CAS  Google Scholar 

  16. Ziv V, Weiner S (1994) Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line broadening techniques. Conn Tiss Res 30:165–175

    CAS  Google Scholar 

  17. Weiner S, Price PA (1986) Disaggregation of bone into crystals. Calcif Tiss Int 39:365–375

    CAS  Google Scholar 

  18. Hassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, Hansma PK (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35:4–10

    PubMed  Google Scholar 

  19. Rubin MA, Rubin J, Jasiuk I (2004) SEM and TEM study of the hierarchical structure of C57BL/6J and C3H/HeJ mice trabecular bone. Bone 35:11–20

    PubMed  Google Scholar 

  20. Fratzl P, Groschner M, Vogl G, Plenk H Jr, Eschberger J, Fratzl-Zelman N, Koller K, Klaushofer K (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res 7:329–334

    CAS  PubMed  Google Scholar 

  21. McNally EA, Schwarcz HP, Botton GA, Arsenault AL (2012) A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS ONE 7:e29258

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Grynpas MD, Bonar LC, Glimcher MJ (1984) X-ray diffraction radial distribution function studies on bone mineral and synthetic calcium phosphates. J Mater Sci 19:723–736

    CAS  Google Scholar 

  23. Celotti G, Tampieri A, Spiro S, Landi E, Bertinetti L, Martra G, Ducati C (2006) Crystallinity in apatites: how can a truly disordered fraction be distinguished from nanosize crystalline domains? J Mater Sci Mater Med 17:1079–1087

    CAS  PubMed  Google Scholar 

  24. Jäger C, Wetzel T, Meyer-Zaika W, Epple M (2006) A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn Reson Chem 44:573–580

    PubMed  Google Scholar 

  25. Huang S-J, Tsai Y-L, Lee Y-L, Lin C-P (2009) JCC Chan. Structural model of rat dentin revisited. Chem Mater 21:2583–2585

    CAS  Google Scholar 

  26. Kirkham J, Zhang J, Brookes SJ, Shore RC, Wood SR, Smith DA, Wall Work ML, Ryu OH, Robinson C (2000) Evidence for charge domains on developing enamel crystal surfaces. J Dent Res 79:1943–1947

    CAS  PubMed  Google Scholar 

  27. Almora-Barrios N, Austen KF, de Leeuw NH (2009) Density functional theory study of the binding of glycine, proline and hydroxyproline to the hydroxyapatite (0001) and (01–10) surfaces. Langmuir 25:5018–5025

    CAS  PubMed  Google Scholar 

  28. Gilmore RS, Katz JL (1982) Elastic properties of apatites. J Mater Sci 17:1131–1141

    CAS  Google Scholar 

  29. Gardner TN, Elliott JC, Sklar Z, Briggs GAD (1992) Acoustic microscope study of the elastic properties of fluorapatite and hydroxyapatite, tooth enamel and bone. J Biomech 25:1265–1277

    CAS  PubMed  Google Scholar 

  30. Sha MC, Li Z, Bradt RC (1994) Single-crystal elastic constants of fluorapatite, Ca5F (PO4)3. J Appl Phys 75:7784–7787

    CAS  Google Scholar 

  31. Almer JD, Stock SR (2007) Micromechanical response of mineral and collagen phases in bone. J Struct Biol 157:365–370

    CAS  PubMed  Google Scholar 

  32. Almer JD, Stock SR (2010) Loading-related strain gradients spanning the mature bovine dentinoenamel junction (DEJ): quantification using high energy X-ray scattering. J Biomech 43:2294–2300

    CAS  PubMed  Google Scholar 

  33. Stock SR, Yuan F, Brinson LC, Almer JD (2011) High-energy X-ray scattering quantification of internal strains and their gradients in bone under load. J Biomech 44:291–296

    CAS  PubMed  Google Scholar 

  34. Deymier-Black AC, Almer JD, Stock SR, Dunand DC (2012) Variability in the elastic properties of bovine dentin at multiple length scales. J Mech Behav Biomed Mater 5:71–81

    CAS  PubMed  Google Scholar 

  35. Singhal A, Stock SR, Almer JD, Dunand DC (2014) Effect of cyclic loading on the nanoscale deformation of hydroxyapatite and collagen fibrils in bovine bone. Biomech Model Mechanobiol 13:615–626

    PubMed  Google Scholar 

  36. Gallant MA, Brown DM, Hammond M, Wallace JM, Du J, Deymier-Black AC, Almer JD, Stock SR, Allen MR, Burr DB (2014) Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties. Bone 61:191–200

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Dong XN, Almer JD, Wang X (2011) Post-yield nanomechanics of human cortical bone in compression using synchrotron X-ray scattering techniques. J Biomech 44:676–682

    PubMed Central  PubMed  Google Scholar 

  38. Giri B, Almer JD, Dong XN, Wang X (2012) In situ mechanical behavior of mineral crystals in human cortical bone under compressive load using synchrotron X-ray scattering techniques. J Mech Behav Biomed Mater 14:101–112

    PubMed Central  PubMed  Google Scholar 

  39. Malone JP, Veis A (2004) Heterotrimeric type I collagen C-telopeptide conformation as docked to its helix receptor. Biochem 43:15358–15366

    CAS  Google Scholar 

  40. Bertassoni LE, Orgel JPR, Antipova O, Swain MV (2012) The dentin otganic matrix—limitations of restorative dentistry hidden on the nanometer scale. Acta Biomater 8:2419–2433

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Wess TJ (2008) Collagen fibrillar structure and hierarchies. In: Fratzl P (ed) Collagen–structure and mechanics. Springer, New York, pp 49–80

    Google Scholar 

  42. Buehler MJ (2006) Nature designs tough collagen: explaining the nanostructure of collagen fibrils. PNAS 103:12285–12290

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Orgel JPR, Irving TC, Miller A, Wess TJ (2006) Microfibrillar structure of type I collagen in situ. PNAS 103:9001–9005

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Hodge AJ, Petruska JA (1963) Recent studies with electron microscopy on ordered aggregates of the tropocollagen macromolecule. In: Ramachandran GN (ed) Aspects of protein structure. Academic Press, New York, pp 289–300

    Google Scholar 

  45. Landis WJ, Song MJ, Leith A, McEwen L, McEwen B (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol 110:39–54

    CAS  PubMed  Google Scholar 

  46. Ascenzi A, Bigi A, Koch MHJ, Ripamonti A, Roveri N (1985) A low-angle X-ray diffraction analysis of osteonic inorganic phase using synchrotron radiation. Calcif Tiss Int 37:659–664

    CAS  Google Scholar 

  47. Ascenzi A, Benvenuti A, Bigi A, Foresti E, Koch MHJ, Mango F, Ripamonti A, Roveri N (1998) X-ray diffraction on cyclically loaded osteons. Calcif Tiss Int 62:266–273

    CAS  Google Scholar 

  48. Wagermaier W, Gupta HS, Gourrier A, Paris O, Roschger P, Burghammer M, Riekel C, Fratzl P (2007) Scanning texture analysis of lamellar bone using microbeam synchrotron X-ray radiation. J Appl Cryst 40:115–120

    CAS  Google Scholar 

  49. Seto J, Gupta HS, Zaslansky P, Wagner HD, Fratzl P (2008) Tough lessons from bone: extreme mechanical anisotropy at the mesoscale. Adv Funct Mater 18:1905–1911

    CAS  Google Scholar 

  50. Avery NC, Bailey AJ (2008) Restraining cross-links responsible for the mechanical properties of collagen fibers: Natural and Artificial. In: Fratzl P (ed) Collagen–structure and mechanics. Springer, New York

    Google Scholar 

  51. Burr DB (2002) The contribution of the organic matrix to bone’s material properties. Bone 31:8–11

    CAS  PubMed  Google Scholar 

  52. Wang X, Bank RA, TeKoppele JM, Agrawal CM (2001) The role of collagen in determining bone mechanical properties. J Orthop Res 19:1021–1026

    CAS  PubMed  Google Scholar 

  53. Landis WJ, Jacquet R (2013) Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif Tiss Int 93:329–337

    CAS  Google Scholar 

  54. Silver FH, Landis WJ (2011) Deposition of apatite in collagenous extracellular matrices: identification of possible nucleation sites on type I collagen. Conn Tiss Res 52:242–252

    CAS  Google Scholar 

  55. Meek KM, Chapman JA, Hardcastle RA (1979) The staining pattern of collagen fibrils. Improved correlation with sequence data. J Biol Chem 254:10710–10714

    CAS  PubMed  Google Scholar 

  56. Wang D, Ye J, Hudson SD, Scott KCK, Lin-Gibson S (2014) Effects of nanoparticle size and charge on interactions with self-assembled collagen. J Colloid Interf Sci 417:244–249

    CAS  Google Scholar 

  57. Thurner PJ, Katsamenis OL (2014) Measuring forces between structural elements in composites: From macromolecules to bone. In: Dimasi E, Gower LB (eds) Biomineralization sourcebook. CRC Press, Boca Raton, pp 321–335

    Google Scholar 

  58. Baht GS, Hunter GK, Goldberg HA (2008) Bone sialoprotein-collagen interaction promotes hydroxyapatite nucleation. Matrix Biol 27:600–608

    CAS  PubMed  Google Scholar 

  59. Tye CE, Hunter GK, Goldberg HA (2005) Identification of the type I collagen-binding domain of bone sialoprotein and characterization of the mechanism on interaction. J Biol Chem 280:13487–13492

    CAS  PubMed  Google Scholar 

  60. Fujisawa R, Tamura M (2012) Acidic bone matrix proteins and their roles in calcification. Front Biosci 17:1891–1903

    CAS  Google Scholar 

  61. Dorvee JR, Veis A (2013) Water in the formation of biogenic minerals: peeling away the hydration layers. J Struct Biol 183:278–303

    CAS  PubMed Central  PubMed  Google Scholar 

  62. George A, Veis A (2008) Phosphorylated proteins and control over apatite nucleation, crystal growth and inhibition. Chem Rev 108:4670–4693

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Omelon SJ, Grynpas MD (2008) Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem Rev 108:4694–4715

    CAS  PubMed  Google Scholar 

  64. Roschger P, Gupta HS, Berzlanovich A, Ittner G, Dempster DW, Fratzl P, Cosman F, Parisien M, Lindsay R, Nieves JW, Klaushofer K (2003) Constant mineralization density distribution in cancellous human bone. Bone 32:316–323

    CAS  PubMed  Google Scholar 

  65. Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R (2007) The bone mineral density distribution as a fingerprint of the mineralization process. Bone 40:1308–1319

    CAS  PubMed  Google Scholar 

  66. Jaschouz D, Paris O, Roschger P, Hwang H-S, Fratzl P (2003) Pole figure analysis of mineral nanoparticle orientation in individual trabecular of human vertebral bone. J Appl Crst 36:494–498

    CAS  Google Scholar 

  67. Georgiadis M, Guizar-Sicairos M, Zwahlen A, Trüssel AJ, Bunk O, Müller R, Schneider P (2015) 3D scanning SAXS: a novel method for the assessment of bone ultrastructure orientation. Bone 71:42–52

    CAS  PubMed  Google Scholar 

  68. Reznikov N, Chase H, Brumfeld V, Shahar R, Weiner S (2015) The 3D structure of the collagen fibril network in human trabecular bone: relation to trabecular organization. Bone 71:189–195

    PubMed  Google Scholar 

  69. Stock SR, Deymier-Black AC, Veis A, Telser A, Lux E, Cai Z (2014) Bovine and equine peritubular and intertubular dentin. Acta Biomater 10:3969–3977

    CAS  PubMed  Google Scholar 

  70. He G, Dahl T, Veis A, George A (2003) Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater 2:552–558

    CAS  PubMed  Google Scholar 

  71. Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L (2010) Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. PNAS 107:6316–6321

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ, Hilbers PAJ, de With G, Sommerdijk NAJM (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Cantaert B, Beniash E, Meldrum TC (2013) Nanoscale confinement controls the crystallization of calcium phosphate: relevance to bone formation. Chem Eur J 19:14918–14924

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Weiner S, Arad T, Traub W (1991) Crystal organization in rat bone lamellae. FEBS Lett 285:49–54

    CAS  PubMed  Google Scholar 

  75. Weiner S, Arad T, Sabanay I, Traub W (1997) Rotated plywood structure of primary lamellar bone in the rat: orientations of the collagen fibril arrays. Bone 20:509–514

    CAS  PubMed  Google Scholar 

  76. Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282

    PubMed  Google Scholar 

  77. Hulmes DJS, Wess TJ, Prockop DJ, Fratzl P (1995) Radial packing, order and disorder in collagen fibrils. Biophys J 68:1661–1670

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Dumont M, Kostka A, Sander PM, Borbely A, Kaysser-Pyzalla A (2011) Size and size distribution of apatite crystals in Sauropod fossil bones. Palaeogeog Palaeoclim Palaeoecol 210:108–116

    Google Scholar 

  79. Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physiochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453

    CAS  PubMed  Google Scholar 

  80. Singhal A, Deymier-Black AC, Almer JD, Dunand DC (2011) Effect of high-energy X-ray doses on bone elastic properties and residual strains. J Mech Behav Biomed Mater 4:1774–1786

    CAS  PubMed  Google Scholar 

  81. Singhal A, Almer JD, Dunand DC (2012) Variability in the nanoscale deformation of hydroxyapatite during compressive loading in bovine bone. Acta Biomater 8:2747–2758

    CAS  PubMed  Google Scholar 

  82. Currey JD (2002) Bones: structure and mechanics. Princeton Univ Press, Princeton

    Google Scholar 

  83. Chen P-Y, Toroian D, Price PA, McKittrick J (2011) Minerals form a continuum phase in mature cancellous bone. Calcif Tiss Iint 88:351–361

    CAS  Google Scholar 

  84. Chen P-Y, Toroian D, Price PA, McKittrick J (2012) Elastic moduli of untreated, demineralized and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material. Acta Biomater 8:1080–1092

    PubMed  Google Scholar 

  85. Landis WJ, Hodgens KJ, Song MJ, Arena J, Kiyonaga S, Marko M, Owen C, McEwen BF (1996) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 117:24–35

    CAS  PubMed  Google Scholar 

  86. Katz EP, Li S-T (1973) Structure and function of bone collagen fibrils. J Mol Biol 80:1–15

    CAS  PubMed  Google Scholar 

  87. Bonar LC, Lees S, Mook HA (1985) Neutron diffraction studies of collagen in fully mineralized bone. J Mol Biol 181:265–270

    CAS  PubMed  Google Scholar 

  88. Karunaratne A, Esapa CE, Hiller J, Boyde A, Head R, Bassett JHD, Terrill NJ, Williams GR, Brown MA, Croucher PI, Brwon SDM, Cox RD, Barber AH, Thakker RV, Gupta HS (2012) Significant deterioration in nanomechanical quality occurs through incomplete extrafibrillar mineralization in rachitic bone: evidence from in situ synchrotron X-ray scattering and backscattered electron imaging. J Bone Miner Res 27:876–890

    PubMed  Google Scholar 

  89. Ji J, Bar-On B, Wagner HD (2012) Mechanics of electrospun collagen and hydroxyapatite/collagen nanofibers. J Mech Behav Biomed Mater 13:185–193

    CAS  PubMed  Google Scholar 

  90. Fujisawa R, Koboki Y (1991) Preferential absorption of dentin and bone acidic proteins on the (100) face of hydroxyapatite crystals. Biochim Biophys Acta 1075:56–60

    Google Scholar 

  91. Holm E, Aubin JE, Hunter GK, Beier F, Goldberg HA (2015) Loss of bone sialoprotein leads to impaired endochondral bone development and mineralization. Bone 71:145–154

    CAS  PubMed  Google Scholar 

  92. Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317:59–64

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Sfeir C, Lee D, Li J, Zhang X, Boskey AL, Kumta PN (2011) Expression of phosphophoryn is sufficient for the induction of matrix mineralization by mammalian cells. J Biol Chem 286:20228–20238

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Sfeir C, Sfeir C, Fang T-A, Jayaraman T, Raman A, Xiaoyuan Z (2014) Synthesis of bone-like nanocomposites using multiphosphorylated peptides. Acta Biomater 10:2241–2249

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Jee SS, Kasinath RK, DiMasi E, Kim Y-Y, Gower L (2011) Oriented hydroxyapatite in turkey tendon mineralized via the polymer-induced liquid precursor (PILP) process. Cryst Eng Comm 13:2077–2083

    CAS  Google Scholar 

  96. Price PA, Toroian D, Lim JE (2009) Mineralization by inhibitor exclusion. The calcification of collagen with fetuin. J Biol Chem 284:17092–17101

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Wang Y, Azais T, Robin M, Valiee A, Catania C, Legriel P, Pehau-Arnaudet G, Babonneau F, Giraud-Guille M-M, Nassif N (2012) The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater 11:724–733

    CAS  PubMed  Google Scholar 

  98. Rusu VM, Ng C-H, Wilke M, Tiersch B, Fratzl P, Peter MG (2005) Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials 26:5414–5426

    CAS  PubMed  Google Scholar 

  99. Nanci A (1999) Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to the speed of formation and collagen packing density. J Struct Biol 126:256–269

    CAS  PubMed  Google Scholar 

  100. Chen L, Jacquet R, Lowder E, Landis WJ (2015) Refinement of collagen–mineral interaction: a possible role for osteocalcin in apatite crystal nucleation, growth and development. Bone 71:7–16

    CAS  PubMed  Google Scholar 

  101. Evans FG (1973) Mechanical properties of bone. Springfield, CC Thomas

    Google Scholar 

  102. Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MMJ, Beck LW (2005) Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J Bone Miner Res 20:625–634

    CAS  PubMed  Google Scholar 

  103. Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MMJ, Beck LW (2006) Three structural roles for water in bone observed by solid-state NMR. Biophys J 90:3722–3731

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Yoder CH, Pasteris JD, Worcester KN, Schermerhorn DV (2012) Structural water in carbonated hydroxylapatite and fluorapatite: confirmation by solid state 2H NMR. Calcif Tiss Int 90:60–67

    CAS  Google Scholar 

  105. Walsh WR, Guzelsu N (1993) The role of ions and mineral-organic interfacial bonding on the compressive properties of cortical bone. Biomed Mater Eng 3:75–84

    CAS  PubMed  Google Scholar 

  106. Walsh WR, Guzelsu N (1994) Compressive properties of cortical bone: mineral-organic interfacial bonding. Biomaterials 15:137–145

    CAS  PubMed  Google Scholar 

  107. Silva MJ, Ulrich SR (2000) In vitro fluoride exposure decreases torsional and bending strength and increases ductility of mouse femora. J Biomech 33:231–234

    CAS  PubMed  Google Scholar 

  108. Cattani-Lorente M, Rizzoli R, Ammann P (2013) In vitro bone exposure to strontium improves bone material level properties. Acta Biomater 9:7005–7013

    CAS  PubMed  Google Scholar 

  109. Wise ER, Maltsev S, Davies ME, Duer MJ, Jaeger C, Loveridge N, Murray RC, Reid DG (2007) The organic-mineral matrix in bone is predominantly polysaccharide. Chem Mater 19:5055–5057

    CAS  Google Scholar 

  110. Wu Y, Ackerman JL, Kim H-M, Rey C, Barroug A, Glimcher MJ (2002) Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel and synthetic hydroxyapatites. J Bone Miner Res 17:472–480

    CAS  PubMed  Google Scholar 

  111. Wallwork ML, Kirkham J, Chen H, Chen S-X, Robinson C, Smith DA, Clarkson BH (2002) Binding dentin noncollagenous matrix proteins to biological mineral crystals: an atomic force microscopy study. Calcif Tiss int 71:249–255

    CAS  Google Scholar 

  112. Wang Y, van Euw S, Fernandes FM, Cassaignon S, Selmane M, Laurent G, Pehau-Arnaudet G, Coelho C, Bonhomme-Coury L, Giraud-Guille M-M, Babonneau F, Azais T, Nassif N (2013) Water-mediated structuring of bone apatite. Nat Mater 12:1144–1153

    CAS  PubMed  Google Scholar 

  113. Rai RK, Barhuyan T, Singh C, Mittal M, Khan MP, Sinha N, Chattopahyay N (2013) Total water, phosphorous relaxation and inter-atomic organic to inorganic interface are new determinants of trabecular bone integrity. PLoS One 8:383478

    Google Scholar 

  114. Zappone B, Thurner PJ, Adams J, Fantner GE, Hansma PK (2008) Effect of Ca2+ ions on the adhesion and mechanical properties of adsorbed layers of human osteopontin. Biophys J 95:2939–2950

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Thurner PJ, Lam S, Weaver JC, Morse DE, Hansma PK (2009) Localization of phosphorylated serine, osteopontin and bone sialoprotein on bone fracture surface. J Adhesion 85:526–545

    CAS  Google Scholar 

  116. Wallace JM (2012) Applications of atomic force microscopy for assessment of anaoscle morphological and mechanical properties of bone. Bone 50:420–427

    PubMed  Google Scholar 

  117. Dong XN, Qin A, Xu J, Wang Z (2011) In situ accumulation of advanced glycation endproducts (AGEs) in bone matrix and its correlation with osteoclastic bone resorption. Bone 49:174–183

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Siegmund T, Allen MR, Burr DB (2008) Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking. J Biomech 41:1427–1435

    PubMed  Google Scholar 

  119. Misof K, Landis WJ, Klaushofer K, Fratzl P (1997) Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. J Clin Invest 100:40–45

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Bart ZR, Hammond MA, Wallace JM (2014) Multi-scale analysis of bone chemistry, morphology and mechanics in the oim model of osteogenesis imperfecta. Conn Tiss Res 55:4–8

    CAS  Google Scholar 

  121. Errassifi F, Sarda S, Barroug A, Legrouri A, Sihi H, Rey C (2014) Infrared, Raman and NMR investigations of risedronate adsorption on nanocrystalline apatites. J Colloid Interf Sci 420:101–111

    CAS  Google Scholar 

  122. Deymier-Black AC, Yuan F, Singhal A, Almer JD, Brinson LC, Dunand DC (2012) Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone. Acta Biomater 8:253–261

    CAS  PubMed  Google Scholar 

  123. Gupta HS, Seto J, Wagermaier W, Zeslansky P, Boeseke P, Fratzl P (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. PNAS 103:17741–17746. SRS91

  124. Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746

    PubMed Central  PubMed  Google Scholar 

  125. Ascenzi M-G (1999) A first estimation of prestress in so-called circularly fibered osteonic lamellae. J Biomech 32:933–942

    Google Scholar 

  126. Gupta HS, Krauss S, Kerschnitzki M, Kaunaratne A, Dunlop JWC, Barber AH, Boesecke P, Funari SS, Fratzl P (2013) Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. J Mech Behav Biomed Mater 28:366–382

    CAS  PubMed  Google Scholar 

  127. Gupta HS, Fratzl P, Kerschnitzki M, Benecke G, Wagermaier W, Kirchner HOK (2007) Evidence for an elementary process in bone plasticity with an activation enthalpy of 1 eV. J R Soc Interface 4:277–282

    PubMed Central  PubMed  Google Scholar 

  128. Reilly GC, Currey JD (1999) The development of microcracking and failure in bone depends on the loading mode to which it is adapted. J Exp Biol 202:543–552

    CAS  PubMed  Google Scholar 

  129. Currey JD, Brear K, Zioupos P (1994) Dependence of mechanical properties on fibre angle in narwhal tusk, a highly oriented biological composite. J Biomech 27:885–897

    CAS  PubMed  Google Scholar 

  130. Bertassoni LE, Swain MV (2014) The contribution of proteoglycans to the mechanical behavior of mineralized tissue. J Mech Behav Biomed Mater 38:91–104

    CAS  PubMed  Google Scholar 

  131. Thompson JB, Kindt JN, Drake B, Hansma HG, Morse DE, Hansma PK (2001) Bone indentation recovery time correlates with bond reforming time. Nature 414:773–776

    CAS  PubMed  Google Scholar 

  132. Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GAG, Stucky GD, Morse DE, Hansma PK (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Mater 4:612–616

    CAS  Google Scholar 

  133. Fantner GE, Oroudjev E, Schitter G, Golde LS, Thurner P, Finch MM, Turner P, Gutsmann T, Morse DE, Hansma H, Hansma PK (2006) Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials. Biophys J 90:1411–1418

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Fantner GE, Adams J, Turner P, Thurner PJ, Fisher LW, Hansma PK (2007) Nanoscale ion mediated networks in bone: osteopontin can repeatedly dissipate large amounts of energy. Nano Lett 7:2491–2498

    CAS  PubMed  Google Scholar 

  135. Hang F, Gupta HS, Barber AH (2013) Nanointerfacial strength between non-collagenous protein and collagen fibrils in antler bone. J R Soc Interface 11:0993

    Google Scholar 

  136. Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, Vashishth D (2012) Dilational band formation in bone. PNAS 109:19178–19183

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Nikel O, Laurencin D, McCallum SA, Gundberg CM, Vashishth D (2013) NMR investigation of the role of osteocalcin and osteopontin at the organic-inorganic interface in bone. Langmuir 29:13873–13882

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Harding JH, Duffy DM, Sushkp ML, Rodger PM, Quigley D, Elliott JA (2008) Computational techniques at the organic-inorganic interface in biomineralization. Chem Rev 108:4823–4854

    CAS  PubMed  Google Scholar 

  139. Zysset PK, Dall’Ara E, Varga P, Pahr DH (2013) Finite element analysis for predicition of bone strength. Bonekey Rep 2:386

    PubMed Central  PubMed  Google Scholar 

  140. Ascenzi M-G, Reilly GC (2011) Bone tissue: Hierarchical simulations for clinical applications. J Biomech 44(2):211–212

    PubMed  Google Scholar 

  141. Vaughan TJ, McCarthy CT, NcNamara LM (2012) A three-scale finite element investigation into the effects of tissue mineralization and lamellar organization in human cortical and trabecular bone. J Mech Behav Biomed Mater 12:50–62

    CAS  PubMed  Google Scholar 

  142. Yuan F, Stock SR, Haeffner DR, Almer JD, Dunand DC, Brinson LC (2011) Simulation of the elastic properties of mineralized collagen fibril. Biomech Model Mechanobiol 10:147–160

    PubMed  Google Scholar 

  143. Bar-On B, Wagner HD (2012) Elastic modulus of hard tissues. J Biomech 45:672–678

    PubMed  Google Scholar 

  144. Bar-On B, Wagner HD (2013) New insights into the Young’s modulus of staggered biological composites. Mater Sci Eng C 33:603–607

    CAS  Google Scholar 

  145. Vercher-Martinez A, Giner E, Arango C, Fuenmayor FJ (2015) Influence of the mineral staggering on the leastic properties of the mineralized collagen fibril in lamellar bone. J Mech Behav Biomed Mater 42:243–256

    CAS  PubMed  Google Scholar 

  146. Bar-On B, Wagner HD (2013) Structural motifs and elastic properties of hierarchical biological tissues—a review. J Struct Biol 183:149–164

    CAS  PubMed  Google Scholar 

  147. Gupta HS, Wagermaier W, Zickler GA, Aroush DR-B, Funari SS, Roschger P, Wagner HD, Fratzl P (2005) Nanoscale deformation mechanisms in bone. Nano Lett 5:2108–2111

    CAS  PubMed  Google Scholar 

  148. Libonati F, Nair AK, Vergani L, Buehler MJ (2013) Fracture mechanics of hydroxyapatite single crystals under geometric confinement. J Mech Behav Biomed Mater 20:184–191

    CAS  PubMed  Google Scholar 

  149. Davies E, Muller KH, Wong WC, Pickard CJ, Reid DG, Skepper JN, Duer MJ (2014) Citrate bridges between mineral platelets in bone. PNAS E1354–E1363

  150. Lai ZB, Wang M, Yan C, Oloyede A (2014) Molecular dynamics simulation of mechanical behavior of osteopontin-hydroxyapatite interfaces. J Mech Behav Biomed Mater 36:12–20

    CAS  PubMed  Google Scholar 

  151. Chappard D, Baslé MF, Legrand E, Audran M (2011) New laboratory tools in the assessment of bone quality. Osteopor Int 22:2225–2240

    CAS  Google Scholar 

  152. Ascenzi M-G, Ascenzi A, Benvenuti A, Burghammer M, Panzavolta S, Bigi A (2003) Structural differences between “dark” and “bright” isolate human osteonic lamellae. J Struct Biol 141:22–33

    PubMed  Google Scholar 

  153. Reznikov N, Shahar R, Weiner S (2014) Bone hierarchical structure in three dimensions. Acta Biomater 10:3815–3826

    PubMed  Google Scholar 

  154. Reznikov N, Shahar R, Weiner S (2014) Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization. Bone 59:93–104

    CAS  PubMed  Google Scholar 

  155. Magal RA, Reznikov N, Shahar R, Weiner S (2014) Three-dimensional structure of minipig fibrolamellar bone: adaptation to axial loading. J Struct Biol 186:253–264

    Google Scholar 

  156. Gordon LM, Tran L, Joester D (2012) Atom probe tomography of apatites and bone-type mineralized tissue. ACS Nano 6:10667–10675

    CAS  PubMed  Google Scholar 

  157. Stock SR, Veis A, Telser A, Cai Z (2011) Near tubule and intertubular bovine dentin mapped at the 250 nm level. J Struct Biol 176:203–211

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Tang T, Ebacher V, Cripton P, Guy P, McKay H, Wang R (2015) Shear deformation and fracture of human cortical bone. Bone 71:25–35

    PubMed  Google Scholar 

  159. Boskey AL (2014) Infrared spectroscopy and imaging. In: DiMasi E, Gower LB (eds) Biomineralization sourcebook. CRC Press, Boca Raton, pp 47–58

    Google Scholar 

  160. Esmonde-White K, Esmonde-White F (2014) Raman spectroscopy in biomineralization. In: DiMasi E, Gower LB (eds) Biomineralization sourcebook. CRC Press, Boca Raton, pp 59–71

    Google Scholar 

  161. Varga P, Pacureanu A, Langer M, Suhonen H, Hesse B, Grimal Q, Cloetens P, Raum K, Peyrin F (2013) Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Acta Biomater 9:8118–8127

    CAS  PubMed  Google Scholar 

  162. Stock SR, Almer JD (2012) Diffraction microComputed Tomography of an Al-matrix SiC-monofilament composite. J Appl Cryst 47:1077–1083

    Google Scholar 

  163. Leemreize H, Birkbak M, Frølich S, Kenesei P, Almer JD, Stock SR, Birkedal H (2014) Diffraction computed tomography reveals the inner structure of complex biominerals. In: Stock SR (ed) Developments in x-ray tomography IX, Proceedings of SPIE 9212, 92120C

  164. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A 241:376–396

    Google Scholar 

  165. Lees S (1987) Considerations regarding the structure of the mammalian mineralized osteoid from the viewpoint of the generalized packing model. Conn Tiss Res 16:281–303

    CAS  Google Scholar 

  166. Lucchinetti E (2001) Dense bone tissue as a molecular composite. In: Cowin SC (ed) Bone mechanics handbook, vol 13, 2nd edn. CRC Press, Boca Raton, pp 1–15

    Google Scholar 

Download references

Acknowledgments

The author is very grateful to Prof. Arthur Veis for countless helpful discussions (and debates) on bone and other mineralized tissues, particularly on the proteins involved with these tissues. Support is gratefully acknowledged from NIDCR grant DE001374, and NIDCR and its staff had no input into this paper. Further, the author has no potential conflict of interest to report.

Conflict of Interest

S. R. Stock has no conflict of interest to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Stock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stock, S.R. The Mineral–Collagen Interface in Bone. Calcif Tissue Int 97, 262–280 (2015). https://doi.org/10.1007/s00223-015-9984-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-015-9984-6

Keywords

Navigation