Skip to main content

Extremophilic Fungi as a Source of Bioactive Molecules

  • Chapter
  • First Online:
Extremophilic Fungi

Abstract

Extremophiles are the organisms that survive the harshest and extreme environments on earth, notably deep-sea sediments, permafrost, deserts, hypersaline water, etc., of the extremophiles, various fungal species like Aspergillus spp., Emericella spp., Eutypella spp., Microsporum spp., Penicillium spp., Trichoderma spp., Wallemia spp., etc. produce a number of bioactive molecules categorized into polypeptides, polyketides, terpenoids, alkaloids, sterols, etc. These metabolites are proven to possess antibacterial, antiviral, antifungal, anti-inflammatory, anticancer, and anti-diabetic activities. These compounds have significant scope in biomedical research and can be explored as potential candidates for new drug discovery. Apart from it, they can be substantially applied in the fields of environmental, industrial, and food technology. There is a need to isolate, propagate, and conserve these novel microorganisms and their active metabolites. This chapter provides an overview of various bioactive molecules obtained from different genera of extremophilic fungi isolated from extreme habitats on this planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anwar UB, Zwar IP, de Souza AO (2020) Biomolecules produced by extremophiles microorganisms and recent discoveries. In: Rodrigues AG (ed) New and future developments in microbial biotechnology and bioengineering. Microbial biomolecules: properties, relevance, and their translational applications. Elsevier, Amsterdam, pp 247–270

    Google Scholar 

  • Arifeen MZ, Ma YN, Xue YR, Liu CH (2020) Deep-sea fungi could be the new arsenal for bioactive molecules. Mar Drugs 18(9):1–15

    Google Scholar 

  • Arima K, Liu W-H, Beppu T (1972) Studies on the lipase of thermophilic fungus Humicola lanuginose. Agric Biol Chem 36:893–895

    Article  CAS  Google Scholar 

  • Arnesen S, Eriksen SH, Olsen J, Jensen B (1998) Increased production of α-amylase from Thermomyces lanuginosus by the addition of Tween 80. Enzym Microb Technol 23:249–252

    Article  CAS  Google Scholar 

  • Bakermans C, Bergholz PW, Ayala-del-Río H, Tiedje J (2009) Genomic insights into cold adaptation of permafrost bacteria. In: Margesin R (ed) Permafrost soils. Springer, Berlin, pp 159–168

    Chapter  Google Scholar 

  • Barone G, Varrella S, Tangherlini M, Rastelli E, Dell’Anno A, Danovaro R, Corinaldesi C (2019) Marine fungi: biotechnological perspectives from deep-hypersaline anoxic basins. Diversity 11:113

    Article  CAS  Google Scholar 

  • Blanchette RA, Held BW, Arenz BE, Jurgens JA, Baltes NJ, Duncan SM, Farrell RL (2010) An Antarctic hot spot for fungi at Shackleton’s historic hut on Cape Royds. Microb Ecol 60:29–38

    Article  PubMed  Google Scholar 

  • Botíc T, Kunčič MK, Sepčíc K, Knez Z, Gunde-Cimerman N (2012) Salt induces biosynthesis of hemolytically active compounds in the xerotolerant food-borne fungus Wallemia sebi. FEMS Microbiol Lett 326:40–46

    Article  CAS  PubMed  Google Scholar 

  • Bowman JP (2008) Genomic analysis of psychrophilic prokaryotes. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 265–284

    Chapter  Google Scholar 

  • Bridge PD, Spooner BM (2012) Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem. Fungal Ecol 5:381–394

    Article  Google Scholar 

  • Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E, de Hoog S, Genilloud O, Marinelli F (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2:43–50

    Article  PubMed  Google Scholar 

  • Bull AT, Goodfellow M (2019) Dark, rare and inspirational microbial matter in the extremobiosphere: 16000 meters of bioprospecting campaigns. Microbiology (Reading) 165:1252–1264

    Article  CAS  Google Scholar 

  • Bull AT, Asenjo JA, Goodfellow M, Gomez-Silva B (2016) The Atacama Desert: technical resources and the growing importance of novel microbial diversity. Ann Rev Microbiol 70:215–234

    Article  CAS  Google Scholar 

  • Bull AT, Andrews BA, Dorador C, Goodfellow M (2018) Microbiology of the Atacama Desert. Antonie Van Leeuwenhoek 111:1269–1491

    Article  PubMed  Google Scholar 

  • Burgaud G, Hue’NT AD, Coton M, Perrier-Cornet JM, Jebbar M, Barbier G (2015) Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents. Res Microbiol 166:700–709

    Article  PubMed  Google Scholar 

  • Cardoso-Martínez F, de la Rosa JM, Díaz-Marrero AR, Darias J, D’Croz L, Cerella C, Diederich M, Cueto M (2015) Oximoaspergillimide, a fungal derivative from a marine isolate of Aspergillus sp. Eur J Org Chem 2015:2256–2261

    Article  CAS  Google Scholar 

  • Castillo RV, Beck A (2012) Photobiont selectivity and specificity in Caloplaca species in a fog-induced community in the Atacama Desert, northern Chile. Fungal Biol 116:665–676

    Article  Google Scholar 

  • Chattopadhyay MK (2006) Mechanism of bacterial adaptation to low temperature. J Biosci 31:157–165

    Article  CAS  PubMed  Google Scholar 

  • Chefetz B, Chen Y, Hadar Y (1998) Purification and characterization of laccase from Chaetomium thermophilum and its role in humification. Appl Environ Microbiol 64:3175–3179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L, Gong M-W, Peng Z-F, Zhou T, Ying M-G, Zheng Q-H, Liu Q-Y, Zhang Q-Q (2014a) The marine fungal metabolite, dicitrinone B, induces A375 cell apoptosis through the ROS-related caspase pathway. Mar Drugs 12:1939–1958

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen X-W, Li C-W, Cui C-B, Hua W, Zhu T-J, Gu Q-Q (2014b) Nine new and five known polyketides derived from a deep sea-sourced Aspergillus sp. 16-02-1. Mar Drugs 12:3116–3137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chu YS, Niu XM, Wang YL, Guo JP, Pan WZ, Huang XW, Zhang KQ (2010) Isolation of putative biosynthetic intermediates of prenylated indole alkaloids from a thermophilic fungus Talaromyces thermophilus. Org Lett 12:4356–4359

    Article  CAS  PubMed  Google Scholar 

  • Chung Y-M, Wei C-K, Chuang D-W, El-Shazly M, Hsieh C-T, Asai T, Oshima Y, Hsieh T-J, Hwang T-L, Wu Y-C (2013) An epigenetic modifier enhances the production of anti-diabetic and anti-inflammatory sesquiterpenoids from Aspergillus sydowii. Bioorg Med Chem 21:3866–3872

    Article  CAS  PubMed  Google Scholar 

  • Conley CA, Ishkhanova G, Mckay CP, Cullings K (2006) A preliminary survey of non-lichenized fungi cultured from the hyperarid Atacama Desert of Chile. Astrobiology 6:521–526

    Article  PubMed  Google Scholar 

  • Coudray M-R, Canevascini G, Meier H (1982) Characterization of a cellobiose dehydrogenase in the cellulolytic fungus Sporotrichum (Chrysosporium) thermophile. Biochem J 203:277–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danovaro R, Corinaldesi C, Dell’Anno A, Snelgrove PV (2017) The deep-sea under global change. Curr Biol 27:R461–R465

    Article  CAS  PubMed  Google Scholar 

  • Dasanayaka S, Nong X-H, Liang X, Liang J-Q, Amin M, Qi S-H (2020) New dibenzodioxocinone and pyran-3, 5-dione derivatives from the deep-sea-derived fungus Penicillium canescens SCSIO z053. J Asian Nat Prod Res 22:338–345

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh SK, Prakash V, Ranjan N (2018) Marine fungi: a source of potential anticancer compounds. Front Microbiol 8:25–36

    Article  Google Scholar 

  • Desroches TC, McMullin DR, Miller JD (2014) Extrolites of Wallemia sebi, a very common fungus in the built environment. Indoor Air 24:533–542

    Article  CAS  PubMed  Google Scholar 

  • Dhakar K, Pandey A (2016) Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Appl Microbiol Biotechnol 100:2499–2510

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Cárdenas C, Cantillo A, Rojas LY, Sandoval T, Fiorentino S, Robles J, Ramos FA, Zambrano MM, Baena S (2017) Microbial diversity of saline environments: searching for cytotoxic activities. AMB Express 7:223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du L, Zhu T, Fang Y, Gu Q, Zhu W (2008) Unusual C25 steroid isomers with bicyclo [4.4.1]A/B rings from a volcano ash-derived fungus Penicillium citrinum. J Nat Prod 71:1343–1351

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119

    Article  CAS  PubMed  Google Scholar 

  • Enache M, Teodosiu G, Itoh T, Kamekura M, Stan-Lotter H (2017) Halophilic microorganisms from manmade and natural hypersaline environments: physiology, ecology, and biotechnological potential. In: Stan-Lotter H, Fendrihan S (eds) Adaption of microbial life to environmental extremes. Springer, Berlin, pp 201–226

    Chapter  Google Scholar 

  • Fang W, Lin X, Zhou X, Wan J, Lu X, Yang B, Ai W, Lin J, Zhang T, Tu Z (2014) Cytotoxic and antiviral nitrobenzoyl sesquiterpenoids from the marine-derived fungus Aspergillus ochraceus Jcma1F17. Med Chem Comm 5:701–705

    Article  CAS  Google Scholar 

  • Figueroa L, Jiménez C, Rodríguez J, Areche C, Chávez R, Henríquez M, de laCruz M, Díaz C, Segade Y, Vaca I (2015) 3-Nitroasterric acid derivatives from an Antarctic sponge derived Pseudogymnoascus sp. fungus. J Nat Prod 78:919–923

    Article  CAS  PubMed  Google Scholar 

  • Fotouh DMA, Bayoumi RA, Hassan MA (2016) Production of thermoalkaliphilic lipase from Geobacillus thermoleovorans DA2 and application in leather industry. Enzyme Res 2016:9034364

    Google Scholar 

  • Fredimoses M, Zhou X, Ai W, Tian X, Yang B, Lin X, Xian J-Y, Liu Y (2015) Westerdijkin A, a new hydroxyphenylacetic acid derivative from deep sea fungus Aspergillus westerdijkiae SCSIO 05233. Nat Prod Res 29:158–162

    Article  CAS  PubMed  Google Scholar 

  • Gocheva YG, Tosi S, Krumova ET (2009) Temperature downshift induces antioxidant response in fungi isolated from Antarctica. Extremophiles 13:273–281

    Article  PubMed  Google Scholar 

  • Godinho VM, Gonçalves VN, Santiago IF, Figueredo HM, Vitoreli GA, Schaefer CEGR, Barbosa EC, Oliveira JG, Alves TMA, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Kroon EG, Cantrell CL, Wedge DE, Duke SO, Ali A, Rosa CA, Rosa LH (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596

    Article  PubMed  Google Scholar 

  • Gonçalves VN, Cantrell CL, Wedge DE, Ferreira MC, Soares MA, Jacob MR, Oliveira FS, Galante D, Rodrigues F, Alves TMA, Zani CL, Junior PAS, Murta S, Romanha AJ, Barbosa EC, Kroon EG, Oliveira JG, Gomez-Silva B, Galetovic A, Rosa CA, Rosa LH (2016) Fungi associated with rocks of the Atacama Desert: taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds. Environ Microbiol 18:232–245

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves VN, Vitoreli GA, de Menezes GC, Mendes CR, Secchi ER, Rosa CA, Rosa LH (2017) Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula. Extremophiles 21:1005–1015

    Article  PubMed  Google Scholar 

  • Grishkan I, Nevo E (2010) Spatiotemporal distribution of soil microfungi in the Makhtesh Ramon area, Central Negev desert, Israel. Fungal Ecol 3:326–337

    Article  Google Scholar 

  • Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol 52:170–179

    Google Scholar 

  • Gunde-Cimerman N, Ramos J, Plemenitǎs A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Lin X-P, Liao S-R, Yang B, Zhou X-F, Yang X-W, Tian X-P, Wang J-F, Liu Y-H (2020) Two new aromatic polyketides from a deep-sea fungus Penicillium sp. SCSIO 06720. Nat Prod Res 8:1–9

    CAS  Google Scholar 

  • Gupta GN, Srivastava S, Khare SK, Prakash V (2014) Extremophiles: an overview of microorganism from extreme environment. Int J Agric Environ Biotechnol 7:371–380

    Article  Google Scholar 

  • Hidese R, Fukuda W, Niitsu M, Fujiwara S (2018) Identification of branched-chain polyamines in hyperthermophiles. In: Alcázar R, Tiburcio AF (eds) Polyamines. Humana Press, New York, pp 81–94

    Chapter  Google Scholar 

  • Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG, Samson RA (2012) New penicillin-producing Penicillium species, an overview of section Chrysogena. Persoonia 29:78–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu J, Li Z, Gao J, He H, Dai H, Xia X, Liu C, Zhang L, Song F (2019) New diketopiperazines from a marine-derived fungus strain Aspergillus versicolor MF180151. Mar Drugs 17:262

    Article  CAS  PubMed Central  Google Scholar 

  • Huang Z, Nong X, Ren Z, Wang J, Zhang X, Qi S (2017) Anti-HSV-1, antioxidant and antifouling phenolic compounds from the deep-sea-derived fungus Aspergillus versicolor. SCSIO 41502. Bioorg Med Chem Lett 27:787–791

    Article  CAS  PubMed  Google Scholar 

  • Jančič S, Frisvad JC, Kocev D, Gostiňcar C, Ďzeroski S, Gunde-Cimerman N (2016) Production of secondary metabolites in extreme environments: food-airborne Wallemia spp. produce toxic metabolites at hypersaline conditions. PLoS One 11:1–20

    Article  CAS  Google Scholar 

  • Jansson JK, Tas N (2014) The microbial ecology of permafrost. Nat Rev Microbiol 12:414–425

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Du W, Mancuso A, Wellen KE, Yang X (2013a) Reciprocal regulation of p53, malic enzymes modulates metabolism senescence. Nature 493:689–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang W, Ye P, Chen C-T, Wang K, Liu P, He S, Wu X, Gan L, Ye Y, Wu B (2013b) Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent crab-associated fungus Aspergillus clavatus C2WU. Mar Drugs 11:4761–4772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson DB, Quatrini R (2016) Acidophile microbiology in space and time. In: Quatrini R, Johnson B (eds) Acidophiles: life in extremely acidic environments. Caister Academic Press, Norfolk, pp 3–16

    Chapter  Google Scholar 

  • Khandke KM, Vithayathil PJ, Murthy SK (1989) Purification, characterization of an α-D-glucuronidase from a thermophilic fungus, Thermoascus aurantiacus. Arch Biochem Biophys 274:511–517

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Cai S, Zhu T-J, Luan Y (2014) Secondary metabolites of a deep sea derived fungus Aspergillus versicolor CXCTD-06-6a and their bioactivity. J Ocean 13:691–695

    CAS  Google Scholar 

  • Kurapova I, Zenova GM, Sudnitsyn II, Kizilova AK, Manucharova NA, Norovsuren ZH, Zvyagintsev DG (2012) Thermotolerant and thermophilic actinomycetes from soils of Mongolia Desert Steppe Zone. Microbiology 81:98–108

    Article  CAS  Google Scholar 

  • Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634

    Article  CAS  PubMed  Google Scholar 

  • Li D, Wang F, Cai S, Zeng X, Xiao X, Gu Q, Zhu W (2007a) Two new bisorbicillinoids isolated from a deep-sea fungus, Phialocephala sp, FL30r. J Antibiot 60:317–320

    Article  CAS  Google Scholar 

  • Li D, Wang F, Xiao X, Fang Y, Zhu T, Gu Q, Zhu W (2007b) Trisorbicillinone A, a novel sorbicillin trimer from a deep sea fungus, Phialocephala sp. FL30r. Tetrahedron Lett 48:5235–5238

    Article  CAS  Google Scholar 

  • Li C-S, An C-Y, Li X-M, Gao S-S, Cui C-M, Sun H-F, Wang B-G (2011) Triazole and dihydroimidazole alkaloids from the marine sediment-derived fungus Penicillium paneum SD-44. J Nat Prod 74:1331–1334

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ye D, Shao Z, Cui C, Che Y (2012) A sterol and spiroditerpenoids from a Penicillium sp. isolated from a deep sea sediment sample. Mar Drugs 10:497–508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li C-S, Li X-M, Gao S-S, Lu Y-H, Wang B-G (2013) Cytotoxic anthranilic acid derivatives from deep sea sediment-derived fungus Penicillium paneum SD-44. Mar Drugs 11:3068–3076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li X, Li X-M, Li X-D, Xu G-M, Liu Y, Wang B-G (2016a) 20-Nor-isopimarane cycloethers from the deep-sea sediment-derived fungus Aspergillus wentii SD-310. RSC Adv 6:75981–75987

    Article  CAS  Google Scholar 

  • Li X-D, Li X, Li X-M, Xu G-M, Zhang P, Meng L-H, Wang B-G (2016b) Tetranorlabdane diterpenoids from the deep sea sediment-derived fungus Aspergillus wentii SD-310. Planta Med 82:877–881

    Article  CAS  PubMed  Google Scholar 

  • Li X-D, Li X-M, Li X, Xu G-M, Liu Y, Wang B-G (2016c) Aspewentins D-H, 20-nor-isopimarane derivatives from the deep sea sediment-derived fungus Aspergillus wentii SD-310. J Nat Prod 79:1347–1353

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang Y, Tu T, Zhang D, Ma R, You S, Wang X, Yao B, Luo H, Xu B (2017) Two acidic, thermophilic GH28 polygalacturonases from Talaromyces leycettanus JCM 12802 with application potentials for grape juice clarification. Food Chem 237:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Zhang X-Y, Nong X-H, Wang J, Huang Z-H, Qi S-H (2016) Eight linear peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. Tetrahedron 72:3092–3097

    Article  CAS  Google Scholar 

  • Lin A, Wu G, Gu Q, Zhu T, Li D (2014) New eremophilane-type sesquiterpenes from an Antarctic deepsea derived fungus Penicillium sp. PR19N-1. Arch Pharm Res 37:839–844

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Damm U, Cai L, Crous PW (2013) Species of the Colletotrichum gloeosporioides complex associated with anthracnose diseases of Proteaceae. Fungal Divers 61:89–105

    Article  Google Scholar 

  • Liu JT, Hu B, Gao Y, Zhang JP, Jiao BH, Lu XL, Liu XY (2014) Bioactive tyrosine-derived cytochalasins from fungus Eutypella sp. D-1. Chem Biodivers 11:800–806

    Article  CAS  PubMed  Google Scholar 

  • Liu C-C, Zhang Z-Z, Feng Y-Y, Gu Q-Q, Li D-H, Zhu T-J (2019) Secondary metabolites from Antarctic marine-derived fungus Penicillium crustosum HDN153086. Nat Prod Res 33:414–419

    Article  CAS  PubMed  Google Scholar 

  • Lu XL, Liu JT, Liu XY, Gao Y, Zhang J, Jiao B-H, Zheng H (2014) Pimarane diterpenes from the Arctic fungus Eutypella sp. D-1. J Antibiot 67:171–174

    Article  CAS  Google Scholar 

  • Luo XW, Yun L, Liu YJ, Zhou XF, Liu YH (2019) Peptides and polyketides isolated from the marine sponge-derived fungus Aspergillus terreus SCSIO 41008. Chin J Nat Med 17:149–154

    CAS  PubMed  Google Scholar 

  • Maggi O, Tosi S, Angelova M, Lagostina E, Fabbri AA, Pecoraro L, Altobelli E, Picco AM, Savino E, Branda E, Turchetti B, Zotti M, Vizzini A, Buzzini P (2013) Adaptation of fungi, including yeasts, to cold environments. Plant Biosyst 147:247–258

    Article  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol 64:461–488

    Article  CAS  Google Scholar 

  • Martinelli L, Zalar P, Gunde-Cimerman N, Azua-Bustos A, Sterflinger K, Piñar G (2017) Aspergillus atacamensis and A. salisburgensis: two new halophilic species from hypersaline/arid habitats with a phialosimplex-like morphology. Extremophiles 21:755–773

    Google Scholar 

  • Mendes G, Gonçalves VN, Souza-Fagundes EM, Kohlhoff M, Rosa CA, Zani CL, Cota BB, Rosa LH, Johann S (2016) Antifungal activity of extracts from Atacama Desert fungi against Paracoccidioides brasiliensis, identification of Aspergillus felis as a promising source of natural bioactive compounds. Mem Inst Oswaldo Cruz 111:209–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Monti R, Terenzi HF, Jorge JA (1991) Purification, properties of an extracellular xylanase from the thermophilic fungus Humicola grisea var. thermoidea. Can J Microbiol 37:675–681

    Article  CAS  Google Scholar 

  • Murgia M, Fiamma M, Barac A, Deligios M, Mazzarello V, Paglietti B, Cappuccinelli P, Al-Qahtani A, Squartini A, Rubino S, Al-Ahdal MN (2018) Biodiversity of fungi in hot desert sands. Microbiol Open 8:e00595

    Article  Google Scholar 

  • Nagano Y, Nagahama T, Abe F (2013) Cold-adapted yeasts in deep-sea environments. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, pp 149–171

    Google Scholar 

  • Nouani A, Belhamiche N, Slamani R, Belbraouet S, Fazouane F, Bellal MM (2009) Extracellular protease from Mucor pusillus: purification and characterization. Int J Dairy Technol 62:112–117

    Article  CAS  Google Scholar 

  • Ondeyka JG, Smith SK, Zink DL, Vicente F, Basilio A, Bills GF, Polishook JD, Garlisi C, Mcguinness D, Smith E, Qiu H, Gill CJ, Donald RG, Phillips JW, Goetz MA, Singh SB (2014) Isolation, structure elucidation and antibacterial activity of a new tetramic acid, ascosetin. J Antibiot 67:527–531

    Article  CAS  Google Scholar 

  • Onofri S, Selbmann L, De Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L (2007) Evolution and adaptation of fungi at boundaries of life. Adv Space Res 40:1657–1664

    Article  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ouchari L, Boukeskasse A, Bouizgarne B, Ouhdouch Y (2018) Antimicrobial potential of actinomycetes isolated from unexplored hot Merzouga desert and their taxonomic diversity. Biol Open 8:bio035410

    Article  PubMed Central  CAS  Google Scholar 

  • Ozerskaya S, Kochkina G, Ivanushkina N, Gilichinsky DA (2009) Fungi in permafrost. In: Margesin R (ed) Permafrost soils, Soil biology, vol 16. Springer, Berlin, pp 85–95

    Chapter  Google Scholar 

  • Pan C, Shi Y, Auckloo B, Chen X, Chen C-T, Tao X, Wu B (2016) An unusual conformational isomer of verrucosidin backbone from a hydrothermal vent fungus, Penicillium sp. Y-50-10. Mar Drugs 14:156

    Article  PubMed Central  CAS  Google Scholar 

  • Pan C, Shi Y, Chen X, Chen C-TA, Tao X, Wu B (2017a) New compounds from a hydrothermal vent crab-associated fungus Aspergillus versicolor XZ-4. Org Biomol Chem 15:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Shi Y, Auckloo BN, ul Hassan SS, Akhter N, Wang K, Ye Y, Chen C-TA, Tao X, Wu B (2017b) Isolation and antibiotic screening of fungi from a hydrothermal vent site and characterization of secondary metabolites from a Penicillium isolate. Mar Biotechnol 19:469–479

    Article  CAS  Google Scholar 

  • Park YC, Gunasekera SP, Lopez JV, McCarthy PJ, Wright AE (2006) Metabolites from the marine-derived fungus Chromocleista sp. Isolated from a deep-water sediment sample collected in the Gulf of Mexico. J Nat Prod 69:580–584

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Kim KM, Elvebakk A, Kim OS, Jeong G, Hong SG (2015) Algal and fungal diversity in Antarctic lichens. J Eukaryot Microbiol 62:196–205

    Article  CAS  PubMed  Google Scholar 

  • Peng XP, Wang Y, Liu PP, Hong K, Chen H, Yin X, Zhu W-M (2011) Aromatic compounds from the halotolerant fungal strain of Wallemia sebi PXP-89 in a hypersaline medium. Arch Pharm Res 34:907–912

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Zhang XY, Tu ZC, Xu XY, Qi SH (2013) Alkaloids from the deep-sea-derived fungus Aspergillus westerdijkiae DFFSCS013. J Nat Prod 76:983–987

    Article  CAS  PubMed  Google Scholar 

  • Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes: expanding contribution of deep sea, deep-sea vent microbes to natural product discovery. Mar Biotechnol 13:1–11

    Article  CAS  Google Scholar 

  • Plemenitǎs A, Vaupotiˇc T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75

    Article  PubMed Central  PubMed  Google Scholar 

  • Prabhu KA, Maheshwari R (1999) Biochemical properties of xylanases from a thermophilic fungus, Melanocarpus albomyces, their action on plant cell walls. J Biosci 2:461–470

    Article  Google Scholar 

  • Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63:4005–4009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101:8798–8806

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Xue C, Tian L, Xu M, Chen J, Deng Z, Proksch P, Lin W (2009) Asperelines A-F, peptaibols from the marine-derived fungus Trichoderma asperellum. J Nat Prod 72:1036–1044

    Article  CAS  PubMed  Google Scholar 

  • Rogozhin EA, Sadykova VS, Baranova AA, Vasilchenko AS, Lushpa VA, Mineev KS, Georgieva ML, Kul’ko AB, Krasheninnikov ME, Lyundup AV, Vasilchenko AV, Andreev YA (2018) A novel lipopeptaibol emericellipsin a with antimicrobial and antitumor activity produced by the extremophilic fungus Emericellopsis alkaline. Molecules 23(11):2785

    Article  PubMed Central  CAS  Google Scholar 

  • Sadhukhan R, Roy SK, Raha SK, Manna S, Chakrabarty SL (1992) Induction, regulation of α-amylase synthesis in a cellulolytic thermophilic fungus Myceliophthora thermophila D14 (ATCC 48104). Indian J Exp Biol 30:482–486

    CAS  PubMed  Google Scholar 

  • Santiago IF, Alves TM, Rabello A, Sales-Júnior PA, Romanha AJ, Zani CL, Rosa AC, Rosa LH (2012) Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica desv. and Colobanthus quitensis (kunth) bartl. Extremophiles 16:95–103

    Article  PubMed  Google Scholar 

  • Santiago IF, Gonçalves VN, Gomez-Silva B, Galetovic A, Rosa LH (2018) Fungal diversity in the Atacama Desert. Antonie Van Leeuwenhoek 111:1345–1360

    Article  PubMed  Google Scholar 

  • Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M, Rateb ME (2019) Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 128:630–657

    Article  PubMed  Google Scholar 

  • Schou C, Christensen MH, Schülein M (1998) Characterization of a cellobiose dehydrogenase from Humicola insolens. Biochem J 330:565–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturable fungi from the deepsea sediments of the Central Indian Basin and their growth characteristics. Fungal Diver 40:89–102

    Article  Google Scholar 

  • Singh P, Raghukumar C, Meena RM, Verma P, Shouche Y (2012) Fungal diversity in deep-sea sediments revealed by culture-dependent and culture-independent approaches. Fungal Ecol 5:543–553

    Article  Google Scholar 

  • Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol 5:453–462

    Article  Google Scholar 

  • Stevenson A, Hamill PG, O’kane CJ, Kminek G, Rummel JD, Voytek MA, Dijksterhuis J, Hallsworth JE (2017) Aspergillus penicillioides differentiation and cell division at 0.585 water activity. Environ Microbiol 19:687–697

    Article  CAS  PubMed  Google Scholar 

  • Stierle AA, Stierle DB (2014) Bioactive secondary metabolites from acid mine waste extremophiles. Nat Prod 9:1037–1044

    CAS  Google Scholar 

  • Stierle DB, Stierle AA, Patacini B, Mcintyre K, Girtsman T, Bolstad E (2011) Berkeleyones and related meroterpenes from a deep water acid mine waste fungus that inhibit the production of interleukin 1-β from induced inflammasomes. J Nat Prod 74:2273–2277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stierle AA, Stierle DB, Girtsman T (2012a) Caspase-1 inhibitors from an extremophilic fungus that target specific leukemia cell lines. J Nat Prod 75:344–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stierle DB, Stierle AA, Girtsman T, McIntyre K, Nichols J (2012b) Caspase-1 and-3 inhibiting drimane sesquiterpenoids from the extremophilic fungus Penicillium solitum. J Nat Prod 75:262–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Symanczik S, Błaszkowski J, Chwat G, Boller T, Wiemken A, Al-Yahyaei N, Al-Yahya’ei M (2014) Three new species of arbuscular mycorrhizal fungi discovered at one location in a desert of Oman: Diversispora omaniana, Septoglomus nakheelum and Rhizophagus arabicus. Mycology 106:243–259

    Article  CAS  Google Scholar 

  • Takahashi C, Numata A, Matsumura E, Minoura K, Eto H, Shingu T, Ito T, Hasegawa T (1994) Leptosins I, J: cytotoxic substances produced by a Leptosphaeria sp. J Antibiot 47:1242–1249

    Article  CAS  Google Scholar 

  • Taylor PM, Napier EJ, Fleming ID (1978) Some properties of glucoamylase produced by the thermophilic fungus Humicola lanuginose. Carbohydr Res 61:301–308

    Article  CAS  Google Scholar 

  • Taylor-George S, Palmer F, Staley JT, Borns DJ, Curtiss B, Adams JB (1983) Fungi and bacteria involved in desert varnish formation. Microb Ecol 9:227–245

    Article  CAS  PubMed  Google Scholar 

  • Tian Y-Q, Lin X-P, Liu J, Kaliyaperumal K, Ai W, Ju Z-R, Yang B, Wang J, Yang X-W, Liu Y (2015) Ascomycotin A, a new citromycetin analogue produced by Ascomycota sp. Ind19F07 isolated from deep sea sediment. Nat Prod Res 29:820–826

    Article  CAS  PubMed  Google Scholar 

  • Tiwari K, Upadhyay DJ, Mosker E, Sussmuth R, Gupta RK (2015) Culturable bioactive actinomycetes from the Great Indian Thar Desert. Ann Microbiol 65:1901–1914

    Article  CAS  Google Scholar 

  • Tosi LRO, Terenzi HF, Jorge JA (1993) Purification, characterization of an extracellular glucoamylase from the thermophilic fungus Humicola grisea var. thermoidea. Can J Microbiol 39:846–852

    Article  CAS  Google Scholar 

  • Tuohy MG, Puls J, Claeyssens M, Vřsanská M, Coughlan MP (1993) The xylan-degrading enzyme system of Talaromyces emersonii: novel enzymes with activity against aryl β-D-xylosides and unsubstituted xylans. Biochem J 290:515–523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uchida R, Nakajyo K, Kobayashi K, Ohshiro T, Terahara T, Imada C, Tomoda H (2016) 7-Chlorofolipastatin, an inhibitor of sterol O-acyltransferase, produced by marine-derived Aspergillus ungui NKH-007. J Antibiot 69:647–651

    Article  CAS  Google Scholar 

  • Unell M, Kabelitz N, Jansson JK, Heipieper HJ (2007) Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol Lett 266:138–143

    Article  CAS  PubMed  Google Scholar 

  • Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM (2015) Thermophiles in the genomic era: biodiversity, science, and applications. Biotechnol Adv 33:633–647

    Article  CAS  PubMed  Google Scholar 

  • Waditee-Sirisattha R, Kageyama H, Takabe T (2016) Halophilic microorganism resources and their applications in industrial and environmental biotechnology. AIMS Microbiol 2:42–54

    Article  CAS  Google Scholar 

  • Wang W, Tao H, Wang Y, Liu P, Zhu W, Peng X (2009) Cerebrosides of the halotolerant fungus Alternaria raphani isolated from a sea salt field. J Nat Prod 72:1695–1698

    Article  CAS  PubMed  Google Scholar 

  • Wang YT, Xue YR, Liu CH (2015) A brief review of bioactive metabolites derived from deep-sea fungi. Mar Drugs 13:4594–4616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Wei X, Qin X, Tian X, Liao L, Li K, Zhou X, Yang X, Wang F, Zhang T, Tu Z, Chen B, Liu Y (2016) Antiviral merosesquiterpenoids produced by the Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J Nat Prod 79:59–65

    Article  CAS  PubMed  Google Scholar 

  • Wijesekara I, Li Y-X, Vo T-S, Van TQ, Ngo D-H, Kim S-K (2013) Induction of apoptosis in human cervical carcinoma HeLa cells by neoechinulin A from marine-derived fungus Microsporum sp. Process Biochem 48:68–72

    Article  CAS  Google Scholar 

  • Wu G, Ma H, Zhu T, Li J, Gu Q, Li D (2012) Penilactones A and B, two novel polyketides from Antarctic deep-sea derived fungus Penicillium crustosum PRB-2. Tetrahedron 68:9745–9749

    Article  CAS  Google Scholar 

  • Wu G, Lin A, Gu Q, Zhu T, Li D (2013) Four new chloro-eremophilane sesquiterpenes from an Antractic deep-sea derived fungus Penicillium sp. Pr19n-1. Mar Drugs 11:1399–1408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu G, Sun X, Yu G, Wang W, Zhu T, Gu Q, Li D (2014) Cladosins A-E, hybrid polyketide from a deep-sea-derived fungus Cladosporium sphaerospermum. J Nat Prod 77:270–275

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Wiese J, Labes A, Kramer A, Schmaljohann R, Imhoff J (2015) Lindgomycin, an unusual antibiotic polyketide from a marine fungus of the Lindgomycetaceae. Mar Drugs 13:4617–4632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wyss M, Pasamontes L, Friedlein A, Rémy R, Tessier M, Kronenberger A, Middendorf A, Lehmann M, Schnoebelen L, Röthlisberger U, Kusznir E, Wahl G, Müller F, Lahm H-W, Vogel K, van Loon APGM (1999) Biophysical characterization of fungal phytases (myo-insoitol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, engineering of proteolytic resistance. Appl Environ Microbiol 65:359–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu R, Xu G-M, Li X-M, Li C-S, Wang B-G (2015a) Characterization of a newly isolated marine fungus Aspergillus dimorphicus for optimized production of the anti-tumor agent wentilactones. Mar Drugs 13:7040–7054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, Zhang X, Nong X, Wei X, Qi S (2015b) Oxindole alkaloids from the fungus Penicillium commune DFFSCS026 isolated from deep-sea-derived sediments. Tetrahedron 71:610–615

    Article  CAS  Google Scholar 

  • Yamada T, Iwamoto C, Yamagaki N, Yamanouchi T, Minoura K, Yamori T, Uehara Y, Andoh T, Uemura K, Numata A (2002) Leptosins M-N1, cytotoxic metabolites from a Leptosphaeria species separated from a marine alga. Structure determination and biological activities. Tetrahedron 58:479–487

    Article  CAS  Google Scholar 

  • Yao Q, Wang J, Zhang X, Nong X, Xu X, Qi S (2014) Cytotoxic polyketides from the deep-sea-derived fungus Engyodontium album DFFSCS021. Mar Drugs 12:5902–5915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zalar P, Kocuvan M, Plemenitǎs A, Gunde-Cimerman N (2005) Halophilic black yeast colonize wood immersed in hypersaline water. Bot Mar 48:323–326

    Article  Google Scholar 

  • Zhang XY, Zhang Y, Xu XY, Qi SH (2013) Diverse deep-sea fungi from the South China Sea, their antimicrobial activity. Curr Microbiol 67:525–530

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Mandi A, Li X-M, Du F-Y, Wang J-N, Li X, Kurtan T, Wang B-G (2014) Varioxepine A, a 3 H-oxepine-containing alkaloid with a new oxa-cage from the marine algal-derived endophytic fungus Paecilomyces variotii. Org Lett 16:4834–4837

    Article  CAS  PubMed  Google Scholar 

  • Zhang LQ, Chen XC, Chen ZQ, Wang GM, Zhu S-G, Yang Y-F, Chen K-X, Liu X-Y, Li YM (2016a) Eutypenoids A-C: novel pimarane diterpenoids from the Arctic fungus Eutypella sp. D-1. Mar Drugs 14(3):44

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang T, Wang NF, Liu HY, Zhang YQ, Yu LY (2016b) Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund region, Svalbard (high Arctic). Front Microbiol 7:227

    PubMed Central  PubMed  Google Scholar 

  • Zhang X, Li SJ, Li JJ, Liang ZZ, Zhao CQ (2018) Novel natural products from extremophilic fungi. Mar Drugs 16:1–36

    Article  CAS  Google Scholar 

  • Zhou H, Li L, Wang W, Che Q, Li D, Gu Q, Zhu T (2015) Chrodrimanins I and J from the Antarctic moss-derived fungus Penicillium funiculosum GWT2-24. J Nat Prod 78:1442–1445

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Li Y-H, Yu H-B, Liu X-Y, Lu X-L, Jiao B-H (2018) Furanone derivative and sesquiterpene from Antarctic marine-derived fungus Penicillium sp. S-1-18. J Asian Nat Prod Res 20:1108–1115

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, A., Satyaprakash, K., Das, A.K. (2022). Extremophilic Fungi as a Source of Bioactive Molecules. In: Sahay, S. (eds) Extremophilic Fungi. Springer, Singapore. https://doi.org/10.1007/978-981-16-4907-3_21

Download citation

Publish with us

Policies and ethics