Skip to main content

Bioactive Secondary Metabolites from Psychrophilic Fungi and Their Industrial Importance

  • Chapter
  • First Online:
Industrially Important Fungi for Sustainable Development

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Psychrophilic fungi are a remarkable boundless resource of new and unique products that have many applications in various fields including pharmaceutical, agriculture, cosmetics, and so on. Unfortunately, these were not studied extensively till lately, and therefore there is scope unraveling the benefits of fungi from low-temperature environments including icy habitats and deep-sea environments. Psychrophilic fungal assemblages are predominantly composed of cosmopolitan cold-adapted taxa, but many endemic species have been newly described such as in Antarctica and the Arctic. These need to be fully characterized and studied for the diverse resources that it promises. This chapter was an attempt to cover the extensive list of bioactive secondary metabolites, which is one of the many groups of metabolites produced by psychrophilic fungi, along with their applications in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves IM, Gonçalves VN, Oliveira FS, Schaefer CE, Rosa CA, Rosa LH (2019) The diversity, distribution, and pathogenic potential of cultivable fungi present in rocks from the South Shetlands archipelago, Maritime Antarctica. Extremophiles 23:327–336

    PubMed  Google Scholar 

  • Antipova TV, Zhelifonova VP, Baskunov BP, Kochkina GA, Ozerskaya SM, Kozlovskii AG (2018) Exometabolites of the Penicillium fungi isolated from various high-latitude ecosystems. Microbiology 87:642–651

    CAS  Google Scholar 

  • Anupama PD, Praveen KD, Singh RK, Kumar S, Srivastava AK, Arora DK (2011) Psychrophilic and halotolerant strain of Thelebolus microsporus from Pangong Lake, Himalaya. Mycosphere 2:601–609

    Google Scholar 

  • Arenz BE, Blanchette RA (2009) Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can J Microbiol 55:46–56

    CAS  PubMed  Google Scholar 

  • Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo dry valleys. Soil Biol Biochem 43:308–315

    CAS  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrellb RL, Blanchettea RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064

    CAS  Google Scholar 

  • Bhadury P, Mohammed BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337

    CAS  PubMed  Google Scholar 

  • Biabini MAF, Laatch H (1998) Advances in chemical studies of low-molecular weight metabolites of marine fungi. J Praktische Chemie 340:589–607

    Google Scholar 

  • Blanchette RA, Held BW, Jurgens JA, McNew DL, Harrington TC, Duncan SM, Farrell RL (2004) Wood destroying soft-rot fungi in the historic expeditions huts of Antarctica. Appl Environ Microbiol 70:1328–1335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86

    CAS  PubMed  Google Scholar 

  • Bovio E, Garzoli L, Poli A, Prigione V, Firsova D, McCormack GP, Varese GC (2018) The culturable mycobiota associated with three Atlantic sponges, including two new species: Thelebolus balaustiformis and T. spongiae. Fungal Syst Evol 1:141–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge PD, Spooner BM (2012) Non-lichenised Antarctic fungi: transient visitors or members of a cryptic ecosystem? Fungal Ecol 5:381–394

    Google Scholar 

  • Brunati M, Rojas JL, Sponga F, Ciciliato I (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genom 2:43–50

    Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    CAS  PubMed  Google Scholar 

  • Castrillo M, Luque EM, Carmen JPMM, Corrochano LM, Avalos J (2018) Transcriptional basis of enhanced photo-induction of carotenoid biosynthesis at low temperature in the fungus Neurospora crassa. Res Microbiol 169:278–289

    Google Scholar 

  • Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4:331–343

    CAS  PubMed  Google Scholar 

  • Chen JY, Sangwoo L, Cao YQ, Peng YQ, Winkler D, Yang DR (2010) Ethnomycological use of medicinal Chinese caterpillar fungus, Ophiocordyceps sinensis (Berk.) G. H. Sung et al. (Ascomycetes) in northern Yunnan province, SW China. Int J Med Mush 12:427–434

    CAS  Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol 50:631–642

    CAS  PubMed  Google Scholar 

  • Claro B, Bastos M, Garcia Fandino R (2018) Design and applications of cyclic peptides. In: Peptide applications in biomedicine, biotechnology and bioengineering. Woodhead Publishing, Cambridge, pp 87–129

    Google Scholar 

  • Connell L, Redman R, Craig S, Rodrieudz RJ (2006) Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biol Biochem 38:3083–3094

    CAS  Google Scholar 

  • Connell LB, Redman R, Craig SD, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459

    CAS  PubMed  Google Scholar 

  • Cooke RC, Whipps JM (1993) Ecophysiology of fungi. Blackwell Scientific, Oxford, UK

    Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    PubMed  PubMed Central  Google Scholar 

  • Dalsgaard PW, Larsen TO, Frydenvang K, Christophersen C (2004a) Psychrophilin A and Cycloaspeptide D, novel cyclic peptides from the psychrotolerant fungus Penicillium ribeum. J Nat Prod 67:878–881

    CAS  PubMed  Google Scholar 

  • Dalsgaard PW, Blunt JW, Munro MH, Larsen TO, Christophersen C (2004b) Psychrophilin B and C: cyclic nitropeptides from the psychrotolerant fungus Penicillium rivulum. J Nat Prod 67:1950–1952

    CAS  PubMed  Google Scholar 

  • Dalsgaard PW, Blunt JW, Munro MHG, Frisvad JC, Christophersen C (2005a) Communesins G and H, new alkaloids from the psychrotolerant fungus Penicillium rivulum. J Nat Prod 68:258–261

    CAS  PubMed  Google Scholar 

  • Dalsgaard PW, Larsen TO, Christophersen C (2005b) Bioactive cyclic peptides from the psychrotolerant fungus Penicillium algidum. J Antibiot 58:141–144

    CAS  Google Scholar 

  • Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res I 53:14–27

    Google Scholar 

  • Damare S, Nagarajan M, Raghukumar C (2008) Spore germination of fungi belonging to Aspergillus species under deep-sea conditions. Deep-Sea Res I 55:670–678

    Google Scholar 

  • de Hoog GS, Göttlich E, Platas G, Genilloud O, Leotta G, Van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76

    Google Scholar 

  • de Menezes GCA, Porto BA, Simões JC, Rosa CA, Rosa LH (2019) Fungi in snow and glacial ice of Antarctica. In: Rosa LH (ed) Fungi of Antarctica, 1st edn. Springer, Basel, pp 127–146

    Google Scholar 

  • Dejardin RA, Ward EWB (1971) Growth and respiration of psychrophilic species of the genus Typhula. Can J Bot 49:339–347

    CAS  Google Scholar 

  • Del Frate G, Caretta G (1990) Fungi isolated from Antarctic material. Polar Biol 11:1–7

    Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16

    CAS  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    CAS  PubMed  Google Scholar 

  • Deming JW, Eicken H (2007) Life in ice. In: Sullivan WT, Baross JA (eds) Planets and life: the emerging science of astrobiology. Cambridge University Press, Cambridge, pp 292–312

    Google Scholar 

  • Demmer O, Frank AO, Kessler H (2009) Design of cyclic peptides. In: Peptide and protein design for biopharmaceutical applications. Wiley, Hoboken, NJ

    Google Scholar 

  • Deshmukh SK (2002) Incidence of dermatophytes and other keratinophilic fungi in the glacier bank soils of the Kashmir valley, India. Mycologist 16:165–167

    Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

    Chapter  Google Scholar 

  • Dexter Y, Cooke RC (1984a) Fatty-acids, sterols and carotenoids of the psychrophile Mucor strictus and some mesophilic Mucor species. Trans Br Mycol Soc 83:455–461

    CAS  Google Scholar 

  • Dexter Y, Cooke RC (1984b) Temperature-determined growth and sporulation in the psychrophile Mucor strictus. Trans Br Mycol Soc 83:696–700

    Google Scholar 

  • Dexter Y, Cooke RC (1985) Effect of temperature on respiration, nutrient uptake and potassium leakage in the psychrophile Mucor strictus. Trans Br Mycol Soc 84:131–136

    CAS  Google Scholar 

  • Ding Z, Li L, Che Q et al (2016) Richness and bioactivity of culturable soil fungi from the Fildes Peninsula, Antarctica. Extremophiles 20:425–435

    CAS  PubMed  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi. Academic, London

    Google Scholar 

  • Duncan SM, Minasaki R, Farrell RL, Thwaites JM (2008) Screening fungi isolated from historic Discovery Hut on Ross Island, Antarctica for cellulose degradation. Antarct Sci 20:463–470

    Google Scholar 

  • DuoSaito RA, Connell L, Rodriguez R, Redman R, Libkind D, de Garcia V (2018) Metabarcoding analysis of the fungal biodiversity associated with Castaño Overa Glacier—Mount Tronador, Patagonia, Argentina. Fungal Ecol 36:8–16

    Google Scholar 

  • Ebada SS, Fischer T, Hamacher A, Du F-Y, Roth YO, Kassack MU, Wang B-G, Roth EH (2014) Psychrophilin E, a new cyclotripeptide, from co-fermentation of two marine alga-derived fungi of the genus Aspergillus. Nat Prod Res 28:776–781

    CAS  PubMed  Google Scholar 

  • Ebel R (2006) Secondary metabolites from marine-derived fungi. In: Proksch P, Muller WEG (eds) Frontiers in marine biotechnology. Horizon Bioscience, London, pp 73–143

    Google Scholar 

  • Fell JW, Statzell AC, Hunter IL, Phaff L (1969) Leucosporidium gen. n., the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie Van Leeuwenhoek 35:433–462

    Google Scholar 

  • Figueroa L, Jiménez C, Rodríguez J et al (2015) 3-Nitroasterric acid derivatives from an Antarctic sponge-derived Pseudogymnoascus sp. fungus. J Nat Prod 78:919–923

    CAS  PubMed  Google Scholar 

  • Finotti E, Paolino C, Lancia B, Mercantini R (1996) Metabolic differences between two Antarctic strains of Geomyces pannorum. Curr Microbiol 32:7–10

    CAS  Google Scholar 

  • Flam F (1994) Chemical prospectors scour the seas for promising drugs. Science 226:1324–1325

    Google Scholar 

  • Flanagan PW, Scarborough AM (1974) Physiological groups of decomposer fungi on tundra plant remains. In: Holding AJ, Heal OW, McLean SF Jr, Flannagan PE (eds) Soil organisms and decomposition in tundra. Tundra Biome Steering Committee, Stockholm, pp 159–181

    Google Scholar 

  • Frisvad JC (2008) Fungi in cold ecosystems. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology, vol 9. Springer Nature, Switzerland, pp 137–156

    Google Scholar 

  • Frisvad JC, Larsen TO, Dalsgaard PW, Seifert KA, Louis-Seize G, Lyhne EK, Jarvis BB, Fettinger JC, Overy DP (2006) Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, Penicillium jamesonlandense sp. nov., Penicillium ribium sp. nov., Penicillium soppii and Penicillium lanosum. Int J Syst Evol Microbiol 56:1427–1437

    CAS  PubMed  Google Scholar 

  • Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TMA, Zani CL, Junior AS, Romanha AJ, Carvalho AGO, Gil LHVG, Rosa CA, Minnis AM, Rosa LH (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol 67:775–787

    PubMed  Google Scholar 

  • Gargas A, Trest MT, Christensen M, Volk TJ (2009) Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108:147–154

    Google Scholar 

  • Giddings LA, Newman DJ (2014) Bioactive compounds from terrestrial extremophiles. Springer International Publishing, Cham

    Google Scholar 

  • Gocheva YG, Krumova E, Slokoska L, Gesheva V, Angelova M (2005) Isolation of filamentous fungi from Antarctica. C R Acad Bulg Sci 58:403–408

    Google Scholar 

  • Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS, Pupo D, Alves MA, Junior PAS, Romanha AJ, Zani CL, Cantrell CL, Rosa CA, Rosa LH (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho VM, Gonçalves VN, Santiago IF, Figueredo HM, Vitoreli GA, Schaefer Carlos E-G-R, Barbosa EC, Oliveira JG, Alves MAT, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Kroon EG, Cantrell CL, Wedge DE, Duke OS, Ali A, Rosa CA, Rosa LH (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596

    PubMed  Google Scholar 

  • Gomes ECQ, Godinho VM, Silva DAS, de Paula MTR, Vitoreli GA, Zani CL, Alves TMA, Junior PAS, Murta SMF, Barbosa EC, Oliveira JG, Oliveira FS, Carvalho CR, Ferreira MC, Rosa CA, Rosa LH (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393

    CAS  PubMed  Google Scholar 

  • Gonçalves VN, Vaz ABM, Rosa CA, Rosa LH (2012a) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459–471

    PubMed  Google Scholar 

  • Gonçalves DB, Teixeira JA, Bazzolli DMS, de Queiroz MV, de Araújo EF (2012b) Use of response surface methodology to optimize production of pectinases by recombinant Penicillium griseoroseum T20. Biocatal Agric Biotechnol 1:140–146

    Google Scholar 

  • Gonçalves VN, Carvalho CR, Johann S, Mendes G, Alves TMA, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Cantrell CL, Rosa CA, Rosa LH (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152

    Google Scholar 

  • Goodrich RP, Handel TM, Baldeschwieler JD (1988) Modification of lipid phase behaviour with membrane-bound cryoprotectants. Biochim Biophys Acta 938:143–154

    CAS  PubMed  Google Scholar 

  • Gudjarnnson S (1999) Bioactive marine natural products. Rit Fiskideildar 16:107–110

    Google Scholar 

  • Hammonds P, Smith SN (1986) Lipid composition of a psychrophilic, a mesophilic and a thermophilic Mucor species. Trans Br Mycol Soc 86:551–560

    CAS  Google Scholar 

  • Harper CJ, Bomfleur B, Decombeix AL, Taylor EL, Taylor TN, Krings M (2012) Tylosis formation and fungal interactions in an early Jurassic conifer from northern Victoria Land, Antarctica. Rev Palaeobot Palynol 175:25–31

    Google Scholar 

  • Hassan H (2015) Isolation and characterization of psychrophilic fungi from Batura Passu and Siachen Glaciers, Pakistan. Dissertation, Department of Microbiology, Quaid-i-Azam University, Islamabad

    Google Scholar 

  • Hassan N, Rafiq M, Hayat M, Nadeem S, Shah A, Hasan F (2017) Potential of psychrotrophic fungi isolated from Siachen glacier, Pakistan, to produce antimicrobial metabolites. Appl Ecol Environ Res 15:1157–1171

    Google Scholar 

  • Hayashi M, Kim YP, Hiraoka H et al (1995) Macrosphelide, a novel inhibitor of cell-cell adhesion molecule. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 48:1435–1439

    CAS  Google Scholar 

  • Hayes MA (2012) The Geomyces Fungi: ecology and distribution. Bioscience 62:819–823

    Google Scholar 

  • Held BW, Jurgens JA, Duncan SM, Farrell RL (2006) Assessment of fungal diversity and deterioration in a wooden structure at New Harbor, Antarctica. Polar Biol 29:526–531

    Google Scholar 

  • Henríquez M, Vergara K, Norambuena J, Beiza A, Maza F, Ubille P, Araya I, Chavez R, San-Martin A, Darias J, Darias MJ, Vaca I (2014) Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J Microbiol Biotechnol 30:65–76

    PubMed  Google Scholar 

  • Hentschel U (2002) Natural products from marine microorganisms. ChemBioChem 3:1151–1154

    CAS  PubMed  Google Scholar 

  • Höller U, Wright AD, Matthee GF, Konig GM, Draeger S, Aust H-J, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365

    Google Scholar 

  • Hoshino YT, Terami F, Tkachenko OB, Hoshino T (2010) Mycelial growth of the snow mold fungus, Sclerotinia borealis, improved at low water potentials: an adaptation to frozen environment. Mycoscience 51:98–103

    Google Scholar 

  • Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG, Samson RA (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29:78–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiang T, Matsumoto N, Millett SM (1999) Biology and management of Typhula snow molds of turf grass. Plant Dis 83:788–798

    PubMed  Google Scholar 

  • Hua MX, Chi Z, Liu GL, Buzdar MA (2010) Production of a novel and cold-active killer toxin by Mrakia frigida 2E00797 isolated from sea sediment in Antarctica. Extremophiles 14:515–521

    CAS  PubMed  Google Scholar 

  • Istokovics A, Morita N, Izumi K, Hoshino T, Yumoto I, Sawada MT, Ishizaki K, Okuyama H (1998) Neutral lipids, phospholipids, and a betaine lipid of the snow mold fungus Microdochium nivale. Can J Microbiol 44:1051–1059

    CAS  Google Scholar 

  • Ivanova V, Oriol M, Montes MJ, Garcia A, Guinea J (2001) Secondary metabolites from a Streptomyces strain isolated from Livingston Island, Antarctica, Zeitschrift fur Naturforschung C. J Biosci 56:1–5

    CAS  Google Scholar 

  • Ivanova V, Kolarova M, Aleksieva K, Graefe U, Schlegel B (2007) Diphenylether and macrotriolides occurring in a fungal isolate from the Antarctic lichen Neuropogon. Prep Biochem Biotechnol 37:39–45

    CAS  PubMed  Google Scholar 

  • Jensen PR, Fenical W (2000) Marine drugs and drug discovery: current status and future potential. In: Fusetani N (ed) Drugs from the sea. Karger, Basel, pp 6–29

    Google Scholar 

  • Jiang CS, Guo YW (2011) Epipolythiodioxopiperazines from fungi: chemistry and bioactivities. Mini Rev Med Chem 11:728–745

    CAS  PubMed  Google Scholar 

  • Jurgens JA, Blanchette RA, Filley TR (2009) Fungal diversity and deterioration in mummified woods from the ad Astra Ice Cap region in the Canadian High Arctic. Polar Biol 32:751–758

    Google Scholar 

  • Kalanetra KM, Bano N, Hollibaugh T (2009) Ammonia-oxidizing Archaea in the Arctic ocean and Antarctic coastal waters. Environ Microbiol 11:2434–2445

    CAS  PubMed  Google Scholar 

  • Kamo M, Tojo M, Yamazaki Y, Itabashi T, Takeda H, Wakana D, Hosoe T (2016) Isolation of growth inhibitors of the snow rot pathogen Pythium iwayamai from an arctic strain of Trichoderma polysporum. J Antibiot 69:451–455

    CAS  Google Scholar 

  • Kerekes R, Nagy G (1980) Membrane lipid composition of a mesophilic and psychrophilic yeast. Acta Aliment 9:93–98

    CAS  Google Scholar 

  • Kobayasi Y, Hiratsuka N, Korf RP, Tubaki K, Aoshima K, Soneda M, Sugiyama J (1967) Mycological studies of the Alaskan Arctic. Annu Rep Inst Ferment Osaka 3:1–138

    Google Scholar 

  • Konig GM, Kehraus S, Seibert SF, Abdel-Leteff A, Muller D (2006) Natural products from marine organisms and their associated microbes. ChemBioChem 7:229–238

    PubMed  Google Scholar 

  • Kozlovsky AG, Kochkina GA, Zhelifonova VP, Antipova TV, Ivanushkina NE, Ozerskaya SM (2020) Secondary metabolites of the genus Penicillium from undisturbed and anthropogenically altered Antarctic habitats. Folia Microbiol 65:95–102

    CAS  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res 49:2163–2181

    CAS  Google Scholar 

  • Lamilla C, Pavez M, Santos A, Hermosilla A, Llanquinao V, Barrientos L (2017) Bioprospecting for extracellular enzymes from culturable Actinobacteria from the South Shetland Islands, Antarctica. Polar Biol 40:719–726

    Google Scholar 

  • Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 22:672–695

    CAS  PubMed  Google Scholar 

  • Lauro FM, Bartlett DH (2008) Prokaryotic lifestyles in deep sea habitats. Extremophiles 12:15–25

    PubMed  Google Scholar 

  • Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70:5963–5972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Lee JH, Hwang BY, Kim HS, Lee JJ (2002) Fungal metabolites, asterric acid derivatives inhibit vascular endothelial growth factor (VEGF)-induced tube formation of HUVECs. J Antibiot 55:552–556

    CAS  Google Scholar 

  • Lewer P, Graupner PR, Hahn DR, Karr LL, Duebelbeis DO, Lira JM, Anzeveno PB, Fields SC, Gilbert JR, Pearce C (2006) Discovery, synthesis, and insecticidal activity of cycloaspeptide E. J Nat Prod 69:1506–1510

    CAS  PubMed  Google Scholar 

  • Lewis DH, Smith DC (1967) Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism. New Phytol 66:143–184

    CAS  Google Scholar 

  • Li Y, Sun B, Liu S, Jiang L, Liu X, Zhang H, Che Y (2008) Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. J Nat Prod 71:1643–1646

    CAS  PubMed  Google Scholar 

  • Li HY, Shen M, Zhou ZP, Li T, Wei Y, Lin L (2012a) Diversity and cold adaptation of endophytic fungi from five dominant plant species collected from the Baima Snow Mountain, Southwest China. Fungal Divers 54:79–86

    Google Scholar 

  • Li L, Li D, Luan Y, Gu Q, Zhu T (2012b) Cytotoxic metabolites from the Antarctic psychrophilic fungus Oidiodendron truncatum. J Nat Prod 75:920–927

    CAS  PubMed  Google Scholar 

  • Li JY, Jin MM, Meng J, Gao SM, Lu RR (2013) Exopolysaccharide from Lactobacillus planterum LP6: antioxidation and the effect on oxidative stress. Carbohydr Polym 98:1147–1152

    CAS  PubMed  Google Scholar 

  • Li XD, Li XM, Xu GM, Zhang P, Wang BG (2015) Antimicrobial phenolic bisabolanes and related derivatives from Penicillium aculeatum SD-321, a deep sea sediment-derived fungus. J Nat Prod 78:844–849

    CAS  PubMed  Google Scholar 

  • Li W, Luo D, Huang J, Wang L, Zhang F, Xi T, Liao J, Lu Y (2018) Antibacterial constituents from Antarctic fungus, Aspergillus sydowii SP-1. Nat Prod Res 32:662–667

    CAS  PubMed  Google Scholar 

  • Libkind D, Moliné M, Sampaio JP, Van Broock M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362

    CAS  PubMed  Google Scholar 

  • Lin A, Wu G, Gu Q, Zhu T, Li D (2014) New eremophilane-type sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19 N-1. Arch Pharm Res 37:839–844

    CAS  PubMed  Google Scholar 

  • Liu GL, Wang K, Hua MX, Buzdar MA, Chia ZM (2012) Purification and characterization of the cold-active killer toxin from the psychrotolerant yeast Mrakia frigida isolated from sea sediments in Antarctica. Process Biochem 47:822–827

    CAS  Google Scholar 

  • Liu JT, Hu B, Gao Y, Zhang JP, Jiao BH, Lu XL, Liu XY (2014) Bioactive tyrosine-derived cytochalasins from fungus Eutypella sp. D-1. Chem Biodivers 11:800–806

    PubMed  Google Scholar 

  • Liu YJ, Zhang J-L, Li C, Mu XG, Liu X-L, Wang L, Zhao Y-C, Zhang P, Li X-D, Zhang X-X (2019) Antimicrobial secondary metabolites from the seawater-derived fungus Aspergillus sydowii SW9. Molecules 24:4596

    CAS  PubMed Central  Google Scholar 

  • Lo HC, Hsieh C, Lin FY, Hsu TH (2013) A systematic review of the mysterious caterpillar fungus Ophiocordyceps sinensis in Dong-Chong Xia Cao (Dong Chong Xia Căo) and related bioactive ingredients. J Tradit Complement Med 3:16–32

    PubMed  PubMed Central  Google Scholar 

  • Lu XL, Liu JT, Liu XY, Gao Y, Zhang J, Jiao BH, Zheng H (2014) Pimarane diterpenes from the Arctic fungus Eutypella sp. D-1. J Antibiot 67:171–174

    CAS  Google Scholar 

  • Lutz S, Anesio AM, Edwards A, Benning LG (2015) Microbial diversity on Icelandic glaciers and ice caps. Front Microbiol 6:307

    PubMed  PubMed Central  Google Scholar 

  • Mahmoodian A, Stickings CE (1964) Studies in the biochemistry of micro-organisms. 115. Metabolites of Penicillium frequentans Westling: isolation of sulochrin, asterric acid, (+)-bisdechlorogeodin and two new substituted anthraquinones, questin and questinol. Biochem J 92:369–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malosso E, Waite IS, English L, Hopkins DW (2006) Fungal diversity in maritime Antarctic soils determined using a combination of culture isolation, molecular fingerprinting and cloning techniques. Polar Biol 29:552–561

    Google Scholar 

  • Mancuso Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271

    Google Scholar 

  • Margaret E (1966) Three new yeasts from Antarctic soils: Candida nivalis, Candida gelida and Candida frigida spp.n. Antonie Van Leeuwenhoek 32:25–28

    Google Scholar 

  • Margesin R, Fell JW (2008) Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and arctic habitats. Int J Syst Evol Microbiol 58:2977–2982

    Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    PubMed  Google Scholar 

  • Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14

    CAS  Google Scholar 

  • Margesin R, Schinner F (eds) (1999) Biotechnological applications of cold-adapted organisms. Springer, Berlin

    Google Scholar 

  • Marinelli F, Brunati M, Sponga F, Ciciliato I, Losi D, Van Trappen S, Göttlich E, De Hoog S, Rojas JL, Genilloud O (2004) Biotechnological exploitation of heterotrophic bacteria and filamentous fungi isolated from benthic mats of Antarctic lakes. In: Kurtböke I, Swings J (eds) Microbial genetic resources and biodiscovery. Queensland Complete Printing Services, Queensland, pp 163–184

    Google Scholar 

  • Martínez D, Rosa A-G, Revilla MA (1999) Cryopreservation of in vitro grown shoot-tips of Olea europaea L. var. Arbequina. Cryo-Letters 20:29–36

    Google Scholar 

  • Melo IS, Santos SN, Rosa LH, Parma MM, Silva LJ, Queiroz SCN, Pellizari VH (2014) Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles 18:15–23

    CAS  PubMed  Google Scholar 

  • Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in Bat hibernacula of eastern North America. Fungal Biol 117:638–649

    PubMed  Google Scholar 

  • Moghaddam MSH, Soltani J (2014) Psychrophilic endophytic fungi with biological activity inhabit Cupressaceae plant family. Symbiosis 63:79–86

    Google Scholar 

  • Möller C, Dreyfuss MM (1996) Microfungi from Antarctic lichens, mosses and vascular plants. Mycologia 88:922–933

    Google Scholar 

  • Montemartini A, Caretta G, Del Frate G (1993) Notes on Thelebolus microsporus isolated in Antarctica. Mycotaxon 48:343–358

    Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz B, Zachow C, Berg G, Zeilinger S (2012) Trichoderma—plant–pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52:522–529

    Google Scholar 

  • Mukhopadhyay SK, Chatterjee S, Gauri SS, Das SS, Mishra A, Patra M, Ghosh AK, Das AK, Singh SM, Dey S (2014) Isolation and characterization of extracellular polysaccharide Thelebolan produced by a newly isolated psychrophilic Antarctic fungus Thelebolus. Carbohydr Polym 104:204–212

    CAS  PubMed  Google Scholar 

  • Nakajima H, Hamasaki T, Kimura Y (1989) Structure of spiciferone A, a novel gamma-pyrone plant-growth inhibitor produced by the fungus Cochliobolus spicifer. Nelson Agric Biol Chem 53:2297–2299

    CAS  Google Scholar 

  • Nakajima H, Hamasaki T, Maeta S et al (1990) A plant-growth regulator produced by the fungus Cochliobolus spicifer. Phytochemistry 29:1739–1743

    CAS  Google Scholar 

  • Newman DJ, Hill RT (2006) New drugs from marine microbes: the tide is turning. J Ind Microbiol Biotechnol 33:539–544

    CAS  PubMed  Google Scholar 

  • Newsted WJ, Polvi S, Papish B, Kendall E, Saleem M, Koch M, Hussain A, Cutler AJ, Georges F (1994) A low molecular weight peptide from snow mold with epitopic homology to the winter flounder antifreeze protein. Biochem Cell Biol 72:152–156

    CAS  PubMed  Google Scholar 

  • Niederer M, Pankow W, Wiemken A (1992) Seasonal changes of soluble carbohydrates in mycorrhizas of Norway spruce and changes induced by exposure to frost desiccation. Eur J For Pathol 22:291–299

    Google Scholar 

  • Nishanth Kumar SN, Mohandas C, Nambisan B (2014) Purification, structural elucidation and bioactivity of tryptophan containing diketopiperazines, from Comamonas testosteroni associated with a rhabditid entomopathogenic nematode against major human-pathogenic bacteria. Peptides 53:48–58

    CAS  PubMed  Google Scholar 

  • Niu S, Fan Z-W, Xie C-L, Liu Q, Luo Z-H, Liu G, Yang X-W (2017) Spirograterpene A, a tetracyclic spiro-diterpene with a fused 5/5/5/5 ring system from the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475. J Nat Prod 80:2174–2177

    CAS  PubMed  Google Scholar 

  • Onofri S (1999) Antarctic microfungi. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic, Dordrecht, pp 323–336

    Google Scholar 

  • Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JPP, Hatton J, Zucconi L (2008) Resistance of Antarctic lack fungi and crypto-endolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozerskaya SM, Ivanushkina NE, Kochkina GA, Fattakhova RN, Gilichinsky DA (2004) Mycelial fungi in cryopegs. Int J Astrobiol 4:327–331

    Google Scholar 

  • Parish CA, Cruz M, Smith SK, Zink D, Baxter J et al (2009) Antisense-guided isolation and structure elucidation of pannomycin, a substituted cis-decalin from Geomyces pannorum. J Nat Prod 72:59–62

    CAS  PubMed  Google Scholar 

  • Parker JC, McPherson RK, Andrews KM, Levy CB, Dubins JS, Chin JE, Perry PV, Hulin B, Perry DA, Inagaki T, Dekker KA (2000) Effects of skyrin, a receptor-selective glucagon antagonist, in rat and human hepatocytes. Diabetes 49:2079–2086

    CAS  PubMed  Google Scholar 

  • Paterson RA (1973) The occurrence and distribution of some aquatic phycomycetes on Ross Island and the dry valleys of Victoria Land, Antarctica. Mycologia 65:373–387

    Google Scholar 

  • Paul VJ, Puglisi MP, Ritson-Williams R (2006) Marine chemical ecology. Nat Prod Rep 23:153–180

    CAS  PubMed  Google Scholar 

  • Peng J, Gao H, Zhang X, Wang S, Wu C, Gu Q, Guo P, Zhu T, Li D (2014) Psychrophilins E–H and versicotide C, cyclic peptides from the marine-derived fungus Aspergillus versicolor ZLN-60. J Nat Prod 77:2218–2223

    CAS  PubMed  Google Scholar 

  • Perini L, Gostinčar C, Gunde-Cimerman N (2019a) Fungal and bacterial diversity of Svalbard subglacial ice. Sci Rep 9:1–15

    CAS  Google Scholar 

  • Perini L, Gostinčar C, Anesio AM, Williamson C, Tranter M, Gunde-Cimerman N (2019b) Darkening of the Greenland ice sheet: fungal abundance and diversity are associated with algal bloom. Front Microbiol 10:1–14

    Google Scholar 

  • Pietra F (1997) Secondary metabolites from marine microorganisms – bacteria, protozoa, algae and fungi – achievements and prospectives. Nat Prod Rep 14:453–464

    CAS  PubMed  Google Scholar 

  • Purić J, Vieira G, Cavalca LB et al (2018) Activity of Antarctic fungi extracts against phytopathogenic bacteria. Lett Appl Microbiol 66:530–536

    PubMed  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2019a) Genetic manipulation of secondary metabolites producers. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–29. https://doi.org/10.1016/B978-0-444-63504-4.00002-5

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N, Tataei Sarshari N (2019b) Bioengineering of secondary metabolites. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 55–68. https://doi.org/10.1016/B978-0-444-63504-4.00004-9

    Chapter  Google Scholar 

  • Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344

    CAS  PubMed  Google Scholar 

  • Ren J, Xue C, Tian L, Xu M, Chen J, Deng Z, Proksch P, Lin W (2009) Asperelines A–F, peptaibols from the marine-derived fungus Trichoderma asperellum. J Nat Prod 72:1036–1044

    CAS  PubMed  Google Scholar 

  • Ren J, Yang Y, Liu D, Chen W, Proksch P, Shao B, Lin W (2013) Sequential determination of new peptaibols asperelines G-Z12 produced by marine-derived fungus Trichoderma asperellum using ultrahigh pressure liquid chromatography combined with electrospray-ionization tandem mass spectrometry. J Chromatogr A 1309:90–95

    CAS  PubMed  Google Scholar 

  • Richard WN, Palm ME, Johnstone K, Wynn-Williams DD (1997) Ecological and physiological characterization of Humicola marvinii, a new psychrophilic fungus from Fellfield soils in the Maritime Antarctic. Mycologia 89:705–711

    Google Scholar 

  • Robin S, Hall T, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps – description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59

    Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    CAS  Google Scholar 

  • Rodrigues DF, Tiedje JM (2008) Coping with our cold planet. Appl Environ Microbiol 74:1677–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas JL, Martín J, Tormo JR, Vicente F, Brunati M, Ciciliato I, Losi D, Van Trappen S, Mergaert J, Swings J, Marinelli F (2009) Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Mar Genomics 2:33–41

    PubMed  Google Scholar 

  • Rosa LH, Zani CL, Cantrell CL, Duke SO, Dijck PV, Desideri A, Rosa CA (2019) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica, 1st edn. Springer, Cham, pp 1–17

    Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Google Scholar 

  • Rusman Y, Held BW, Blanchette RA et al (2018) Cadopherone and colomitide polyketides from Cadophora wood-rot fungi associated with historic expedition huts in Antarctica. Phytochemistry 148:1–10

    CAS  PubMed  Google Scholar 

  • Russell NJ (2008) Membrane components and cold sensing. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 177–190

    Google Scholar 

  • Santiago IF, Alves TMA, Rabello A, Sales-Júnior PA, Romanha AJ, Zani CL, Rosa CA, Rosa LH (2012) Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles 16:95–103

    PubMed  Google Scholar 

  • Sazanova KV, Senik SV, Kirtsideli IY, Shavarda AL (2019) Metabolomic profiling and lipid composition of Arctic and Antarctic strains of Micromycetes, Geomyces pannorum and Thelebolus microsporus grown at different temperatures. Microbiology 88:282–291

    CAS  Google Scholar 

  • Schipper MA (1967) Mucor strictus hagem, a psychrophilic fungus, and Mucor falcatus sp.n. Antonie Van Leeuwenhoek 33:189–195

    Google Scholar 

  • Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    CAS  Google Scholar 

  • Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbaru m CCFEE 5080. Res Microbiol 153:585–592

    CAS  PubMed  Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedman EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  • Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, De Leo F, Urzi C, Onofri S (2008) Drought meets acid: three new genera in a Dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaji S, Prakash J (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192:85–95

    CAS  PubMed  Google Scholar 

  • Singh SM, Puja G, Bhat DJ (2006) Psychrophilic fungi from Schirmacher Oasis, East Antarctica. Curr Sci 90:1388–1392

    Google Scholar 

  • Singh SM, Singh PN, Singh SK, Sharma PK (2014) Pigment, fatty acid and extracellular enzyme analysis of a fungal strain Thelebolus microsporus from Larsemann Hills, Antarctica. Polar Rec 50:31–36

    Google Scholar 

  • Singh VP, Yedukondalu N, Sharma V, Kushwaha M, Sharma R, Chaubey A, Kumar A, Singh D, Vishwakarma RA (2018) Lipovelutibols A–D: cytotoxic lipopeptaibols from the Himalayan cold habitat fungus Trichoderma velutinum. J Nat Prod 81:219–226

    CAS  PubMed  Google Scholar 

  • Snider CS, Hsiang T, Zhao G, Griffith M (2000) Role of ice nucleation and antifreeze activities in pathogenesis and growth of snow molds. Phytopathology 90:354–361

    CAS  PubMed  Google Scholar 

  • Stone R (2008) Last stand for the body snatcher of the Himalayas? Science 322:1182–1182

    CAS  PubMed  Google Scholar 

  • Stubblefield SP, Taylor TN (1983) Studies of Paleozoic fungi. I. The structure and organization of Traquairia (Ascomycota). Am J Bot 70:387–399

    Google Scholar 

  • Sumarah MW, Miller JD, Adams GW (2005) Measurement of a rugulosin-producing endophyte in white spruce seedlings. Mycologia 97:770–776

    PubMed  Google Scholar 

  • Svahn KS, Chryssanthou E, Olsen B, Bohlin L, Goransson U (2015) Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biol Biotechnol 2:1

    Google Scholar 

  • Taylor TN, Osborne JM (1996) The importance of fungi in shaping the paleoecosystem. Rev Paleobot Palynol 90:249–262

    Google Scholar 

  • Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tibbett M, Sanders FE, Cairney JWG (1998) The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol Res 102:129–135

    CAS  Google Scholar 

  • Timling I, Walker DA, Nusbaum C, Lennon NJ, Taylor DL (2014) Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Mol Ecol 23:3258–3272

    CAS  PubMed  Google Scholar 

  • Traquair JA, Smith DJ (1982) Sclerotial strains of Coprinus psychromorbidus, a snow mold basidiomycete. Can J Plant Pathol 4:27–36

    Google Scholar 

  • Tronsmo AM, Hsiang T, Okuyama H, Matsumoto N (2001) Low temperature diseases caused by Microdochium nivale. In: Iriki N, Gaudet DA, Tronsmo AM et al (eds) Low temperature plant microbe interactions under snow. Hokkaido National Agricultural Experimental Station, Sapporo, pp 75–86

    Google Scholar 

  • Turchetti B, Hall SRT, Connell LB, Branda E, Buzzini P, Theelen B, Müller WH, Boekhout T (2011) Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov. Extremophiles 15:573–586

    CAS  PubMed  Google Scholar 

  • Vaz ABM, Rosa LH, Vieira MLA, de Garcia V, Brandão LR, Lia Teixeira CRS, Moline M, Libkind D, van Broock M, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verbist JF, Sallenave C, Pruchus YF (2000) Marine fungal substances. In: Atta-Ur-Rahman (ed) Studies in natural products chemistry, vol 24. Elsevier, Amsterdam, pp 979–1092

    Google Scholar 

  • Vieira G, Puric J, Morão LG, dos Santos JA, Inforsato FJ, Sette LD, Ferreira H, Sass DC (2018) Terrestrial and marine Antarctic fungi extracts active against Xanthomonas citri subsp. citri. Lett Appl Microbiol 67:64–71

    CAS  PubMed  Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Vishniac HS (1996) Biodiversity of yeast and filamentous microfungi in terrestrial Antarctic ecosystems. Biodivers Conserv 5:1365–1378

    Google Scholar 

  • Volkmann M, Whitehead K, Rütters H, Rullkötter J, Gorbushina AA (2003) Mycosporine-glutamicol-glucoside: a natural UV-absorbing secondary metabolite of rock-inhabiting microcolonial fungi. Rapid Commun Mass Spectrom 17:897–902

    CAS  PubMed  Google Scholar 

  • Wang M, Jiang X, Wu W, Hao Y, Su Y, Cai L, Xiang M, Liu X (2015a) Psychrophilic fungi from the world’s roof. Persoonia 34:100–112

    CAS  PubMed  Google Scholar 

  • Wang J, He W, Qin X, Tian X, Liao L, Liao S, Yang B, Tu Z, Zhang T, Chen B, Wang F, Zhou X, Wei X (2015b) Three new indolyl diketopiperazine metabolites from the Antarctic soil derived fungus Penicillium sp. SCSIO 05705. RSC Adv 5:1039

    Google Scholar 

  • Wang JF, Wei XY, Qin XC, Tian XP, Liao L, Li KM, Zhou XF, Yang XW, Wang FZ, Zhang TY et al (2016) Antiviral merosesquiterpenoids produced by the Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J Nat Prod 79:59–65

    CAS  PubMed  Google Scholar 

  • Wang M, Tian J, Xiang M, Liu X (2017) Living strategy of cold-adapted fungi with the reference to several representative species. Mycology 8:178–188

    PubMed  PubMed Central  Google Scholar 

  • Weinstein RN, Palm ME, Johnstone K, Wynn-Williams DD (1997) Ecological and physiological characterization of Humicola marvinii, a new psychrophilic fungus from fellfield soils in the maritime Antarctic. Mycologia 89:706–711

    Google Scholar 

  • Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92:222–229

    CAS  Google Scholar 

  • Wu G, Ma H, Zhu T, Li J, Gu Q, Li D (2012) Penilactones A and B, two novel polyketides from Antarctic deep-sea derived fungus Penicillium crustosum PRB-2. Tetrahedron 68:9745–9749

    CAS  Google Scholar 

  • Wu G, Lin A, Gu Q, Zhu T, Li D (2013) Four new chloro-eremophilane sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Mar Drugs 11:1399–1408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Sun X, Yu G, Wang W, Zhu T, Gu Q, Li D (2014) Cladosins A–E, hybrid polyketides from a deep-sea-derived fungus, Cladosporium sphaerospermum. J Nat Prod 77:270–275

    CAS  PubMed  Google Scholar 

  • Wu B, Weise J, Labes A, Kramer A, Schmaljohann R, Imhoff JF (2015) Lindgomycin, an unusual antibiotic polyketide from a marine fungus of the Lindgomycetaceae. Mar Drugs 13:4617–4632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Wiese J, Wenzel-Storjohann A, Malien S, Schmaljohann R, Imhoff JF (2016) Engyodontochones, antibiotic polyketides from the marine fungus Engyodontium album strain LF069. Chem Eur J 22:7452–7462

    CAS  PubMed  Google Scholar 

  • Wu DL, Li HJ, Smith DR, Jaratsittisin J, Xia-Ke-Er XFKT, Ma WZ, Guo YW, Dong J, Shen J, Yang DP, Lan WJ (2018) Polyketides and alkaloids from the marine-derived fungus Dichotomomyces cejpii F31-1 and the antiviral activity of Scequinadoline A against Dengue Virus. Mar Drugs 16:229

    PubMed Central  Google Scholar 

  • Xiao HU, Zhang YJ, Xiao GH et al (2013) Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus. Chin Sci Bull 58:2846–2854

    Google Scholar 

  • Xin MX, Zhou PJ (2007) Mrakia psychrophila sp. nov., a new species isolated from Antarctic soil. J Zhejiang Univ Sci B 4:260–265

    Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Saxena AK (2017) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO.01:48–54

    Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution, Microbes for sustainable agro-ecosystem, vol 2. Springer, Singapore, pp 197–240. https://doi.org/10.1007/978-981-10-7146-1_11

    Chapter  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019) Recent advancement in white biotechnology through fungi. In: Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020a) Microbiomes of extreme environments, Biotechnological applications in agriculture, environment and industry, vol 2. CRC Press, Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020b) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Yogabaanu U, Weber JFF, Convey P, Rizman-Idid M, Alias SA (2017) Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi. Pol Sci 14:60–67

    Google Scholar 

  • Zhang Y, Li E, Wang C, Li Y, Liu X (2012) Ophiocordyceps sinensis, the flagship fungus of China: terminology, life strategy and ecology. Mycology 3:2–10

    Google Scholar 

  • Zhang LQ, Chen XC, Chen ZQ, Wang GM, Zhu SG, Yan YF, Chen KX, Liu XY, Li YM (2016) Eutypenoids A–C: novel pimarane diterpenoids from the Arctic fungus Eutypella sp. D-1. Mar Drugs 14:44

    PubMed Central  Google Scholar 

  • Zhou H, Li L, Wang W, Ch Q, Li D, Gu Q, Zhu T (2015) Chrodrimanins I and J from the Antarctic moss-derived fungus Penicillium funiculosum GWT2-24. J Nat Prod 78:1442–1445

    CAS  PubMed  Google Scholar 

  • Zhou HB, Li LY, Wu CM, Kurtán T, Mándi A, Liu YK, Gu QQ, Zhu TJ, Guo P, Li DH (2016) Penipyridones A–F, pyridone alkaloids from Penicillium funiculosum. J Nat Prod 79:1783–1790

    CAS  PubMed  Google Scholar 

  • Zhou Y, Zhang W, Liu X, Yu H, Lu X, Jiao B (2017) Inhibitors of protein tyrosine phosphatase 1B from marine natural products. Chem Biodivers 14:e1600462

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to their respective institutions for continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanda Vikrant Berde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berde, C.V., Giriyan, A., Berde, V.B. (2021). Bioactive Secondary Metabolites from Psychrophilic Fungi and Their Industrial Importance. In: Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Sharma, M. (eds) Industrially Important Fungi for Sustainable Development. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-85603-8_10

Download citation

Publish with us

Policies and ethics