Skip to main content
Log in

Processing methods to control silk fibroin film biomaterial features

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Control of silk structural and morphological features is reported for fibroin protein films via all aqueous processing, with and without polyethylene oxide (PEO). Silk films with thicknesses from 500 nm to 50 μm were generated with controllable surface morphologies by employing soft-lithography surface patterning or by adjusting PEO concentrations. FTIR analysis indicated that water-annealing, used to cure or set the films, resulted in increased β-sheet and α-helix content within the films. Steam sterilization provided an additional control point by increasing β-sheet content, while reducing random coil and turn structures, yet retaining film transparency and material integrity. Increased PEO concentration used during processing resulted in decreased sizes of surface globule structures, while simultaneously increasing uniformity of these features. The above results indicate that both surface and bulk morphologies and structures can be controlled by adjusting PEO concentration. The combined tool set for controlling silk film geometry and structure provides a foundation for further study of novel silk film biomaterial systems. These silk film biomaterials have potential applicability for a variety of optical and regenerative medicine applications due to their optical clarity, impressive mechanical properties, slow degradability, and biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J et al (2003) Biomaterials 24(3):401. doi:https://doi.org/10.1016/S0142-9612(02)00353-8

    Article  CAS  Google Scholar 

  2. Vepari C, Kaplan DL (2007) Prog Polym Sci (Oxford) 32(8–9):991. doi:https://doi.org/10.1016/j.progpolymsci.2007.05.013

    Article  CAS  Google Scholar 

  3. Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC et al (2002) Biomaterials 23:4131. doi:https://doi.org/10.1016/S0142-9612(02)00156-4

    Article  CAS  Google Scholar 

  4. Meinel L, Fajardo R, Hofmann S, Chen J, Langer R, Snyder B et al (2005) Bone 37:688. doi:https://doi.org/10.1016/j.bone.2005.06.010

    Article  CAS  Google Scholar 

  5. Minoura N, Aiba SI, Gotoh Y, Tsukada M, Imai Y (1995) J Biomed Mater Res 29(10):1215. doi:https://doi.org/10.1002/jbm.820291008

    Article  CAS  Google Scholar 

  6. Kim UJ, Park J, Joo Kim H, Wada M, Kaplan DL (2005) Biomaterials 26(15):2775. doi:https://doi.org/10.1016/j.biomaterials.2004.07.044

    Article  CAS  Google Scholar 

  7. Wang X, Kim HJ, Xu P, Matsumoto A, Kaplan DL (2005) Langmuir 21(24):11335. doi:https://doi.org/10.1021/la051862m

    Article  CAS  Google Scholar 

  8. Kardestuncer T, McCarthy MB, Karageorgiou V, Kaplan D, Gronowicz G (2006) Clin Orthop Relat Res 448:234. doi:https://doi.org/108110.1097/01.blo.0000205879.50834.fe

    Article  CAS  Google Scholar 

  9. Hofmann S, Wong Po Foo CT, Rossetti F, Textor M, Vunjak-Novakovic G, Kaplan DL et al (2006) J Control Release 111(1–2):219. doi:https://doi.org/10.1016/j.jconrel.2005.12.009

    Article  CAS  Google Scholar 

  10. Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronwicz G et al (2005) Biomaterials 26:147. doi:https://doi.org/10.1016/j.biomaterials.2004.02.047

    Article  CAS  Google Scholar 

  11. Panilaitis B, Altman GH, Chen J, Jin HJ, Karageorgiou V, Kaplan DL (2003) Biomaterials 24(18):3079. doi:https://doi.org/10.1016/S0142-9612(03)00158-3

    Article  CAS  Google Scholar 

  12. Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL (2004) Annu Rev Biomed Eng 6:131. doi:https://doi.org/10.1146/annurev.bioeng.6.040803.140037

    Article  CAS  Google Scholar 

  13. Arai T, Freddi G, Innocenti R, Tsukada M (2004) J Appl Polym Sci 91:2383. doi:https://doi.org/10.1002/app.13393

    Article  CAS  Google Scholar 

  14. Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE et al (2004) Biomaterials 26:3385. doi:https://doi.org/10.1016/j.biomaterials.2004.09.020

    Article  Google Scholar 

  15. Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE et al (2005) Biomaterials 26(17):3385. doi:https://doi.org/10.1016/j.biomaterials.2004.09.020

    Article  CAS  Google Scholar 

  16. Tsukada M, Gotoh Y, Nagura M, Minoura N, Kasai N, Freddi G (1994) J Polym Sci Part Polym Phys 32(5):961. doi:https://doi.org/10.1002/polb.1994.090320519

    Article  CAS  Google Scholar 

  17. Jin H-J, Park J, Valluzzi R, Cebe P, Kaplan DL (2004) Biomacromolecules 5:711. doi:https://doi.org/10.1021/bm0343287

    Article  CAS  Google Scholar 

  18. Jin H-J, Park J, Karageorgiou V, Kim U-J, Valluzzi R, Cebe P et al (2005) Adv Funct Mater 15:1241. doi:https://doi.org/10.1002/adfm.200400405

    Article  CAS  Google Scholar 

  19. Matsumoto A, Chen J, Collette AL, Kim UJ, Altman GH, Cebe P et al (2006) J Phys Chem B 110(43):21630. doi:https://doi.org/10.1021/jp056350v

    Article  CAS  Google Scholar 

  20. Wang X, Kluge JA, Leisk GG, Kaplan DL (2008) Biomaterials 29(8):1054. doi:https://doi.org/10.1016/j.biomaterials.2007.11.003

    Article  CAS  Google Scholar 

  21. Wilson D, Valluzzi R, Kaplan D (2000) Biophys J 78(5):2690

    Article  CAS  Google Scholar 

  22. Tretinnikov ON, Tamada Y (2001) Langmuir 17(23):7406. doi:https://doi.org/10.1021/la010791y

    Article  CAS  Google Scholar 

  23. Motta A, Fambri L, Migliaresi C (2002) Macromol Chem Phys 203(10–11):1658. doi:10.1002/1521-3935(200207)203:10/11<1658::AID-MACP1658>3.0.CO;2-3

    Article  CAS  Google Scholar 

  24. Jin H-J, Kaplan DL (2003) Nature 424(28):1057. doi:https://doi.org/10.1038/nature01809

    Article  CAS  Google Scholar 

  25. Hu X, Kaplan DL, Cebe P (2006) Macromolecules 39:6161. doi:https://doi.org/10.1021/ma0610109

    Article  CAS  Google Scholar 

  26. Park J (2004) Structure and properties of silk fibroin films. Diss. Tufts University, Medford, p 56

  27. Agarwal K, Hoagland DA, Farris RJ (1997) J Appl Polym Sci 63(3):401. doi:10.1002/(SICI)1097-4628(19970118)63:3<401::AID-APP17>3.0.CO;2-2

    Article  CAS  Google Scholar 

  28. Xia Y, Whitesides GM (1998) Annu Rev Mater Sci 28(1):153. doi:https://doi.org/10.1146/annurev.matsci.28.1.153

    Article  CAS  Google Scholar 

  29. Lawrence BD, Cronin-Golomb M, Georgakoudi I, Kaplan D, Omenetto FG (2008) Biomacromolecules 9(4):1214. doi: https://doi.org/10.1021/bm701235f

    Article  CAS  Google Scholar 

  30. Dunn GA, Brown AF (1986) J Cell Sci 83:313

    CAS  Google Scholar 

  31. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Biomaterials 20(23–24):2363. doi:https://doi.org/10.1016/S0142-9612(99)00165-9

    Article  CAS  Google Scholar 

  32. Teixeira AI, Nealey PF, Murphy CJ (2004) J Biomed Mater Res A 71(3):369. doi:https://doi.org/10.1002/jbm.a.30089

    Article  Google Scholar 

  33. Liliensiek SJ, Campbell S, Nealey PF, Murphy CJ (2006) J Biomed Mater Res A 79(1):185. doi:https://doi.org/10.1002/jbm.a.30744

    Article  CAS  Google Scholar 

  34. Gupta MK, Khokhar SK, Phillips DM, Sowards LA, Drummy LF, Kadakia MP et al (2007) Langmuir 23(3):1315. doi:https://doi.org/10.1021/la062047p

    Article  CAS  Google Scholar 

  35. Suh KY, Khademhosseini A, Yang JM, Eng G, Langer R (2004) Adv Mater 16(7):584

    Article  CAS  Google Scholar 

  36. Crabb RAB, Chau EP, Evans MC, Barocas VH, Hubel A (2006) Tissue Eng 12(6):1565. doi:https://doi.org/10.1089/ten.2006.12.1565

    Article  Google Scholar 

  37. Abrams GA, Schaus SS, Goodman SL, Nealey PF, Murphy CJ (2000) Cornea 19(1):57. doi:https://doi.org/10.1097/00003226-200001000-00012

    Article  CAS  Google Scholar 

  38. Diehl KA, Foley JD, Nealey PF, Murphy CJ (2005) J Biomed Mater Res A 75(3):603. doi:https://doi.org/10.1002/jbm.a.30467

    Article  CAS  Google Scholar 

  39. Karlon WJ, Hsu PP, Song LI, Chien S, McCulloch AD, Omens JH (1999) Ann Biomed Eng 27(6):712. doi:https://doi.org/10.1114/1.226

    Article  CAS  Google Scholar 

  40. Karuri NW, Liliensiek S, Teixeira AI, Abrams G, Campbell S, Nealey PF et al (2004) J Cell Sci 117(15):3153. doi:https://doi.org/10.1242/jcs.01146

    Article  CAS  Google Scholar 

  41. Karuri NW, Porri TJ, Albrecht RM, Murphy CJ, Nealey PF (2006) IEEE Trans Nanobiosci 5(4):273. doi:https://doi.org/10.1109/TNB.2006.886570

    Article  Google Scholar 

  42. ImageJ, Wayne Rasband. National Institute of Health, USA

  43. Arrondo JLR, Muga A, Castresana J, Goñi FM (1993) Prog Biophys Mol Biol 59(1): 23. doi:https://doi.org/10.1016/0079-6107(93)90006-6

    Article  CAS  Google Scholar 

  44. Dong A, Huang P, Caughey WS (1990) Biochemistry 29(13):3303. doi:https://doi.org/10.1021/bi00465a022

    Article  CAS  Google Scholar 

  45. Speare JO, Rush TS III (2003) Biopolymers 72(3):193. doi: https://doi.org/10.1002/bip.10337

    Article  CAS  Google Scholar 

  46. 1.37C, I.V., Wayne Rasband. National Institute of Health, USA

  47. Vollrath F, Knight DP (2001) Nature 410(6828):541. doi:https://doi.org/10.1038/35069000

    Article  CAS  Google Scholar 

  48. Valluzzi R, Jin HJ (2004) Biomacromolecules 5(3):696. doi:https://doi.org/10.1021/bm0343085

    Article  CAS  Google Scholar 

  49. Dongbin Zhao YLZZ (2007) Water 35(1):42

    Google Scholar 

  50. Smith CK, Regan L (1997) Acc Chem Res 30(4):153. doi:https://doi.org/10.1021/ar9601048

    Article  CAS  Google Scholar 

  51. Jung C (2000) J Mol Recognit 13(6):325. doi:10.1002/1099-1352(200011/12)13:6<325::AID-JMR507>3.0.CO;2-C

    Article  CAS  Google Scholar 

  52. Chen X, Shao Z, Marinkovic NS, Miller LM, Zhou P, Chance MR (2001) Biophys Chem 89(1):25. doi:https://doi.org/10.1016/S0301-4622(00)00213-1

    Article  CAS  Google Scholar 

  53. Chen X, Shao Z, Knight DP, Vollrath F (2007) Proteins 68(1):223. doi:https://doi.org/10.1002/prot.21414

    Article  CAS  Google Scholar 

  54. Hu X, Kaplan D, Cebe P (2007) Thermochim Acta 461(1–2):137. doi:https://doi.org/10.1016/j.tca.2006.12.011

    Article  CAS  Google Scholar 

  55. Valluzzi R, Szela S, Avtges P, Kirschner D, Kaplan D (1999) J Phys Chem B 103(51):11382. doi:https://doi.org/10.1021/jp991363s

    Article  CAS  Google Scholar 

  56. Asakura T, Kuzuhara A, Tabeta R, Saito H (1985) Macromolecules 18(10):1841. doi:https://doi.org/10.1021/ma00152a009

    Article  CAS  Google Scholar 

  57. Fink AL (1998) Fold Des 3(1). doi:https://doi.org/10.1016/S1359-0278(98)00005-4

    Article  CAS  Google Scholar 

  58. Mears DR, Pae KD, Sauer JA (1969) J Appl Phys 40(11):4229. doi:https://doi.org/10.1063/1.1657180

    Article  CAS  Google Scholar 

  59. Nakafuku C (1993) Polymer Communications 34(19):4166. doi:https://doi.org/10.1016/0032-3861(93)90684-3

    Article  CAS  Google Scholar 

  60. Nakafuku C, Nishimura K (2003) J Appl Polym Sci 87(12):1962. doi:https://doi.org/10.1002/app.11601

    Article  CAS  Google Scholar 

  61. Cuniberti C, Ferrando R (1972) Polymer (Guildf) 13(8):379. doi:https://doi.org/10.1016/0032-3861(72)90058-4

    Article  CAS  Google Scholar 

  62. Hammouda B, Ho DL, Kline S (2004) Macromolecules 37(18):6932. doi:https://doi.org/10.1021/ma049623d

    Article  CAS  Google Scholar 

  63. Fitton JH, Dalton BA, Beumer G, Johnson G, Griesser HJ, Steele JG (1998) J Biomed Mater Res 42(2):245–257. doi:10.1002/(SICI)1097-4636(199811)42:2<245::AID-JBM9>3.0.CO;2-P

    Article  CAS  Google Scholar 

  64. Loesberg WA, te Riet J, van Delft FCMJM, Schön P, Figdor CG, Speller S, van Loon JJWA, Walboomers XF, Jansen JA (2007) Biomaterials 28(27):3944. doi:https://doi.org/10.1016/j.biomaterials.2007.05.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the NIH P41 Tissue Engineering Resource Center for support for this work. Additionally, the authors would like to thank Mark Cronin-Golomb for technical assistance with AFM imaging, Xiao Hu for technical assistance with FTIR, and Katherine Chui for providing technical assistance in material processing. This material is based upon work supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under contract number W911NF-07-1-0618 and by the DARPA-DSO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, B.D., Omenetto, F., Chui, K. et al. Processing methods to control silk fibroin film biomaterial features. J Mater Sci 43, 6967–6985 (2008). https://doi.org/10.1007/s10853-008-2961-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2961-y

Keywords

Navigation