Skip to main content

SNP Identification and Discovery

  • Chapter
  • First Online:
Bioinformatics in Rice Research

Abstract

The global climate change has a negative influence on the quality of crop production and has been considered a threat in recent years. Henceforth, there is a need for advancement in technology to overcome the issue and improve both the quality and quantity of the crop plants by exploiting their genome. The various single nucleotide polymorphism (SNP) markers have been extensively used in crop breedings as molecular markers with advances in NGS (Next-generation sequencing) technology. These SNP markers are cost-effective for variety identification. SNPs have a deterministic role in protein expression. Thereby sequencing and genotyping have enabled crop improvement based on genomics with significant advances in NGS technologies which have also assisted in overcoming the drawbacks in detecting new functional SNPs associated with diverse traits. While SNP markers are found to be highly abundant and prevalent across the genome, functional SNPs are known to have a crucial impact on the phenotypes of plants. Besides, it was also known that SNP markers can be widely used and implemented in genotyping for the identification of structural variants due to their codominance, low cost, flexibility, speed, and ease of automation than other markers. Even in the genome-wide association study (GWAS), SNP markers were considered a significant tool in developing genome-wide haplotypes. Identified SNP patterns from GWAS are useful for understanding plant evolution. Genetic variations derived from the SNP patterns may execute desired phenotypes in the plant that benefits plant breeding and crop improvements. Even though SNPs widely use, technical advancements are needed to overcome the challenges in plant SNPs identification, to understand speciation and evolution through genomic divergence of plants, and to identify associate genomic variations of phenotypic traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASO:

Allele-specific oligonucleotide

OLA:

Oligonucleotide ligation assay

QTLs :

Quantitative trait loci

RAPD:

Random amplification of polymorphic DNA

RFLP:

Restriction fragment length polymorphism

SNP:

Single nucleotide polymorphism

SSCP:

Single-strand conformation polymorphism

SSRs:

Simple sequence repeats

References

  1. Consortium IH. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851.

    Article  CAS  Google Scholar 

  2. Syvänen A-C. Toward genome-wide SNP genotyping. Nat Genet. 2005;37:S5–S10.

    Article  PubMed  CAS  Google Scholar 

  3. MacLeod C. Obituary notice. Oswald Theodore Avery, 1877–1955. Microbiology. 1957;17:539–49.

    Google Scholar 

  4. Mayor S. First human chromosome is sequenced. Br Med J. 1999;319:1453.

    Article  Google Scholar 

  5. Khan AW, Garg V, Roorkiwal M, Golicz AA, Edwards D, Varshney RK. Super-pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci. 2020;25:148–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Powell W, Machray GC, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1996;1:215–22.

    Article  Google Scholar 

  7. Jang S-J, Sato M, Sato K, Jitsuyama Y, Fujino K, Mori H, Takahashi R, Benitez ER, Liu B, Yamada T. A single-nucleotide polymorphism in an endo-1,4-β-glucanase gene controls seed coat permeability in soybean. PLoS One. 2015;10:e0128527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Varshney R, Graner A, Sorrells M. Genomics-assisted breeding for crop improvement. Trends Plant Sci. 2005;10:621–30.

    Article  CAS  PubMed  Google Scholar 

  9. Bevan MW, Uauy C, Wulff BB, Zhou J, Krasileva K, Clark MD. Genomic innovation for crop improvement. Nature. 2017;543:346–54.

    Article  CAS  PubMed  Google Scholar 

  10. Yuan Y, Bayer PE, Batley J, Edwards D. Improvements in genomic technologies: application to crop genomics. Trends Biotechnol. 2017;35:547–58.

    Article  CAS  PubMed  Google Scholar 

  11. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF. Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 1991;252:1651–6.

    Article  CAS  PubMed  Google Scholar 

  12. Solomon MJ, Larsen PL, Varshavsky A. Mapping proteinDNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell. 1988;53:937–47.

    Article  CAS  PubMed  Google Scholar 

  13. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet. 2011;12:363–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung W-H, Jeong N, Kim J, et al. Population structure and domestication revealed by high-depth resequencing of Korean cultivated and wild soybean genomes. DNA Res. 2014;21:153–67.

    Article  CAS  PubMed  Google Scholar 

  15. Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol. 2002;5:94–100.

    Article  CAS  PubMed  Google Scholar 

  16. Shi Z, Liu S, Noe J, Arelli P, Meksem K, Li Z. SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics. 2015;16:314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Semagn K, Bjørnstad Å, Ndjiondjop MN. Principles, requirements and prospects of genetic mapping in plants. Afr J Biotechnol. 2007;525(25):2569–87. https://doi.org/10.4314/ajb.v5i25.56082.

    Article  Google Scholar 

  18. Ganal MW, Altmann T, Röder MS. SNP identification in crop plants. Curr Opin Plant Biol. 2009;12:211–7.

    Article  CAS  PubMed  Google Scholar 

  19. Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA. Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet. 2012;124:1201–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. PNAS. 2010;107:10578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC. The genetic architecture of maize flowering time. Science. 2009;325:714–8.

    Article  CAS  PubMed  Google Scholar 

  22. Akond M, Liu S, Schoener L, Anderson JA, Kantartzi SK, Meksem K, Song Q, Wang D, Wen Z, Lightfoot DA. A SNP-based genetic linkage map of soybean using the SoySNP6K Illumina Infinium BeadChip genotyping array. Plant Genet Genomics Biotechnol. 2013;1:80–9.

    Article  Google Scholar 

  23. Yano K, Yamamoto E, Aya K, et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet. 2016;48:927–34.

    Article  CAS  PubMed  Google Scholar 

  24. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–4.

    Article  CAS  PubMed  Google Scholar 

  25. Tanksley SD, Young ND, Paterson AH, Bonierbale MW. RFLP mapping in plant breeding: new tools for an old science. Bio/Technology. 1989;7:257–64.

    CAS  Google Scholar 

  26. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD. Molecular mapping of rice chromosomes. Theor Appl Genet. 1988;76:815–29.

    Article  CAS  PubMed  Google Scholar 

  27. Gentzbittel L, Vear F, Zhang Y-X, Berville A, Nicolas P. Development of a consensus linkage RFLP map of cultivated sunflower (Helianthus annuus L.). Theor Appl Genet. 1995;90:1079–86.

    Article  CAS  PubMed  Google Scholar 

  28. Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet. 1986;72:761–9.

    Article  CAS  PubMed  Google Scholar 

  29. Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet. 1989;78:495–504.

    Article  CAS  PubMed  Google Scholar 

  30. Keim P, Diers BW, Olson TC, Shoemaker RC. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics. 1990;126:735–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992;132:1141–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A. A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet. 2007;114:1091–103.

    Article  CAS  PubMed  Google Scholar 

  33. Radhika P, Gowda SJM, Kadoo NY, Mhase LB, Jamadagni BM, Sainani MN, Chandra S, Gupta VS. Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor Appl Genet. 2007;115:209–16.

    Article  CAS  PubMed  Google Scholar 

  34. Miller JC, Tanksley SD. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet. 1990;80:437–48.

    Article  CAS  PubMed  Google Scholar 

  35. Desplanque B, Boudry P, Broomberg K, Saumitou-Laprade P, Cuguen J, Van Dijk H. Genetic diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theor Appl Genet. 1999;98:1194–201.

    Article  CAS  Google Scholar 

  36. Kesawat MS, Kumar BD. Molecular markers: it’s application in crop improvement. J Crop Sci Biotechnol. 2009;12:169–81.

    Article  Google Scholar 

  37. Gupta M, Chyi Y-S, Romero-Severson J, Owen JL. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet. 1994;89:998–1006.

    Article  CAS  PubMed  Google Scholar 

  38. Landegren U, Kaiser R, Sanders J, Hood L. A ligase-mediated gene detection technique. Science. 1988;241:1077–80.

    Article  CAS  PubMed  Google Scholar 

  39. Duran C, Appleby N, Clark T, Wood D, Imelfort M, Batley J, Edwards D. AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants. Nucleic Acids Res. 2009;37:D951–3.

    Article  CAS  PubMed  Google Scholar 

  40. Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989;5:874–9.

    Article  CAS  PubMed  Google Scholar 

  41. Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci. 1991;88:189–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990;18:7213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18:6531–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cereb N, Maye P, Lee S, Kong Y, Yang SY. Locus-specific amplification of HLA class I genes from genomic DNA: locus-specific sequences in the first and third introns of HLA-A,-B, and-C alleles. Tissue Antigens. 1995;45:1–11.

    Article  CAS  PubMed  Google Scholar 

  45. Weber JL, Myers EW. Human whole-genome shotgun sequencing. Genome Res. 1997;7:401–9.

    Article  CAS  PubMed  Google Scholar 

  46. Chapman JA, Mascher M, Buluç A, Barry K, Georganas E, Session A, Strnadova V, Jenkins J, Sehgal S, Oliker L. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. 2015;16:1–17.

    Article  Google Scholar 

  47. Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature. 2000;407:513–6.

    Article  CAS  PubMed  Google Scholar 

  48. Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc. 2011;6:468–81.

    Article  CAS  PubMed  Google Scholar 

  49. Wang S, Lv J, Zhang L, et al. MethylRAD: a simple and scalable method for genome-wide DNA methylation profiling using methylation-dependent restriction enzymes. Open Biol. 2015;5:150130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. van Gurp TP, Wagemaker NCAM, Wouters B, Vergeer P, Ouborg JNJ, Verhoeven KJF. epiGBS: reference-free reduced representation bisulfite sequencing. Nat Methods. 2016;13:322–4.

    Article  PubMed  CAS  Google Scholar 

  51. Trucchi E, Mazzarella AB, Gilfillan GD, Lorenzo MT, Schönswetter P, Paun O. BsRADseq: screening DNA methylation in natural populations of non-model species. Mol Ecol. 2016;25:1697–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gugger PF, Fitz-Gibbon S, PellEgrini M, Sork VL. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol Ecol. 2016;25:1665–80.

    Article  CAS  PubMed  Google Scholar 

  53. Lea AJ, Altmann J, Alberts SC, Tung J. Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus). Mol Ecol. 2016;25:1681–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weyrich A, Lenz D, Jeschek M, Chung TH, Rübensam K, Göritz F, Jewgenow K, Fickel J. Paternal intergenerational epigenetic response to heat exposure in male wild guinea pigs. Mol Ecol. 2016;25:1729–40.

    Article  CAS  PubMed  Google Scholar 

  55. Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 2009;5:e1000530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K, Caillieux E, Aury J-M, Wincker P, Roudier F. Mapping the epigenetic basis of complex traits. Science. 2014;343:1145–8.

    Article  CAS  PubMed  Google Scholar 

  57. Hofmeister BT, Lee K, Rohr NA, Hall DW, Schmitz RJ. Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol. 2017;18:1–16.

    Article  CAS  Google Scholar 

  58. Pavey SA, Bernatchez L, Aubin-Horth N, Landry CR. What is needed for next-generation ecological and evolutionary genomics? Trends Ecol Evol. 2012;27:673–8.

    Article  PubMed  Google Scholar 

  59. O’Connor M, Peifer M, Bender W. Construction of large DNA segments in Escherichia coli. Science. 1989;244:1307–12.

    Article  PubMed  Google Scholar 

  60. Ariyadasa R, Stein N. Advances in BAC-based physical mapping and map integration strategies in plants. J Biomed Biotechnol. 2012;2012:184854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Sternberg N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. PNAS. 1990;87:103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Choi JY, Lye ZN, Groen SC, Dai X, Rughani P, Zaaijer S, Harrington ED, Juul S, Purugganan MD. Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice. Genome Biol. 2020;21:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. 2017;14:407–10.

    Article  CAS  PubMed  Google Scholar 

  64. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010;11:204–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiao W-B, Schneeberger K. The impact of third generation genomic technologies on plant genome assembly. Curr Opin Plant Biol. 2017;36:64–70.

    Article  CAS  PubMed  Google Scholar 

  66. Schmidt MH-W, Vogel A, Denton AK, et al. De novo assembly of a new Solanum pennellii accession using nanopore sequencing. Plant Cell. 2017;29:2336–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.

    Article  CAS  PubMed  Google Scholar 

  68. VanBuren R, Bryant D, Edger PP, et al. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature. 2015;527:508–11.

    Article  CAS  PubMed  Google Scholar 

  69. Feng Z, Fang G, Korlach J, Clark T, Luong K, Zhang X, Wong W, Schadt E. Detecting DNA modifications from SMRT sequencing data by modeling sequence context dependence of polymerase kinetic. PLoS Comput Biol. 2013;9:e1002935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Weber APM, Weber KL, Carr K, Wilkerson C, Ohlrogge JB. Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol. 2007;144:32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J. 2010;63:86–99.

    CAS  PubMed  Google Scholar 

  72. Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res. 2010;20:1238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ozsolak F, Ting DT, Wittner BS, Brannigan BW, Paul S, Bardeesy N, Ramaswamy S, Milos PM, Haber DA. Amplification-free digital gene expression profiling from minute cell quantities. Nat Methods. 2010;7:619–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao H, Sun L, Xiong T, et al. Genetic characterization of the chromosome single-segment substitution lines of O. glumaepatula and O. barthii and identification of QTLs for yield-related traits. Mol Breed. 2019;39:51.

    Article  CAS  Google Scholar 

  76. Jaccoud D, Peng K, Feinstein D, Kilian A. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 2001;29:e25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity arrays technology (DArT) for whole-genome profiling of barley. PNAS. 2004;101:9915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate. Science. 1998;281:363–5.

    Article  CAS  PubMed  Google Scholar 

  79. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SBH, Hood LE. Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321:674–9.

    Article  CAS  PubMed  Google Scholar 

  80. Smith LM. The future of DNA sequencing. Science. 1993;262:530–2.

    Article  CAS  PubMed  Google Scholar 

  81. Storm N, Darnhofer-Patel B. MALDI-TOF mass spectrometry-based SNP genotyping. In: Kwok P-Y, editor. Single nucleotide polymorphisms: methods and protocols. New York: Springer; 2003. p. 241–62.

    Google Scholar 

  82. Bhardwaj A, Bag SK. PLANET-SNP pipeline: PLants based ANnotation and Establishment of True SNP pipeline. Genomics. 2019;111:1066–77.

    Article  CAS  PubMed  Google Scholar 

  83. Mansueto L, Fuentes RR, Chebotarov D, et al. SNP-seek II: a resource for allele mining and analysis of big genomic data in Oryza sativa. Curr Plant Biol. 2016;7–8:16–25.

    Article  Google Scholar 

  84. Mao L, Chen M, Chu Q, et al. RiceRelativesGD: a genomic database of rice relatives for rice research. Database (Oxford). 2019;2019:baz110. https://doi.org/10.1093/database/baz110.

    Article  CAS  Google Scholar 

  85. Yan J, Zou D, Li C, Zhang Z, Song S, Wang X. SR4R: an integrative SNP resource for genomic breeding and population research in rice. Genomics Proteomics Bioinform. 2020;18:173–85.

    Article  Google Scholar 

  86. Yonemaru J, Ebana K, Yano M. HapRice, an SNP haplotype database and a web tool for rice. Plant Cell Physiol. 2014;55:e9.

    Article  CAS  PubMed  Google Scholar 

  87. Scheben A, Verpaalen B, Lawley CT, Chan C-KK, Bayer PE, Batley J, Edwards D. CropSNPdb: a database of SNP array data for Brassica crops and hexaploid bread wheat. Plant J. 2019;98:142–52.

    Article  CAS  PubMed  Google Scholar 

  88. Curry EW. A framework for generalized subspace pattern mining in high-dimensional datasets. BMC Bioinform. 2014;15:355.

    Article  Google Scholar 

  89. Dereeper A, Nicolas S, Le Cunff L, Bacilieri R, Doligez A, Peros J-P, Ruiz M, This P. SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects. BMC Bioinform. 2011;12:134.

    Article  CAS  Google Scholar 

  90. Nijveen H, van Kaauwen M, Esselink DG, Hoegen B, Vosman B. QualitySNPng: a user-friendly SNP detection and visualization tool. Nucleic Acids Res. 2013;41:W587–90.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tareke Woldegiorgis S, Wang S, He Y, et al. Rice stress-resistant SNP database. Rice. 2019;12:97.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Consortium IP. Information commons for rice (IC4R). Nucleic Acids Res. 2016;44:D1172–80.

    Article  CAS  Google Scholar 

  93. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ware D, Jaiswal P, Ni J, et al. Gramene: a resource for comparative grass genomics. Nucleic Acids Res. 2002;30:103–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sakai H, Lee SS, Tanaka T, et al. Rice annotation project database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol. 2013;54:e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, Pozzi C. ESTree db: a tool for peach functional genomics. BMC Bioinform. 2005;6:1–6.

    Article  CAS  Google Scholar 

  97. Wei Z, Wang W, Hu P, Lyon GJ, Hakonarson H. SNVer: a statistical tool for variant calling in analysis of pooled or individual next-generation sequencing data. Nucleic Acids Res. 2011;39:e132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM, Wilson RK, Ding L. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics. 2009;25:2283–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, Johnson J, Dougherty B, Barrett JC, Dry JR. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016;44:e108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907; 2012.

    Google Scholar 

  101. Smith SM, Maughan PJ. SNP genotyping using KASPar assays. Methods Mol Biol. 2015;1245:243–56.

    Article  CAS  PubMed  Google Scholar 

  102. Wu MC, Kuan P-F. A guide to illumina BeadChip data analysis. In: Tost J, editor. DNA methylation protocols. New York, NY: Springer; 2018. p. 303–30.

    Chapter  Google Scholar 

  103. Li F, Kitashiba H, Inaba K, Nishio T. A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res. 2009;16:311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kruglyak L. The use of a genetic map of biallelic markers in linkage studies. Nat Genet. 1997;17(1):21–4. https://doi.org/10.1038/ng0997-21.

  105. Nakanishi N, Wada T, Arikawa K, Millet J, Rastogi N, Iwamoto T. Evolutionary robust SNPs reveal the misclassification of Mycobacterium tuberculosis Beijing family strains into sublineages. Infect Genet Evol. 2013;16:174–7.

    Article  CAS  PubMed  Google Scholar 

  106. Rai AJ, Yee J, Fleisher M. Biomarkers in the era of personalized medicine—a multiplexed SNP assay using capillary electrophoresis for assessing drug metabolism capacity. Scand J Clin Lab Invest. 2010;70:15–8.

    Article  CAS  Google Scholar 

  107. Huang X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet. 2010;42:961.

    Article  CAS  PubMed  Google Scholar 

  108. Lekklar C, Pongpanich M, Suriya-arunroj D, Chinpongpanich A, Tsai H, Comai L, Chadchawan S, Buaboocha T. Genome-wide association study for salinity tolerance at the flowering stage in a panel of rice accessions from Thailand. BMC Genomics. 2019;20:76.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Huq MA, Akter S, Nou IS, Kim HT, Jung YJ, Kang KK. Identification of functional SNPs in genes and their effects on plant phenotypes. J Plant Biotechnol. 2016;43:1–11.

    Article  Google Scholar 

  110. Wendel JF. Genome evolution in polyploids. In: Doyle JJ, Gaut BS, editors. Plant molecular evolution. Dordrecht: Springer Netherlands; 2000. p. 225–49.

    Chapter  Google Scholar 

  111. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011;12:499–510.

    Article  CAS  PubMed  Google Scholar 

  112. Kim K-T, Lee HW, Lee H-O, Song HJ, Shin S, Kim H, Shin Y, Nam D-H, Jeong BC, Kirsch DG. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol. 2016;17:1–17.

    Article  CAS  Google Scholar 

  113. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ma J-Q, Huang L, Ma C-L, Jin J-Q, Li C-F, Wang R-K, Zheng H-K, Yao M-Z, Chen L. Large-scale SNP discovery and genotyping for constructing a high-density genetic map of tea plant using specific-locus amplified fragment sequencing (SLAF-seq). PLoS One. 2015;10:e0128798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Centre for Bioinformatics for providing the necessary facility for the work.

Conflict of Interest

There is no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antony Raj, C.B., Nagarajan, H., Aslam, M.H., Panchalingam, S. (2021). SNP Identification and Discovery. In: Gupta, M.K., Behera, L. (eds) Bioinformatics in Rice Research. Springer, Singapore. https://doi.org/10.1007/978-981-16-3993-7_17

Download citation

Publish with us

Policies and ethics