Skip to main content

Genomic Approaches for the Improvement and Conservation of Buckwheat

  • Chapter
  • First Online:
Neglected and Underutilized Crops - Towards Nutritional Security and Sustainability

Abstract

Buckwheat (Fagopyrum sp.) is a vital pseudocereal annual crop grown widely in temperate regions and can strongly acclimatize to adverse conditions. The crop has gained immense importance in recent times because of its higher medicinal and nutraceutical values, as it is rich in vitamins, fats, proteins, minerals, polyphenols, and bioflavonoids such as rutin and quercetin. However, the crop is suffering from several barriers responsible for its underutilization which includes, low yield, self-incompatibility, increased seed shattering, low seed set, lodging, frost susceptibility, etc. To overcome such barriers, biotechnological tools such as molecular markers, genomics, plant tissue culture, and mutagenesis approaches have played crucial role for genetic improvement of buckwheat trait descriptors. Till date, only few of them have been implemented in this crop which are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi T, Yamaguchi A, Miike Y, Hoffman F (1989) Plant regeneration from protoplasts of common buckwheat (Fagopyrum esculentum). Plant Cell Rep 8:247–250

    Article  CAS  PubMed  Google Scholar 

  • Aii J, Nagano M, Penner GA, Campbell CG, Adachi T (1998) Identification of RAPD markers linked to the homostylar (Ho) gene in buckwheat. Breed Sci 48:59–62

    CAS  Google Scholar 

  • Alamprese C, Casiraghi E, Pagani MA (2007) Development of gluten-free fresh egg pasta analogues containing buck wheat. Eur Food Res Technol 225:205–213

    Article  CAS  Google Scholar 

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asaduzzaman M, Minami M, Matsushima K, Nemoto K (2009) An in-vitro ovule culture technique for producing interspecific hybrid between tartary buckwheat and common buckwheat. J Biol Sci 9(1):1–11

    Article  CAS  Google Scholar 

  • Berbec A, Doroszewska T (1999) Investigations on androgenetic induction in three varieties buckwheat species: phylogenetic relationships, origin of the reproductive systems and buckwheat. Fagopyrum 13:35–39

    Google Scholar 

  • Campbell GC (1997) Buckwheat Fagopyrum esculentum Moench. Promoting the conservation and use of underutilized and neglected crops 19. Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany and the IPGRI, Rome, Italy

    Google Scholar 

  • Chan PK (2003) Inhibition of tumor growth in vitro by the extract of Fagopyrum cymosum (fago-c). Life Sci 72:1851–1858

    Article  CAS  PubMed  Google Scholar 

  • Chrungoo NK, Kreft I, Sangma SC, Devadasan N, Dohtdong L, Chetri U (2012) Genetic diversity in Himalayan buckwheats: a perspective for use in crop improvement programmes. In: Proceedings of the 12th International Symposium on Buckwheat, LaÅ¡ko, Aug. 21–25. Pernica: Fagopyrum, pp 198–211

    Google Scholar 

  • Comino I, de Lourdes Moreno M, Real A, Rodríguez-Herrera A, Barro F, Sousa C (2013) The gluten-free diet: testing alternative cereals tolerated by celiac patients. Nutrients 5:4250–4268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar FA, Pirzadah TB, Malik B, Tahir I, Rehman RU (2018) Molecular genetics of buckwheat and its role in crop improvement. In: Zhou M, Kreft I, Suvorova G, Tang Y, Woo SH (eds) Buckwheat germplasm in the world. Academic Press, Chennai, pp 271–286

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabjan N, Rode J, Kosir IJ, Wang Z, Zhang Z, Kreft I (2003) Tartary buckwheat (Fagopyrum tartaricum Gaertn.) as a source of dietary rutin and quercitrin. J Agric Food Chem 51:6452–6455

    Article  CAS  PubMed  Google Scholar 

  • Farooq S, Rehman RU, Pirzadah TB, Malik B, Dar FA, Tahir I (2016) Cultivation, agronomic practices, and growth performance of buckwheat. Academic Press, Oxford, pp 299–320

    Google Scholar 

  • Gimenz-Bastida JA, Zielinski H (2015) Buckwheat as a functional food and its effects on health. J Agric Food Chem 63:7896–7913. https://doi.org/10.1021/acs.jafc.5b02498

    Article  CAS  Google Scholar 

  • Guo YZ, Chen QF, Yang LY, Huang YH (2007) Analyses of the seed protein contents on the cultivated and wild buckwheat Fagopyrum esculentum resources. Genet Resour Crop Evol 54:1465–1472

    Article  Google Scholar 

  • Guo X, Zhu K, Zhang H, Yao H (2010) Anti-tumor activity of a novel protein obtained from tartary buckwheat. Int J Mol Sci 11:5201–5211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Sharma SK, Rana JC, Chauhan RS (2012) AFLP fingerprinting of tatary buckwheat accessions (Fagopyrum tataricum) displaying rutin content variation. Fitoterapia 83:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Iwata H, Okuno K, Matsui K, Ohsawa R (2011) QTL analysis of photoperiod sensitivity in common buckwheat by using markers for expressed sequence tags and photoperiod-sensitivity candidate genes. Breed Sci 61:394–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffler E, Pizzimenti S, Badiu I, Guida G, Rolla G (2014) Buckwheat allergy: an emerging clinical problem in Europe. J Aller Ther 5:168

    Google Scholar 

  • Hirose T, Ujihara A, Kitabayashi H, Minami M (1993) Morphology and identification by isozyme analysis of interspecific hybrids in buckwheats. Fagopyrum 13:25–30

    Google Scholar 

  • Hirose T, Ujihara H, Kitabayashi, Minami M (1995) Pollen tube behavior related to self-incompatibility interspecific crosses of Fagopyrum. Breed Sci 45:65–70

    Google Scholar 

  • Hou LL, Zhou ML, Zhang Q, Qi LP, Yang XB, Tang Y (2015) Fagopyrum luojishanense, a new species of polygonaceae from Sichuan, China. Novon 24(1):22–26

    Article  Google Scholar 

  • Hou S, Sun Z, Linghu B, Xu D, Wu B, Zhang B (2016) Genetic diversity of buckwheat cultivars (Fagopyrum tartaricum Gaertn.) assessed with SSR markers developed from genome survey sequences. Plant Mol Biol Reprod 34:233–241

    Article  Google Scholar 

  • Inglett GE, Chen D, Berhow M, Lee S (2011) Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions. Food Chem 125:923–929

    Article  CAS  Google Scholar 

  • Iwata H, Imon K, Yoshimura K, Tsumura Y, Oshawa R (2001) Genetic diversity of common buckwheat varieties in Japan based on microsatellite markers. In: Proceedings of the 8th international symposium on buckwheat, Chuncheon, Korea, pp 240–247

    Google Scholar 

  • Iwata H, Imon K, Tsumura Y, Ohsawa R (2005) Genetic diversity among Japanese indigenous common buckwheat (Fagopyrum esculentum) cultivars as determined from amplified fragment length polymorphism and simple sequence repeat markers and quantitative agronomic traits. Genome 48:367–377

    Article  CAS  PubMed  Google Scholar 

  • Javornik B, Kump B (1993) Random amplified polymorphic DNA (RAPD) markers in buckwheat. Fagopyrum 13:35–39

    Google Scholar 

  • Jiang P, Burczynski F, Campbell C, Pierce G, Austria JA, Briggs CJ (2007) Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. Tataricum, and F. Homotropicum and their protective effects against lipid peroxidation. Int J Food Res 40:356–364

    Article  CAS  Google Scholar 

  • Jing R, Li HQ, Hu CL, Jiang YP, Qin LP, Zheng CJ (2016) Phytochemical and pharmacological profiles of three fagopyrum buckwheats. Int J Mol Sci 17:589. https://doi.org/10.3390/ijms17040589

    Article  CAS  PubMed Central  Google Scholar 

  • Khan S (2015) QTL mapping: a tool for improvement in crop plants. Res J Recent Sci 4:7–12

    Google Scholar 

  • Kim CD, Lee WK, No KO, Park SK, Lee MH, Lim SR, Roh SS (2003) Anti-allergic action of buckwheat (Fagopyrum esculentum moench) grain extract. Int Immunopharmacol 3:129–136

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Zaidul ISM, Suzuki T, Mukasa Y, Hashimoto N, Takigawa S, Takahiro N, Chie ME, Hiroaki Y (2008) Comparison of phenolic compositions between common and tartary buckwheat (Fagopyrum) sprouts. Food Chem 110:814–820

    Article  CAS  PubMed  Google Scholar 

  • Kishima YK, Ogura KM, Mikami T, Adachi T (1995) Chloroplast DNA analysis in buckwheat species: phylogenetic relationships, origin of the reproductive systems extended inverted repeats. Plant Sci 108:173–179

    Article  CAS  Google Scholar 

  • Kishore G, Pandey A, Dobhal R, Gupta S (2013) Population genetic study of Fagopyrum tartaricum from Western Himalaya using ISSR markers. Biochem Genet 51:750–765

    Article  CAS  PubMed  Google Scholar 

  • Konishi T, Ohnishi O (2006) A linkage map for common buckwheat based on microsatellite and AFLP markers. Fagopyrum 23:1–6

    CAS  Google Scholar 

  • Koyama M, Nakamura C, Nakamura K (2013) Changes in phenols contents from buckwheat during growth stage. J Food Sci Technol 50:86–93

    Article  CAS  PubMed  Google Scholar 

  • Krkoskova B, Mrazova Z (2005) Prophylactic components of buckwheat. Food Res Int. 38:561–568

    Article  Google Scholar 

  • Lachmann S (1991) Plant cell and tissue culture in buckwheat: an approach towards genetic improvements by means of unconventional breeding techniques. In: Adachi T (ed) Proceedings of an international colloquium on overcoming breeding barriers by means of plant biotechnology, Miyazaki, Japan, pp 145–154

    Google Scholar 

  • Liu JL, Tang Y, Xia ZM, Shao JR, Cai GZ, Luo Q (2008) Fagopyrum crispatifolium Liu, J L., a new species of Polygonaceae from Sichuan, China. J Syst Evol Res 46:929–932

    Google Scholar 

  • Nair A, Adachi T (1999) Immunoblotting and characterization of allergenic proteins in common buckwheat (Fagopyrum esculentum). Plant Biotechnol 16:219–224

    Article  CAS  Google Scholar 

  • Ohnishi O, Matsuoka Y (1996) Search for the wild ancestor of buckwheat II. Taxonomy of Fagopyrum (Polygonaceae) species based on morphology, isozymes and cpDNA variability. Genes Genet Syst 72:383–390

    Article  Google Scholar 

  • Pan SJ, Chen QF (2010) Genetic mapping of common buckwheat using DNA, protein and morphological markers. Hereditas 147:27–33

    Article  PubMed  Google Scholar 

  • Paterson AH, Tanksely SD, Sorrells ME (1991) DNA markers in plant improvement. Adv Agron 46:39–90

    Article  CAS  Google Scholar 

  • Samimy C (1991) Barrier to interspecific crossing of Fagopyrum esculentum with Fagopyrum tataricum: I. Site of pollen tube arrest: II. Organogenesis from immature embryos of F. tataricum. Euphytica 54:215–219

    Article  Google Scholar 

  • Samimy C, Bjorkman T, Siritunga D, Blanchard L (1996) Overcoming the barrier to interspecific hybridization of Fagopyrum esculentum with Fagopyrum tataricum. Euphytica 91:323–330

    Article  Google Scholar 

  • Shao JR, Zhou ML, Zhu XM, Wang DZ, Bai DQ (2011) Fagopyrum wenchuanense and Fagopyrum qiangcai, two new species of Polygonaceae from Sichuan, China. Novon 21:256–261

    Article  Google Scholar 

  • Sharma R, Jana S (2002) Species relationships in Fagopyrum revealed by PCR-based DNA fingerprinting. Theor App Gene 105:306–312

    Article  CAS  Google Scholar 

  • Sun BH, Wu YQ, Gao HY, Huang J, Wu LJ (2008) Chemical constituents of Fagopyrum tartaricum (L.) gaertn. J Shenyang Pharm Univ 25:541–543

    CAS  Google Scholar 

  • Suvorova GN, Fesenko NN, Kosturbin MM (1994) Obtaining of interspecific buckwheat hybrid (Fagopyrum esculentum Moench × Fagopyrum cymosum Meissn.). Fagopyrum 14:13–16

    Google Scholar 

  • Tang Y, Zhou ML, Bai DQ, Shao JR, Zhu XM, Wang DZ et al (2010) Fagopyrum pugense (Polygonaceae), a new species from Sichuan, China. Novon 20:239–242

    Article  Google Scholar 

  • Tang Y, Ding M-Q, Tang Y-X, Wu Y-M, Shao J-R, Zhou ML (2016) Germplasm resources of buckwheat in China. In: Zhou M, Kreft I, Woo SH, Chrungoo NK, Wieslander G (eds) Molecular breeding and nutritional aspects of buckwheat. Academic Press, The Netherlands, pp 13–20

    Chapter  Google Scholar 

  • Thiyagarajan K, Vitali F, Tolaini V, Galeffi P, Cantale C, Vikram P (2016) Genomic characterization of phenylalanine ammonia lyase gene in buckwheat. PLoS One 11(3):e0151187. https://doi.org/10.1371/journal.pone.0151187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji K, Ohnishi O (2001) Phylogenetic relationships among wild and cultivated Tartary buckwheat (Fagopyrum tartaricum Gaertn.) populations revealed by AFLP analyses. Genes Genet Syst 76:47–52

    Article  CAS  PubMed  Google Scholar 

  • Ujihara A, Nakamura Y, Minami M (1990) Interspecific hybridization in genus Fagopyrum-properties of hybrids (F. esculentum Moench 3 F. cymosum Meissner) through ovule culture. Gamma Field Radiation Breeding, NIAR, MAFF, Japan, pp 45–51

    Google Scholar 

  • Wang YJ, Campbell CG (1998) Interspecific hybridization in buckwheat among Fagopyrum esculentum, F. homotropicum and F. tataricum. Adv Buckwheat Res 7:11–12

    CAS  Google Scholar 

  • Wang CL, Ding MQ, Zou CY, Zhu XM, Tang Y, Zhou ML, Shao JR (2017) Comparative analysis of four buckwheat species based on morphology and complete chloroplast genome sequences. Sci Rep 7:6514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woo SH, Tsai QS, Adachi T (1995) Possibility of interspecific hybridization by embryo rescue in the genus Fagopyrum. Curr Adv Buckwheat Res 6:225–237

    Google Scholar 

  • Woo SH, Adachi T, Jong SK, Campbell CG (1999) Inheritance of self-compatibility and flower morphology in interspecific buckwheat hybrids. Can J Plant Sci 79:483–490

    Article  Google Scholar 

  • Woo SH, Kamal AHM, Tatsuro S, Campbell CG, Adachi T, Yun YH, Chung KY, Choi JS (2010) Eur J Plant Sci Biotechnol 4:1–16

    Google Scholar 

  • Woo SH, Suzuki T, Mukasa Y, Morishita T, Yun HY, Park HC (2012) Present status, future breeding strategy and prospects for buckwheat. In: Proceedings of the 12th international symposium on buckwheat, LaÅ¡ko, Aug. 21–25. Pernica: Fagopyrum. pp 25–26

    Google Scholar 

  • Xiaolei D, Zongwen Z, Bin W, Yanqin L, Anhu W (2013) Construction and analysis of genetic linkage map in Tartary buckwheat (Fagopyrum tataricum) using SSR. Chin Agric Sci Bull 29(21):61–65

    Google Scholar 

  • Yabe S, Hara T, Ueno M, Enoki H, Kimura T, Nishimura S (2014) Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum). Breed Sci 64:291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane K, Yasui Y, Ohnishi O (2003) Interspecific cpDNA variations of diploid and tetraploid perennial buckwheat, Fagopyrum cymosum (Polygonaceae). Am J Bot 90:339–346

    Article  PubMed  Google Scholar 

  • Yao Y, Shan F, Bian J, Chen F, Wang M, Ren GD (2008) Chiro-inositol-enriched Tartary buckwheat bran extract lowers the blood glucose level in KK-Ay mice. J Agric Food Chem 56:10027–10031

    Article  CAS  PubMed  Google Scholar 

  • Yasui Y, Wang Y, Ohnishi O, Campbell CG (2004) Amplified fragment length polymorphism linkage analysis of common buckwheat (Fagopyrum esculentum) and its wild self-pollinated relative Fagopyrum homotropicum. Genome 47:345–351

    Article  CAS  PubMed  Google Scholar 

  • Yasui Y, Hirakawa H, Ueno M, Matsui K, Katsube-Tanaka T, Yang SJ (2016) Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. DNA Res 23(3):215–224. https://doi.org/10.1093/dnares/dsw012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Li X, Ma B, Gao Q, Du H, Han Y, Li Y, Cao Y, Qi M, Zhu Y, Lu H, Ma M, Liu L, Zhou J, Nan C, Qin Y, Wang J, Cui L, Liu H, Liang C, Qiao Z (2017) The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Mol Plant 10:1224–1237

    Article  CAS  PubMed  Google Scholar 

  • Zheng CJ, Hu CL, Ma XQ, Peng C, Zhang H, Qin LP (2012) Cytotoxic phenylpropanoid glycosides from Fagopyrum tartaricum(L.) gaertn. Food Chem 132:433–438

    Article  CAS  PubMed  Google Scholar 

  • Zhou ML, Zhang Q, Zheng YD, Tang Y, Li FL, Zhu XM (2015) Fagopyrum hailuogouense (Polygonaceae), one new species from Sichuan, China. Novon 24(2):222–224

    Article  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda DF (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukhtar, S., Bashir, Z., Mir, R.A., Zargar, S.M. (2021). Genomic Approaches for the Improvement and Conservation of Buckwheat. In: Zargar, S.M., Masi, A., Salgotra, R.K. (eds) Neglected and Underutilized Crops - Towards Nutritional Security and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-3876-3_7

Download citation

Publish with us

Policies and ethics