Skip to main content

Biorefining of Lignin Wastes: Modularized Production of Value-Added Compounds

  • Chapter
  • First Online:
Microbial Biotechnology for Renewable and Sustainable Energy

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

Lignin, an aromatic polymer present in lignocellulosic biomasses, is conventionally viewed as a waste by-product of the pulp, paper, and other industries that use plant biomass as feedstocks. More recently, lignin has been reported as a renewable feedstock whose valorization generates several renewable aromatic intermediates, which can be used as carbon sources to synthesize other value-added chemicals, polymers, fuels, and other oxidized products. In this endeavor, the lignin’s recalcitrance, complex structure, and heterogeneity are major impediments that not only make microbial depolymerization exceptionally challenging but also generate phenolic compounds which inhibit microbial fermentation. Furthermore, during lignin’s breakdown, a heterogeneous complex mixture of low-molecular-weight aromatic monomers is released, representing additional hurdles when striving to recover the desired compound selectively. Nevertheless, in nature, some microorganisms are competent to funnel the heterogeneous stream of central aromatic intermediates into a single, pure compound. Centered on lignin, this chapter starts with a generalized description of the structure and types of commercially available lignin (e.g., lignosulphonates or sulfonated lignin, kraft lignin, soda lignin, organosolv lignin, and biorefinery lignin). Next, the slate of aromatic intermediatory compounds formed down the lignin-degrading β-ketoadipate pathway is briefly presented. Finally, this chapter summarizes few case studies related to the production of a high value-added chemical, vanillin, and a biopolymer, polyhydroxyalkanoates (PHAs), using lignin or its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, García-Hidalgo J, Sandahl M, Hulteberg CP, Turner C, Lidén G, Gorwa-Grauslund MF (2016) Biological valorization of low molecular weight lignin. Biotechnol Adv 34(8):1318–1346

    Article  CAS  PubMed  Google Scholar 

  • Abdelaziz OY, Meier S, Prothmann J, Turner C, Riisager A, Hulteberg CP (2019) Oxidative depolymerisation of lignosulphonate lignin into low-molecular-weight products with Cu–Mn/δ-Al2O3. Top Catal 62(7):639–648

    Article  CAS  Google Scholar 

  • Abdelkafi S, Sayadi S, Ben Ali Gam Z, Casalot L, Labat M (2006) Bioconversion of ferulic acid to vanillic acid by Halomonas elongata isolated from table-olive fermentation. FEMS Microbiol Lett 262(1):115–120

    Article  CAS  PubMed  Google Scholar 

  • Achterholt S, Priefert H, Steinbüchel A (2000) Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 54(6):799–807

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GD, Bugg TD (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol Biosyst 6(5):815–821

    Article  CAS  PubMed  Google Scholar 

  • Ashengroph M, Amini J (2017) Bioconversion of isoeugenol to vanillin and vanillic acid using the resting cells of Trichosporon asahii. 3 Biotech 7(6):358–358

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2011) Pseudomonas resinovorans SPR1, a newly isolated strain with potential of transforming eugenol to vanillin and vanillic acid. New Biotechnol 28(6), 656–64

    Google Scholar 

  • Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2012) Conversion of isoeugenol to vanillin by Psychrobacter sp. strain CSW4. Appl Biochem Biotechnol 166(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Bajwa DS, Pourhashem G, Ullah AH, Bajwa SG (2019) A concise review of current lignin production, applications, products and their environmental impact. Ind Crop Prod 139:111526

    Article  CAS  Google Scholar 

  • Barghini P, Di Gioia D, Fava F, Ruzzi M (2007) Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb Cell Factories 6(1):13

    Article  CAS  Google Scholar 

  • Bjorkman A (1954) Isolation of lignin from finely divided wood with neutral solvents. Nature 174(4440):1057–1058

    Article  CAS  Google Scholar 

  • Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28(12):1883–1896

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Saito T (2015) Lignin-derived advanced carbon materials. ChemSusChem 8(23):3941–3958

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, T., De, B.K., and , Bhattacharyya, D.K. 1999. Microbial conversion of isoeugenol to vanillin by Rhodococcus rhodochrous. Indian J Chem Sect B, 38B(5), 538–541

    CAS  Google Scholar 

  • Chen H (2015) Chapter 3—Lignocellulose biorefinery feedstock engineering. In: Chen H (ed) Lignocellulose biorefinery engineering. Woodhead Publishing, Sawston, pp 37–86

    Chapter  Google Scholar 

  • Chen CL, Chang HM, Kirk TK (1982) Aromatic acids produced during degradation of lignin in spruce wood by Phanerochaete chrysosporium. Department of Wood and Paper Science, North Carolina State University, Raleigh, NC; Forest Products Lab., USDA Forest Service, Madison, WI

    Google Scholar 

  • Chen YH, Chai LY, Zhu YH, Yang ZH, Zheng Y, Zhang H (2012) Biodegradation of Kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J Appl Microbiol 112(5):900–906

    Article  CAS  PubMed  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustainability 9(7):1163

    Article  CAS  Google Scholar 

  • Di Gioia D, Luziatelli F, Negroni A, Ficca AG, Fava F, Ruzzi M (2011) Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. J Biotechnol 156(4):309–316

    Article  PubMed  CAS  Google Scholar 

  • Duan J, Huo X, Du WJ, Liang JD, Wang DQ, Yang SC (2016) Biodegradation of Kraft lignin by a newly isolated anaerobic bacterial strain, Acetoanaerobium sp. WJDL-Y2. Lett Appl Microbiol 62(1):55–62

    Article  CAS  PubMed  Google Scholar 

  • Fleige C, Meyer F, Steinbüchel A (2016) Metabolic engineering of the Actinomycete Amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin. Appl Environ Microbiol 82(11):3410–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox40 (2020) Vanillic Acid (CAS 121-34-6) Market Size Latest Report 2020 Segment by manufacturers, Type, Applications and Dynamics

    Google Scholar 

  • Gallage NJ, Hansen EH, Kannangara R, Olsen CE, Motawia MS, Jørgensen K, Holme I, Hebelstrup K, Grisoni M, Møller BL (2014) Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nat Commun 5:4037

    Article  CAS  PubMed  Google Scholar 

  • Gargulak JD, Lebo SE, McNally TJ (2015) Lignin. in: Kirk-Othmer encyclopedia of chemical technology, pp 1–26

    Google Scholar 

  • Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons EL, Payne J, Rhodes MJ, Walton NJ (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem 273(7):4163–4170

    Article  CAS  PubMed  Google Scholar 

  • Getachew A, Woldesenbet F (2016) Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res Notes 9:509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Govil T, Saxena P, Samanta D, Singh SS, Kumar S, Salem DR, Sani RK (2020a) Adaptive enrichment of a thermophilic bacterial isolate for enhanced enzymatic activity. Microorganisms 8(6):871

    Article  CAS  PubMed Central  Google Scholar 

  • Govil T, Wang J, Samanta D, David A, Tripathi A, Rauniyar S, Salem DR, Sani RK (2020b) Lignocellulosic feedstock: a review of a sustainable platform for cleaner production of nature’s plastics. J Clean Prod 270:122521

    Article  CAS  Google Scholar 

  • Graf N, Altenbuchner J (2014) Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl Microbiol Biotechnol 98(1):137–149

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Minocha AK, Jain N (2001) Batch and continuous studies on treatment of pulp mill wastewater by Aeromonas formicans. J Chem Technol Biotechnol 76(6):547–552

    Article  CAS  Google Scholar 

  • Gurujeyalakshmi G, Mahadevan A (1987) Dissimilation of ferulic acid byBacillus subtilis. Curr Microbiol 16(2):69–73

    Article  CAS  Google Scholar 

  • Hansen MAT, Jørgensen H, Laursen KH, Schjoerring JK, Felby C (2013) Structural and chemical analysis of process residue from biochemical conversion of wheat straw (Triticum aestivum L.) to ethanol. Biomass Bioenergy 56:572–581

    Article  CAS  Google Scholar 

  • Hintz HL (2001) Paper: pulping and bleaching. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 6707–6711

    Chapter  Google Scholar 

  • Holladay JE, Bozell JJ, White JF, Johnson D (2007) Top value-added chemicals from biomass. Volume II—results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Laboratory

    Google Scholar 

  • Horwath W (2015) Chapter 12—Carbon cycling: the dynamics and formation of organic matter. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 4th edn. Academic, Boston, pp 339–382

    Chapter  Google Scholar 

  • Hu H, Li L, Ding S (2015) An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives. Appl Microbiol Biotechnol 99(12):5071–5081

    Article  CAS  PubMed  Google Scholar 

  • Hua D, Ma C, Lin S, Song L, Deng Z, Maomy Z, Zhang Z, Yu B, Xu P (2007a) Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: identification of major metabolites. J Biotechnol 130(4):463–470

    Article  CAS  PubMed  Google Scholar 

  • Hua D, Ma C, Song L, Lin S, Zhang Z, Deng Z, Xu P (2007b) Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol 74(4):783–790

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Dostal L, Rosazza JP (1993) Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. J Biol Chem 268(32):23954–23958

    Article  CAS  PubMed  Google Scholar 

  • Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41(6):941–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing D, Jidong L, Yiping W, Wenjing D (2016) Kraft lignin biodegradation by Dysgonomonas sp. WJDL-Y1, a new anaerobic bacterial strain isolated from sludge of a pulp and paper mill. J Microbiol Biotechnol 26(10):1765–1773

    Article  CAS  Google Scholar 

  • John B (2020) Kraft lignin market analysis share size and growth demand by 2020–2025

    Google Scholar 

  • Jung DH, Choi W, Choi KY, Jung E, Yun H, Kazlauskas RJ, Kim BG (2013) Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system. Appl Microbiol Biotechnol 97(4):1501–1511

    Article  CAS  PubMed  Google Scholar 

  • Kasana RC, Sharma UK, Sharma N, Sinha AK (2007) Isolation and identification of a novel strain of Pseudomonas chlororaphis capable of transforming isoeugenol to vanillin. Curr Microbiol 54(6):457–461

    Article  CAS  PubMed  Google Scholar 

  • Kaur B, Chakraborty D, Kumar B (2014) Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology. Appl Microbiol Biotechnol 98(20):8539–8551

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep (Amst) 4:86–93

    Article  CAS  Google Scholar 

  • Kumar M, Singhal A, Verma PK, Thakur IS (2017) Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp. ISTKB. ACS Omega 2(12):9156–9163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EG, Yoon SH, Das A, Lee SH, Li C, Kim JY, Choi MS, Oh DK, Kim SW (2009) Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli. Biotechnol Bioeng 102(1):200–208

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kang M, Bae J-H, Sohn J-H, Sung BH (2019) Bacterial valorization of lignin: strains, enzymes, conversion pathways, biosensors, and perspectives. Front Bioeng Biotechnol 7:209–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Leonard PM, Brzozowski AM, Lebedev A, Marshall CM, Smith DJ, Verma CS, Walton NJ, Grogan G (2006) The 1.8 A resolution structure of hydroxycinnamoyl-coenzyme A hydratase-lyase (HCHL) from Pseudomonas fluorescens, an enzyme that catalyses the transformation of feruloyl-coenzyme A to vanillin. Acta Crystallogr D Biol Crystallogr 62(Pt 12):1494–1501

    Article  CAS  PubMed  Google Scholar 

  • Li T, Rosazza JP (2000) Biocatalytic synthesis of vanillin. Appl Environ Microbiol 66(2):684–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Cheng Y, Pu Y, Sun S, Li X, Jin M, Pierson EA, Gross DC, Dale BE, Dai SY, Ragauskas AJ, Yuan JS (2016) Systems biology-guided biodesign of consolidated lignin conversion. Green Chem 18(20):5536–5547

    Article  CAS  Google Scholar 

  • Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chupka G, Strathmann TJ, Pienkos PT, Beckham GT (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci U S A 111(33):12013–12018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Yan X, Si M, Deng X, Min X, Shi Y, Chai L (2019a) Bioconversion of lignin into bioplastics by Pandoraea sp. B-6: molecular mechanism. Environ Sci Pollut Res Int 26(3):2761–2770

    Article  CAS  PubMed  Google Scholar 

  • Liu Z-H, Shinde S, Xie S, Hao N, Lin F, Li M, Yoo CG, Ragauskas AJ, Yuan JS (2019b) Cooperative valorization of lignin and residual sugar to polyhydroxyalkanoate (PHA) for enhanced yield and carbon utilization in biorefineries. Sustain Energy Fuels 3(8):2024–2037

    Article  CAS  Google Scholar 

  • Liu H-M, Zou Y, Yao C-Y, Yang Z (2020) Enzymatic synthesis of vanillin and related catalytic mechanism. Flavour Fragr J 35(1):51–58

    Article  CAS  Google Scholar 

  • Luziatelli F, Brunetti L, Ficca AG, Ruzzi M (2019) Maximizing the efficiency of vanillin production by biocatalyst enhancement and process optimization. Front Bioeng Biotechnol 7(279)

    Google Scholar 

  • Macfarlane AL, Mai M, Kadla JF (2014) Chapter 20—Bio-based chemicals from biorefining: lignin conversion and utilisation. In: Waldron K (ed) Advances in biorefineries. Woodhead Publishing, Sawston, pp 659–692

    Chapter  Google Scholar 

  • Markus HP, Peters MLJ, Roos R (1992) Process for the preparation of phenylaldehydes, (Ed.) Q.I. BV, Vol. EP0542348A2. Europe

    Google Scholar 

  • Miller J (2016) Lignin: technology, applications, and markets. RISI Latin American Pulp & Paper Outlook Conference

    Google Scholar 

  • Mohamad Ibrahim, M.N., Sriprasanthi, R.B., Shamsudeen, S., Adam, F., and , Bhawani, S.A. 2012. A concise review of the natural existance, synthesis, properties, and applications of syringaldehyde. Bioresour Technol, 7(3), 4377–4399

    Google Scholar 

  • Muheim A, Lerch K (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 51(4):456–461

    Article  CAS  Google Scholar 

  • Negishi O, Sugiura K, Negishi Y (2009) Biosynthesis of vanillin via ferulic acid in Vanilla planifolia. J Agric Food Chem 57(21):9956–9961

    Article  CAS  PubMed  Google Scholar 

  • Nishimura M, Kawakami S, Otsuka H (2018) Molecular cloning and characterization of vanillin dehydrogenase from Streptomyces sp. NL15-2K. BMC Microbiol 18(1):154–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numata K, Morisaki K (2015) Screening of marine Bacteria to synthesize Polyhydroxyalkanoate from lignin: contribution of lignin derivatives to biosynthesis by Oceanimonas doudoroffii. ACS Sustain Chem Eng 3(4):569–573

    Article  CAS  Google Scholar 

  • Obst JR, Kirk TK (1988) Isolation of lignin. In: Methods in enzymology, vol. 161. Academic, pp 3-12

    Google Scholar 

  • Ohta Y, Hasegawa R, Kurosawa K, Maeda AH, Koizumi T, Nishimura H, Okada H, Qu C, Saito K, Watanabe T, Hatada Y (2017) Enzymatic specific production and chemical functionalization of Phenylpropanone platform monomers from lignin. ChemSusChem 10(2):425–433

    Article  CAS  PubMed  Google Scholar 

  • Overhage J, Priefert H, Steinbüchel A (1999) Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199. Appl Environ Microbiol 65(11):4837–4847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overhage J, Steinbüchel A, Priefert H (2003) Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli. Appl Environ Microbiol 69(11):6569–6576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacek AW, Ding P, Garrett M, Sheldrake G, Nienow AW (2013) Catalytic conversion of sodium lignosulfonate to vanillin: engineering aspects. Part 1. Effects of processing conditions on vanillin yield and selectivity. Ind Eng Chem Res 52(25):8361–8372

    Article  CAS  Google Scholar 

  • Plaggenborg R, Steinbüchel A, Priefert H (2001) The coenzyme A-dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans. FEMS Microbiol Lett 205(1):9–16

    CAS  PubMed  Google Scholar 

  • Plaggenborg R, Overhage J, Steinbüchel A, Priefert H (2003) Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Appl Microbiol Biotechnol 61(5):528–535

    Article  CAS  PubMed  Google Scholar 

  • PMR (2020) Bio vanillin market, vol. 2021. Persistence Market Research

    Google Scholar 

  • Prim N, Pastor FI, Diaz P (2003) Biochemical studies on cloned Bacillus sp. BP-7 phenolic acid decarboxylase PadA. Appl Microbiol Biotechnol 63(1):51–56

    Article  CAS  PubMed  Google Scholar 

  • Rabenhorst J, Hopp R (1991) Process for the preparation of vanillin Patent application, EP0405197

    Google Scholar 

  • Raj A, Krishna Reddy MM, Chandra R (2007) Identification of low molecular weight aromatic compounds by gas chromatography–mass spectrometry (GC–MS) from Kraft lignin degradation by three Bacillus sp. Int Biodeterior Biodegradation 59(4):292–296

    Article  CAS  Google Scholar 

  • Reid ID (1998) Fate of residual lignin during delignification of Kraft pulp by trametes versicolor. Appl Environ Microbiol 64(6):2117–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter J, Strittmatter H, Wiemann LO, Schieder D, Sieber V (2013) Enzymatic cleavage of lignin β-O-4 aryl ether bonds via net internal hydrogen transfer. Green Chem 15(5):1373–1381

    Article  CAS  Google Scholar 

  • Retsina T, Pylkkanen V, Nelson K, Szczepanik M (2013) Processes and apparatus for lignin separation in biorefineries, vol. US20140034047A1. Granbio Intellectual Property Holdings LLC. USA

    Google Scholar 

  • Richter JS, Brink DL, Diddams DG, Peter O (1945) Process for making vanillin, vol. US2434626A. Salvo Chemical Corp. USA

    Google Scholar 

  • Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD, Bugg TD (2013) Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol 8(10):2151–2156

    Article  CAS  PubMed  Google Scholar 

  • Salvachúa D, Karp EM, Nimlos CT, Vardon DR, Beckham GT (2015) Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem 17(11):4951–4967

    Article  CAS  Google Scholar 

  • Shen Y, Song X, Li L, Sun J, Jaiswal Y, Huang J, Liu C, Yang W, Williams L, Zhang H, Guan Y (2019) Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomed Pharmacother 111:579–587

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Yan X, Li Q, Wang X, Liu M, Xie S, Chai L, Yuan J (2017) Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochem 52:238–242

    Article  CAS  Google Scholar 

  • Shimada M, Nakatsubo F, Kirk TK, Higuchi T (1981) Biosynthesis of the secondary metabolite veratryl alcohol in relation to lignin degradation in Phanerochaete chrysosporium. Arch Microbiol 129(4):321–324

    Article  CAS  Google Scholar 

  • Shimoni E, Ravid U, Shoham Y (2000) Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin. J Biotechnol 78(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Strassberger Z, Tanase S, Rothenberg G (2014) The pros and cons of lignin valorisation in an integrated biorefinery. RSC Adv 4(48):25310–25318

    Article  CAS  Google Scholar 

  • Tang P-L, Hassan O, Maskat MY, Badri K (2015) Production of monomeric aromatic compounds from oil palm empty fruit bunch fiber lignin by chemical and enzymatic methods. Biomed Res Int 2015:–891539

    Google Scholar 

  • Thoresen PP, Matsakas L, Rova U, Christakopoulos P (2020) Recent advances in organosolv fractionation: towards biomass fractionation technology of the future. Bioresour Technol 306:123189

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Hu J, Chandra RP, Saddler JN, Lu C (2017) Valorizing recalcitrant cellulolytic enzyme lignin via lignin nanoparticles fabrication in an integrated biorefinery. ACS Sustain Chem Eng 5(3):2702–2710

    Article  CAS  Google Scholar 

  • Tomizawa S, Chuah J-A, Matsumoto K, Doi Y, Numata K (2014) Understanding the limitations in the biosynthesis of polyhydroxyalkanoate (PHA) from lignin derivatives. ACS Sustain Chem Eng 2(5):1106–1113

    Article  CAS  Google Scholar 

  • Tribot A, Amer G, Abdou Alio M, de Baynast H, Delattre C, Pons A, Mathias J-D, Callois J-M, Vial C, Michaud P, Dussap C-G (2019) Wood-lignin: supply, extraction processes and use as bio-based material. Eur Polym J 112:228–240

    Article  CAS  Google Scholar 

  • Unno T, Kim SJ, Kanaly RA, Ahn JH, Kang SI, Hur HG (2007) Metabolic characterization of newly isolated Pseudomonas nitroreducens Jin1 growing on eugenol and isoeugenol. J Agric Food Chem 55(21):8556–8561

    Article  CAS  PubMed  Google Scholar 

  • USDA (2020) United States Department of Agriculture Agricultural Marketing Service|National Organic Program Document Cover Sheet

    Google Scholar 

  • Vazquez A, Pique TM (2016) Chapter 5—Biotech admixtures for enhancing Portland cement hydration. In: Pacheco-Torgal F, Ivanov V, Karak N, Jonkers H (eds) Biopolymers and biotech admixtures for eco-efficient construction materials. Woodhead Publishing, Sawston, pp 81–98

    Chapter  Google Scholar 

  • Vyrides I, Agathangelou M, Dimitriou R, Souroullas K, Salamex A, Ioannou A, Koutinas M (2015) Novel Halomonas sp. B15 isolated from Larnaca Salt Lake in cyprus that generates vanillin and vanillic acid from ferulic acid. World J Microbiol Biotechnol 31(8):1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lin L, Dong J, Ling J, Wang W, Wang H, Zhang Z, Yu X (2018) Simultaneous improvements of Pseudomonas cell growth and polyhydroxyalkanoate production from a lignin derivative for lignin-consolidated bioprocessing. Appl Environ Microbiol 84(18):e01469–e01418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WebArchive (2003) Lignins—products with many uses, vol. 2020. Way Back Machine. Lignin Institute

    Google Scholar 

  • Xu Z, Lei P, Zhai R, Wen Z, Jin M (2019) Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnol Biofuels 12(1):32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Okada Y, Yoshida T, Nagasawa T (2007) Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl Microbiol Biotechnol 73(5):1025–1030

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Okada Y, Yoshida T, Nagasawa T (2008) Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida. Biotechnol Lett 30(4):665–670

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Chen P, Zhang S, Li S, Yan X, Wang N, Liang N, Li H (2016) Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors. Sci Rep 6(1):34644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Tang H, Ni J, Wu Q, Hua D, Tao F, Xu P (2013) Characterization of two Streptomyces enzymes that convert Ferulic acid to vanillin. PLoS One 8(6):e67339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SH, Lee EG, Das A, Lee SH, Li C, Ryu HK, Choi MS, Seo WT, Kim SW (2007) Enhanced vanillin production from recombinant E. coli using NTG mutagenesis and adsorbent resin. Biotechnol Prog 23(5):1143–1148

    PubMed  Google Scholar 

  • Zhang Y, Xu P, Han S, Yan H, Ma C (2006) Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillus subtilis HS8. Appl Microbiol Biotechnol 73(4):771–779

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Lu F, Sun R-C, Ralph J (2010) Isolation of cellulolytic enzyme lignin from wood Preswollen/dissolved in dimethyl sulfoxide/N-Methylimidazole. J Agric Food Chem 58(6):3446–3450

    Article  CAS  PubMed  Google Scholar 

  • Zhao L-Q, Sun Z-H, Zheng P, He J-Y (2006) Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD-8. Process Biochem 41(7):1673–1676

    Article  CAS  Google Scholar 

  • Zheng L, Zheng P, Sun Z, Bai Y, Wang J, Guo X (2007) Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresour Technol 98(5):1115–1119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the CNAM-Bio-Center and the South Dakota Governor’s Office of Economic Development. The authors also gratefully acknowledge support from the National Science Foundation (Award #1736255, #1849206, and #1920954) and the Department of Chemical and Biological Engineering at the South Dakota Mines.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David R. Salem or Rajesh K Sani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Govil, T., Vaughn, M., Salem, D.R., Sani, R.K. (2022). Biorefining of Lignin Wastes: Modularized Production of Value-Added Compounds. In: Saini, J.K., Sani, R.K. (eds) Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-3852-7_6

Download citation

Publish with us

Policies and ethics