Skip to main content

Quinoa Fermentation and Dry Roasting to Improve Nutritional Quality and Sensory Properties

  • Chapter
  • First Online:
Biology and Biotechnology of Quinoa

Abstract

Quinoa is a pseudocereal that has gained more attention in the last decades, due to its outstanding nutritional value. Quinoa has a very good protein quality and content, with a complete amino acid profile; it is also rich in minerals and bioactive compounds. However, quinoa, like other cereals and legumes, has phytate which inhibits the absorption of essential minerals. High content of phytate is usually associated with vegetarian diets and diets of rural areas of developing countries. Such diets may lead to mineral deficiencies. Fermentation of quinoa has been shown to be a very effective method for reducing the phytate content and therefore increasing the bioavailability of essential divalent minerals such as iron, calcium and zinc. Fermentation has also been investigated for its effect on improving the antioxidant capacity and content of phenolic compounds, which are considered health-promoting molecules. In addition, this chapter also presents information on the organoleptic changes that occur during quinoa fermentation, which in some cases were shown to be negative. Successful research has been done on the use of dry toasting, either before or after fermentation, to improve the sensory properties of the fermented quinoa. Fermented quinoa, besides having the attributes of being nutritionally adequate, safe and healthy, should also have good sensory properties, which are indispensable for its broad acceptability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Jubete L, Arendt E, Gallagher E (2010) Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci Technol 21:106–113

    Article  CAS  Google Scholar 

  • Axelsson L, Chung T, Dobrogosz W, Lindgren S (1989) Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb Ecol Health Dis 2:131–136

    Google Scholar 

  • Bastidas E, Roura R, Rizzolo D, Massanés T, Gomis R (2016) Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: an integrative review. J Nutr Food Sci 6(3)

    Google Scholar 

  • Bering S, Suchdev S, Sjøltov L, Berggren A, Tetens I, Bukhave K (2006) A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age. Br J Nutr 96:80–85

    Article  CAS  PubMed  Google Scholar 

  • Bertero H, De la Vega A, Correa G, Jacobsen S, Mujica A (2004) Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crop Res 89:299–318

    Article  Google Scholar 

  • Bolívar-Monsalve J, Ceballos-González C, Ramírez-Toro C, Bolívar GA (2018) Reduction in saponin content and production of gluten-free cream soup base using quinoa fermented with Lactobacillus plantarum. J Food Process Preserv 42:1–1. https://doi.org/10.1111/jfpp.13495

    Article  CAS  Google Scholar 

  • Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP, Harnett J, Huys G, Laulund S, Ouwehand A (2012) Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154:87–97

    Article  CAS  PubMed  Google Scholar 

  • Brady K, Ho C-T, Rosen RT, Sang S, Karwe MV (2007) Effects of processing on the nutraceutical profile of quinoa. Food Chem 100:1209–1216. https://doi.org/10.1016/j.foodchem.2005.12.001

    Article  CAS  Google Scholar 

  • Brand-Miller J, Hayne S, Petocz P, Colagiuri S (2003) Low–glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes Care 26:2261–2267

    Article  PubMed  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    Article  CAS  PubMed  Google Scholar 

  • Carbó R, Gordún E, Fernández A, Ginovart M (2020) Elaboration of a spontaneous gluten-free sourdough with a mixture of amaranth, buckwheat, and quinoa flours analyzing microbial load, acidity, and pH. Food Sci Technol Int 26:344–352. https://doi.org/10.1177/1082013219895357

    Article  CAS  PubMed  Google Scholar 

  • Carciochi R, Galván-D’Alessandro L, Vandendriessche P, Chollet S, Carciochi RA, Galván-D’Alessandro L (2016) Effect of germination and fermentation process on the antioxidant compounds of quinoa seeds. Plant Foods Hum Nutr 71:361–367. https://doi.org/10.1007/s11130-016-0567-0

    Article  CAS  PubMed  Google Scholar 

  • Carrizo SL, de Oca CEM, Laiño JE, Suarez NE, Vignolo G, LeBlanc JG, Rollán G (2016) Ancestral Andean grain quinoa as source of lactic acid bacteria capable to degrade phytate and produce B-group vitamins. Food Res Int 89:488–494

    Article  CAS  PubMed  Google Scholar 

  • Carrizo SL, de LeBlanc A d M, LeBlanc JG, Rollán GC (2020) Quinoa pasta fermented with lactic acid bacteria prevents nutritional deficiencies in mice. Food Res Int 127:108735

    Article  CAS  PubMed  Google Scholar 

  • Castro-Alba V (2019) Fermentation of quinoa, canihua and amaranth to degrade phytate and improve mineral bioavailability. Lund University

    Google Scholar 

  • Castro-Alba V, Lazarte CE, Bergenståhl B, Granfeldt Y (2019a) Phytate, iron, zinc, and calcium content of common Bolivian foods and their estimated mineral bioavailability. Food Sci Nutr 7:2854–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-Alba V, Lazarte CE, Perez-Rea D, Carlsson NG, Almgren A, Bergenståhl B, Granfeldt Y (2019b) Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J Sci Food Agric 99:5239–5248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-Alba V, Lazarte CE, Perez-Rea D, Sandberg AS, Carlsson NG, Almgren A, Bergenståhl B, Granfeldt Y (2019c) Effect of fermentation and dry roasting on the nutritional quality and sensory attributes of quinoa. Food Sci Nutr 7:3902–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceballos-González C, Bolívar-Monsalve J, Ramírez-Toro C, Bolívar GA (2018) Effect of lactic acid fermentation on quinoa dough to prepare gluten-free breads with high nutritional and sensory quality. J Food Process Preserv 42:1–1. https://doi.org/10.1111/jfpp.13551

    Article  CAS  Google Scholar 

  • Cizeikiene D, Juodeikiene G, Bartkiene E, Damasius J, Paskevicius A (2015) Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread. Int J Food Sci Nutr 66:736–742

    Article  CAS  PubMed  Google Scholar 

  • Corsetti A, Settanni L (2007) Lactobacilli in sourdough fermentation. Food Res Int 40:539–558

    Article  CAS  Google Scholar 

  • D’Amico S, Schoenlechner R, Tömösköszi S, Langó B (2017) Proteins and amino acids of kernels. In: Pseudocereals: chemistry and technology. pp 94–118

    Google Scholar 

  • Dallagnol A, Pescuma M, Valdez G, Rollán G (2013) Fermentation of quinoa and wheat slurries by Lactobacillus plantarum CRL 778: proteolytic activity. Appl Microbiol Biotechnol 97:3129–3140. https://doi.org/10.1007/s00253-012-4520-3

    Article  CAS  PubMed  Google Scholar 

  • De Angelis M, Gallo G, Corbo MR, McSweeney PL, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–270

    Article  PubMed  Google Scholar 

  • de Oliveira Lopes C, Barcelos M d FP, de Goes Vieira CN, de Abreu WC, Ferreira EB, Pereira RC, de Angelis-Pereira MC (2019) Effects of sprouted and fermented quinoa (Chenopodium quinoa) on glycemic index of diet and biochemical parameters of blood of Wistar rats fed high carbohydrate diet. J Food Sci Technol 56:40–48

    Article  Google Scholar 

  • Di Renzo T, Reale A, Boscaino F, Messia MC (2018) Flavoring production in Kamut®, quinoa and wheat doughs fermented by Lactobacillus paracasei, Lactobacillus plantarum, and Lactobacillus brevis: a SPME-GC/MS Study. Front Microbiol 9:429

    Article  PubMed  PubMed Central  Google Scholar 

  • Đorđević TM, Šiler-Marinković SS, Dimitrijević-Branković SI (2010) Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem 119:957–963

    Article  Google Scholar 

  • Fayle SE, Gerrard JA (2002) The maillard reaction, vol 5. Royal Society of Chemistry

    Google Scholar 

  • Greiner R, Alminger ML (1999) Purification and characterization of a phytate-degrading enzyme from germinated oat (Avena sativa). J Sci Food Agric 79:1453–1460

    Article  CAS  Google Scholar 

  • Greiner R, Muzquiz M, Burbano C, Cuadrado C, Pedrosa MM, Goyoaga C (2001) Purification and characterization of a phytate-degrading enzyme from germinated faba beans (Vicia faba var. Alameda). J Agric Food Chem 49:2234–2240

    Article  CAS  PubMed  Google Scholar 

  • Hur SJ, Lee SY, Kim Y-C, Choi I, Kim G-B (2014) Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem 160:346–356

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen S-E, Mujica A, Jensen C (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Intl 19:99–109

    Article  Google Scholar 

  • Katina K, Laitila A, Juvonen R, Liukkonen K-H, Kariluoto S, Piironen V, Landberg R, Åman P, Poutanen K (2007a) Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol 24:175–186

    Article  CAS  PubMed  Google Scholar 

  • Katina K, Liukkonen K-H, Kaukovirta-Norja A, Adlercreutz H, Heinonen S-M, Lampi A-M, Pihlava J-M, Poutanen K (2007b) Fermentation-induced changes in the nutritional value of native or germinated rye. J Cereal Sci 46:348–355

    Article  CAS  Google Scholar 

  • Konishi Y, Hirano S, Tsuboi H, Wada M (2004) Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Biosci Biotechnol Biochem 68:231–234

    Article  CAS  PubMed  Google Scholar 

  • Lazarte C (2014) Nutritional assessment in a rural area of bolivia. A study of zinc and iron deficiencies and bioavailability. Lund University

    Google Scholar 

  • Lazarte CE, Carlsson N-G, Almgren A, Sandberg A-S, Granfeldt Y (2015) Phytate, zinc, iron and calcium content of common Bolivian food, and implications for mineral bioavailability. J Food Compos Anal 39:111–119

    Article  CAS  Google Scholar 

  • Ludena Urquizo FE, García Torres SM, Tolonen T, Jaakkola M, Pena-Niebuhr MG, Wright A, Repo-Carrasco-Valencia R, Korhonen H, Plumed-Ferrer C (2017) Development of a fermented quinoa-based beverage. Food Sci Nutr 5:602–608. https://doi.org/10.1002/fsn3.436

    Article  CAS  PubMed  Google Scholar 

  • Montemurro M, Pontonio E, Rizzello CG (2019) Quinoa flour as an ingredient to enhance the nutritional and functional features of cereal-based foods. In: Flour and breads and their fortification in health and disease prevention. Elsevier, pp 453–464

    Google Scholar 

  • Moore J, Cheng Z, Hao J, Guo G, Liu J-G, Lin C, Yu L (2007) Effects of solid-state yeast treatment on the antioxidant properties and protein and fiber compositions of common hard wheat bran. J Agric Food Chem 55:10173–10182

    Article  CAS  PubMed  Google Scholar 

  • Navruz-Varli S, Sanlier N (2016) Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J Cereal Sci 69:371–376

    Article  CAS  Google Scholar 

  • Nickel J, Spanier LP, Botelho FT, Gularte MA, Helbig E (2016) Effect of different types of processing on the total phenolic compound content, antioxidant capacity, and saponin content of Chenopodium quinoa Willd grains. Food Chem 209:139–143

    Article  CAS  PubMed  Google Scholar 

  • Nionelli L, Curri N, Curiel JA, Di Cagno R, Pontonio E, Cavoski I, Gobbetti M, Rizzello CG (2014) Exploitation of Albanian wheat cultivars: characterization of the flours and lactic acid bacteria microbiota, and selection of starters for sourdough fermentation. Food Microbiol 44:96–107

    Article  CAS  PubMed  Google Scholar 

  • Noratto GD, Murphy K, Chew BP (2019) Quinoa intake reduces plasma and liver cholesterol, lessens obesity-associated inflammation, and helps to prevent hepatic steatosis in obese db/db mouse. Food Chem 287:107–114. https://doi.org/10.1016/j.foodchem.2019.02.061

    Article  CAS  PubMed  Google Scholar 

  • Östman E, Granfeldt Y, Persson L, Björck I (2005) Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur J Clin Nutr 59:983–988

    Article  PubMed  Google Scholar 

  • Parisi S, Luo W (2018) The importance of Maillard reaction in processed foods. In: Chemistry of maillard reactions in processed foods. Springer, pp 1–37

    Google Scholar 

  • Paśko P, Zagrodzki P, Bartoń H, Chłopicka J, Gorinstein S (2010) Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods Hum Nutr 65:333–338

    Article  PubMed  PubMed Central  Google Scholar 

  • Petry N, Egli I, Zeder C, Walczyk T, Hurrell R (2010) Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr 140:1977–1982

    Article  CAS  PubMed  Google Scholar 

  • Repo-Carrasco R, Espinoza C, Jacobsen S-E (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Intl 19:179–189

    Article  Google Scholar 

  • Repo-Carrasco-Valencia RA-M, Serna LA (2011) Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components. Food Sci Technol 31:225–230

    Article  Google Scholar 

  • Rizzello CG, Lorusso A, Montemurro M, Gobbetti M (2016) Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread. Food Microbiol 56:1–13. https://doi.org/10.1016/j.fm.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  • Rocchetti G, Chiodelli G, Giuberti G, Masoero F, Trevisan M, Lucini L (2017) Evaluation of phenolic profile and antioxidant capacity in gluten-free flours. Food Chem 228:367–373

    Article  CAS  PubMed  Google Scholar 

  • Rocchetti G, Chiodelli G, Giuberti G, Lucini L (2018) Bioaccessibility of phenolic compounds following in vitro large intestine fermentation of nuts for human consumption. Food Chem 245:633–640

    Article  CAS  PubMed  Google Scholar 

  • Rocchetti G, Miragoli F, Zacconi C, Lucini L, Rebecchi A (2019) Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds. Food Res Intl (Ottawa, ON) 119:886–894. https://doi.org/10.1016/j.foodres.2018.10.073

    Article  CAS  Google Scholar 

  • Rollan GC, Gerez CL, LeBlanc JG (2019) Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Front Nutr 6:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothschild J, Rosentrater KA, Onwulata C, Singh M, Menutti L, Jambazian P, Omary MB (2015) Influence of quinoa roasting on sensory and physicochemical properties of allergen-free, gluten-free cakes. Int J Food Sci Technol 50:1873–1881

    Article  CAS  Google Scholar 

  • Ruales J, Nair BM (1993) Saponins, phytic acid, tannins and protease inhibitors in quinoa (Chenopodium quinoa, Willd) seeds. Food Chem 48:137–143. https://doi.org/10.1016/0308-8146(93)90048-K

    Article  CAS  Google Scholar 

  • Ruiz Rodríguez L, Vera Pingitore E, Rollan G, Cocconcelli PS, Fontana C, Saavedra L, Vignolo G, Hebert EM (2016) Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented quinoa sourdoughs. J Appl Microbiol 120:1289–1301

    Article  PubMed  Google Scholar 

  • Ruiz KB, Biondi S, Oses R, Acuña-Rodríguez IS, Antognoni F, Martinez-Mosqueira EA, Coulibaly A, Canahua-Murillo A, Pinto M, Zurita-Silva A (2014) Quinoa biodiversity and sustainability for food security under climate change. A review. Agron Sustain Dev 34:349–359

    Article  Google Scholar 

  • Ruiz A, Espinosa B, Santamaría CG, Fernández CJC, García MA, Méndez FS, Guillén IG, Rubia AJL, Ràzuri FJQ, Garrido AM, Román FJL (2017) Effect of quinua (Chenopodium quinoa) consumption as a coadjuvant in nutritional intervention in prediabetic subjects. Nutr Hosp 34:1163–1169

    Google Scholar 

  • Salovaara H, Gänzle M (2011) Lactic acid bacteria in cereal-based products. In: Lahtinen S, Ouwehand AC, Salminen S, Von Wright A (eds) Lactic acid bacteria: microbiological and functional aspects, 4th edn. CRC Press, New York, pp 227–245

    Google Scholar 

  • Sandberg A-S (2002) Bioavailability of minerals in legumes. Br J Nutr 88:281–285

    Article  Google Scholar 

  • Sandberg AS, Andlid T (2002) Phytogenic and microbial phytases in human nutrition. Int J Food Sci Technol 37:823–833

    Article  CAS  Google Scholar 

  • Scalbert A, Johnson IT, Saltmarsh M (2005) Polyphenols: antioxidants and beyond. Am J Clin Nutr 81:215S–217S

    Article  CAS  PubMed  Google Scholar 

  • Scazzina F, Del Rio D, Pellegrini N, Brighenti F (2009) Sourdough bread: starch digestibility and postprandial glycemic response. J Cereal Sci 49:419–421

    Article  CAS  Google Scholar 

  • Schlemmer U, Frølich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53:S330–S375

    Article  PubMed  Google Scholar 

  • Starzyńska-Janiszewska A, Stodolak B, Byczyński Ł, Gómez-Caravaca AM, Martin-Garcia B, Mickowska B (2019) Mould starter selection for extended solid-state fermentation of quinoa. LWT 99:231–237. https://doi.org/10.1016/j.lwt.2018.09.055

    Article  CAS  Google Scholar 

  • Svensson L, Sekwati-Monang B, Lutz DL, Schieber A, Ganzle MG (2010) Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). J Agric Food Chem 58:9214–9220

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Li X, Zhang B, Chen PX, Liu R, Tsao R (2015) Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem 166:380–388

    Article  CAS  PubMed  Google Scholar 

  • Troesch B, Jing H, Laillou A, Fowler A (2013) Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods. Food Nutr Bull 34:S90–S101

    Article  PubMed  Google Scholar 

  • Valencia US, Sandberg A-S, Ruales J, Silvia (1999) Processing of quinoa (Chenopodium quinoa, Willd): effects on in vitro iron availability and phytate hydrolysis. Int J Food Sci Nutr 50:203–211

    Article  CAS  PubMed  Google Scholar 

  • Van Boekel M (2006) Formation of flavour compounds in the Maillard reaction. Biotechnol Adv 24:230–233

    Article  PubMed  Google Scholar 

  • Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J Sci Food Agric 90:2541–2547

    Article  PubMed  Google Scholar 

  • Vilcacundo R, Hernández-Ledesma B (2017) Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Curr Opin Food Sci 14:1–6. https://doi.org/10.1016/j.cofs.2016.11.007

    Article  Google Scholar 

  • Weaver CM, Kannan S (2002) Phytate and mineral bioavailability. Food Phytates 2002:211–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Eliana Lazarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lazarte, C.E., Castro-Alba, V., Granfeldt, Y. (2021). Quinoa Fermentation and Dry Roasting to Improve Nutritional Quality and Sensory Properties. In: Varma, A. (eds) Biology and Biotechnology of Quinoa. Springer, Singapore. https://doi.org/10.1007/978-981-16-3832-9_15

Download citation

Publish with us

Policies and ethics