Skip to main content

Advertisement

Log in

Quinoa biodiversity and sustainability for food security under climate change. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Climate change is rapidly degrading the conditions of crop production. For instance, increasing salinization and aridity is forecasted to increase in most parts of the world. As a consequence, new stress-tolerant species and genotypes must be identified and used for future agriculture. Stress-tolerant species exist but are actually underutilized and neglected. Many stress-tolerant species are indeed traditional crops that are only cultivated by farmers at a local scale. Those species have a high biodiversity value. Besides, the human population will probably reach nine billion within coming decades. To keep pace with population growth, food production must increase dramatically despite the limited availability of cultivable land and water. Here, we review the benefits of quinoa, Chenopodium quinoa Willd., a seed crop that has endured the harsh bioclimatic conditions of the Andes since ancient times. Although the crop is still mainly produced in Bolivia and Peru, agronomic trials and cultivation are spreading to many other countries. Quinoa maintains productivity on rather poor soils and under conditions of water shortage and high salinity. Moreover, quinoa seeds are an exceptionally nutritious food source, owing to their high protein content with all essential amino acids, lack of gluten, and high content of several minerals, e.g., Ca, Mg, Fe, and health-promoting compounds such as flavonoids. Quinoa has a vast genetic diversity resulting from its fragmented and localized production over the centuries in the Andean region, from Ecuador to southern Chile, and from sea level to the altiplano. Quinoa can be adapted to diverse agroecological conditions worldwide. Year 2013 has therefore been declared the International Year of Quinoa by the United Nations Food and Agriculture Organization. Here, we review the main characteristics of quinoa, its origin and genetic diversity, its exceptional tolerance to drought and salinity, its nutritional properties, the reasons why this crop can offer several ecosystem services, and the role of Andean farmers in preserving its agrobiodiversity. Finally, we propose a schematic model integrating the fundamental factors that should determine the future utilization of quinoa, in terms of food security, biodiversity conservation, and cultural identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abugoch LE (2009) Quinoa (Chenopodium quinoa Willd.) composition, chemistry, nutritional, and functional properties. Adv Food Nut Res 58:1043–4526. doi:10.1016/S1043-4526(09)58001-1

    Google Scholar 

  • Adolf VI, Jacobsen SE, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54. doi:10.1016/j.envexpbot.2012.07.004

    Article  CAS  Google Scholar 

  • Adolf VI, Shabala S, Andersen MN, Razzaghi F, Jacobsen SE (2012) Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357:117–129. doi:10.1007/s11104-012-1133-7

    Article  CAS  Google Scholar 

  • Baena M, Galluzzi G, Padulosi S (2012) Recuperación y desarrollo de cultivos tradicionales mejora los medios de vida de las comunidades. Bioversity International Factsheets. Rome, Italy. http://bit.ly/18o7Bxe. Accessed 4 Oct 2013

  • Balandrin MF (1996) Commercial utilization of plant-derived saponins: an overview of medicinal, pharmaceutical, and industrial applications. Adv Exp Med Biol 404:1–14

    Article  PubMed  CAS  Google Scholar 

  • Bazile D, Carrié C, Vidal A, Negrete J (2011) Modélisation des dynamiques spatiales liées à la culture du quinoa dans le Nord chilien. Mappemonde No. 102 http://mappemonde.mgm.fr/num30/articles/art11204.html. Accessed 4 Oct 2013

  • Bazile D, Chia E, Hocdé H, Negrete J, Thomet M, Núnez L, Martínez E (2012) Quinoa heritage, an important resource for tourism experiences. Rev geogr Valpso 46:3–15

    Google Scholar 

  • Bazile D (2013) Quinoa, a catalyst for innovation. http://www.cirad.fr/en/content/download/7582/80161/version/8/file/Perspective20_Bazile_ENG.pdf. Accessed 4 Oct 2013

  • Ben Hamed K, Ellouzi H, Talbi OZ, Hessini K, Slama I, Ghnaya T, Munné Bosch S, Savouré A, Abdelly C (2013) Physiological response of halophytes to multiple stresses. Funct Plant Biol 40:883–896. doi:10.1071/FP13074

    CAS  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2006) Chenopodium quinoa—an Indian perspective. Ind Crops Prod 23:73–87. doi:10.1016/j.indcrop.2005.04.002

    Article  CAS  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2007) Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Res 101:104–116. doi:10.1016/j.fcr.2006.10.001

    Article  Google Scholar 

  • Bhargava A, ShuklaS SJ, Singh N, Ohri D (2008) Chenopodium: a prospective plant for phytoextraction. Acta Physiol Plant 30:111–120. doi:10.1007/s11738-007-0097-3

    Article  CAS  Google Scholar 

  • Bonifacio A, Choque E, Alcon M, Cabrera S (2010) Quinoa annual report 2009–2010. McKnight Foundation collaborative project report for phase II, year 4—final report http://mcknight.ccrp.cornell.edu/program_docs/project_documents/AND/AND_06-016/06-016_y4_09-10_vweb.pdf. Accessed 4 Oct 2013

  • Burrieza HP, Koyro H-W, Martínez L, Kobayashi K, Maldonado S (2012) High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. cv. Hualhuas embryos. Plant Soil 354:69–79. doi:10.1007/s11104-011-1045-y

    Article  CAS  Google Scholar 

  • Buss W, Kammann C, Koyro H-W (2012) Biochar reduces copper toxicity in Chenopodium quinoa Willd in a sandy soil. J Environ Qual 41:1157–1165. doi:10.2134/jeq2011.0022

    Article  PubMed  CAS  Google Scholar 

  • Carlson D, Fernandez JA, Poulsen HD, Nielsen B, Jacobsen SE (2012) Effects of quinoa hull meal on piglet performance and intestinal epithelial physiology. J Anim Physiol Anim Nutr 96:198–205. doi:10.1111/j.1439-0396.2011.01138.x

    Article  CAS  Google Scholar 

  • Carjuzaa P, Castellión M, Distéfano AJ, del Vas M, Maldonado S (2008) Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos. Protoplasma 233:149–156. doi:10.1007/s00709-008-0300-4

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty S, Luck J, Hollaway G, Freeman A, Norton R, Garrett KA, Percy K, Hopkins A, Davis C, Karnosky DF (2008) Impacts of global changes on diseases of agricultural crops and forest trees perspective in agriculture, veterinary science. Nutr Nat Resour 54:1–15. doi:10.1079/PAVSNNR20083054

    Google Scholar 

  • Choi YJ, Danielsen S, Lübeck M, Hong S-B, Delhey R, Shin H-D (2010) Morphological and molecular characterization of the causal agent of Downy Mildew on Quinoa (Chenopodium quinoa). Mycopathologia 169:403–412. doi:10.1007/s11046-010-9272-y

    Article  PubMed  CAS  Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802. doi:10.1093/aob/mcq170

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Claros M, Angulo V, Gutiérrez C, Oruño N (2010) Primeros reportes de aislamientos de bacterias y hongos endófitos en el cultivo de la quinua (Chenopodium quinua Willd.) en Bolivia. Third World Quinoa Congress, Oruro

    Google Scholar 

  • Cocozza C, Pulvento C, Lavini A, Riccardi M, d’Andria R, Tognetti R (2013) Effects of increasing salinity stress and decreasing water availability on ecophysiological traits of Quinoa (Chenopodium quinoa Willd.) grown in a Mediterranean-type agroecosystem. J Agro Crop Sci 199:229–240. doi:10.1111/jac.12012

    Article  Google Scholar 

  • Danielsen S, Bonifacio A, Ames T (2003) Diseases of quinoa (Chenopodium quinoa). Food Rev Int 19:43–59. doi:10.1081/FRI-120018867

    Article  Google Scholar 

  • de Vos AC, Broekman R, de Almeida Guerra CC, Almeida Guerra C, van Rijsselberghe M, Rozema J (2013) Developing and testing new halophyte crops: a case study of salt tolerance of two species of the Brassicaceae, Diplotaxis tenuifolia and Cochlearia officinalis. Environ Exp Bot 92:154–164. doi:10.1016/j.envexpbot.2012.08.003

    Article  CAS  Google Scholar 

  • Dwivedi SL, Sahrawat KL, Upadhyaya HD, Ortiz R (2013) Food, nutrition and agrobiodiversity under global climate change. Adv Agron 120:1–128. doi:10.1016/B978-0-12-407686-0.00001-4

    Article  CAS  Google Scholar 

  • FAO (2011) The state of food insecurity in the world. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/docrep/014/i2330e/i2330e.pdf. Accessed 4 Oct 2013

  • FAO-FAOSTAT (2013) http://faostat3.fao.org/faostat-gateway/go/to/home/E. Accessed 4 Oct 2013

  • Fuentes FF, Bazile D, Bhargava A, Martínez EA (2012) Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J Agr Sci 150:702–716. doi:10.1017/S0021859612000056

    Article  Google Scholar 

  • Fuentes FF, Martinez EA, Hinrichsen PV, Jellen EN, Maughan PJ (2009) Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conserv Genet 10:369–377. doi:10.1007/S10592-008-9604-3

    Article  CAS  Google Scholar 

  • GenBank (2013) http://www.ncbi.nlm.nih.gov/gquery/?term=Chenopodium+quinoa. Accessed 4 Oct 2013

  • Giuliani AF, Hintermann F, Rojas W, Padulosi S (2012) Biodiversity of Andean grains: balancing market potential and sustainable livelihood. Bioversity International, Rome

    Google Scholar 

  • Gómez-Caravaca AM, Segura-Carretero A, Fernández-Gutiérrez A, Caboni AF (2011) Simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd.) by a liquid chromatography–diode array detection–electrospray–ionization-time-of-flight mass spectrometry methodology. J Agric Food Chem 59:10815–10825. doi:10.1021/jf202224j

    Article  PubMed  CAS  Google Scholar 

  • Güçlü-Üstündağ Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47:231–258. doi:10.1080/10408390600698197

    Article  PubMed  CAS  Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen SE, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185–193. doi:10.1093/jxb/erq257

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31. doi:10.1016/j.envexpbot.2013.03.001

    Article  CAS  Google Scholar 

  • Hirose Y, Fujita T, Ishii T, Ueno N (2010) Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chem 119:1300–1306. doi:10.1016/j.foodchem.2009.09.008

    Article  CAS  Google Scholar 

  • Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177. doi:10.1081/FRI-120018883

    Article  Google Scholar 

  • Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19:99–109. doi:10.1081/FRI-120018872

    Article  Google Scholar 

  • Jacobsen SE, Monteros C, Christiansen JL, Bravo LA, Corcuera LJ, Mujica A (2005) Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Europ J Agronomy 22:131–139. doi:10.1016/j.eja.2004.01.003

    Article  Google Scholar 

  • Jacobsen SE (2011) The situation for quinoa and its production in southern Bolivia: from economic success to environmental disaster. J Agro Crop Sci 197:390–399. doi:10.1111/j.1439-037X.2011.00475.x

    Article  Google Scholar 

  • Jacobsen SE, Jensen CR, Liu F (2012) Improving crop production in the arid Mediterranean climate. Field Crop Res 128:34–47. doi:10.1016/j.fcr.2011.12.001

    Article  Google Scholar 

  • Jacobsen SE (2012) What is wrong with the sustainability of quinoa production in southern Bolivia—a reply to Winkel et al. (2012). J Agron Crop Sci 198:320–323. doi:10.1111/j.1439-037X.2012.00511.x

    Article  Google Scholar 

  • Jacobsen SJ, Sørensen M, Pedersen SM, Weiner J (2013) Feeding the world: genetically modified crops versus agricultural biodiversity. Agron Sustain Dev. doi:10.1007/s13593-013-0138-9

    Google Scholar 

  • Krishna VV, Drucker AG, Pascual U, Raghu PT, King EDIO (2013) Estimating compensation payments for on-farm conservation of agricultural biodiversity in developing countries. Ecol Econ 87:110–123. doi:10.1016/j.ecolecon.2012.12.013

    Article  Google Scholar 

  • Kumpun S, Maria A, Crouzet S, Evrard-Todeschi N, Girault J-P, Lafont R (2011) Ecdysteroids from Chenopodium quinoa Willd., an ancient Andean crop of high nutritional value. Food Chem 125:1226–1234. doi:10.1016/j.foodchem.2010.10.039

    Article  CAS  Google Scholar 

  • Lescano-Rivera JL (1980) Avances en la genética de la quinua (Chenopodium quinoa). Reunión sobre Genética y Fitomejoramiento de la Quinua, Puno (Perú), 14–18 Marzo 1980. Universidad Nacional Técnica del Altiplano (Perú) No.1, pp. B1-B9

  • Louafi S, Bazile D, Noyer JL (2013) Conserver et cultiver la diversité génétique agricole: aller au-delà des clivages établis. In: Hainzelin E. (coord.). Cultiver la biodiversité pour transformer l’agriculture. Versailles: Ed. Quae, pp. 185–222

  • Martínez EA, Veas E, Jorquera C, San Martín R, Jara P (2009) Re-introduction of Chenopodium quinoa Willd. into arid Chile: Cultivation of two lowland races under extremely low irrigation. J Agro Crop Sci 195:1–10. doi:10.1111/j.1439-037X.2008.00332.x

    Article  Google Scholar 

  • Maughan J, Bonifacio A, Jellen E, Stevens MR, Coleman CE, Ricks M, Mason SL, Jarvis DE, Gardunia BW, Fairbanks DJ (2004) A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor Appl Genet 109:1188–1195. doi:10.1007/s00122-004-1730-9

    Article  PubMed  CAS  Google Scholar 

  • Maughan PJ, Turner TB, Coleman CE, Stevens MR, Coleman CE, Ricks M, Mason SL, Jarvis DE, Gardunia BW, Fairbanks DJ (2009) Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome 52:647–657. doi:10.1139/G09-041

    Article  PubMed  CAS  Google Scholar 

  • Mayes S, Massawe FJ, Alderson PG, Roberts JA, Azam-Ali SN, Hermann M (2012) The potential for underutilized crops to improve security of food production. J Exp Bot 63:1075–1079. doi:10.1093/jxb/err396

    Article  PubMed  CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington

    Google Scholar 

  • Miranda M, Vega-Gálvez A, Quispe-Fuentes I, Rodríguez MJ, Maureira H, Martínez EA (2012) Aspectos nutricionales de seis ecotipos de Quínoa (Chenopodium quinoa Willd.) de tres zonas geográficas de Chile. Chil J Agr Res 72:175–181. doi:10.4067/S0718-58392012000200002

    Article  Google Scholar 

  • Morales A, Zurita A, Silva H (2011) Identification of drought tolerance genes in quinoa using a transcriptome analysis approach. VI Reunión de Biología Vegetal, Pucón, Poster 122–p.154

    Google Scholar 

  • Morales AJ, Bajgain P, Garver Z, Peter J, Maughan PJ, Udall JA (2012) Physiological responses of Chenopodium quinoa to salt stress. Int J Plant Physiol Biochem 3:219–232. doi:10.5897/IJPPB11.026

    Google Scholar 

  • Munir H, Basra SMA, Cheema MA, Wahid A (2011) Phenotypic flexibility in exotic quinoa (Chenopodium quinoa Willd.) germoplasm for seedling vigor and viability. Pak J Agri Sci 48:255–261

    Google Scholar 

  • Orsini F, Accorsi M, Gianquinto G, Dinelli G, Antognoni F, Ruiz-Carrasco KB, Martinez EA, Alnayef M, Marotti I, Bosi S, Biondi S (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38:818–831. doi:10.1071/FP11088

    Article  CAS  Google Scholar 

  • PROINPA (2011) "Quinoa, an ancient crop to contribute to world food security". Technical report. 37th FAO Conference. http://www.fao.org/alc/file/media/pubs/2011/cultivo_quinua_en.pdf. Accessed 4 Oct 2013

  • Pulvento C, Riccardi M, Lavini A, d’Andria R, Iafelice G, Marconi E (2010) Field trial evaluation of two Chenopodium quinoa genotypes grown under rain-fed conditions in a typical Mediterranean environment in south Italy. J Agro Crop Sci 196:407–411. doi:10.1111/j.1439-037X.2010.00431.x

    Article  Google Scholar 

  • Pulvento C, Riccardi M, Lavini A, Iafelice G, Marconi E, d’Andria R (2012) Yield and quality characteristics of quinoa grown in open field under different saline and non-saline irrigation regimes. J Agro Crop Sci 198:254–263. doi:10.1111/j.1439-037X.2012.00509.x

    Article  CAS  Google Scholar 

  • Rasmussen C, Jacobsen SE, Lagnaoui A (2001) Las polillas de la quinua (Chenopodium quinoa Willd.) en el Perú: Eurysacca (Lepidoptera: Gelechiidae). Revista Peruana de Entomologia 42:57–59

    Google Scholar 

  • Razzaghi F, Ahmadi SH, Jacobsen SE, Jensen CR, Andersen MN (2012) Effects of salinity and soil–drying on radiation use efficiency, water productivity and yield of Quinoa (Chenopodium quinoa Willd.) J. Agro Crop Sci 198:173–184. doi:10.1111/j.1439-037X.2011.00496.x

    Article  CAS  Google Scholar 

  • Repo-Carrasco R, Espinoza C, Jacobsen SE (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Int 19:179–189

    Article  Google Scholar 

  • Repo-Carrasco-Valencia R, Hellström JK, Pihlava JM, Mattila PH (2010) Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem 120:128–133. doi:10.1016/j.foodchem.2009.09.087

    Article  CAS  Google Scholar 

  • Ruiz-Carrasco K, Antognoni F, Coulibaly AK, Lizardi S, Covarrubias A, Martínez EA, Molina-Montenegro M, Biondi S, Zurita-Silva A (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49:1333–1341. doi:10.1016/j.plaphy.2011.08.005

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Hariadi Y, Jacobsen SE (2013) Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. J Plant Physiol 170:906–14. doi:10.1016/j.jplph.2013.01.014

    Article  PubMed  CAS  Google Scholar 

  • Spehar CR, Souza PIM (1993) Adapting the quinoa (Chenopodium quinoa Willd.) to cultivation in the Brazilian highlands: preliminary results. Pesq Agrop Brasileira 28:635–639

    Google Scholar 

  • Stikic R, Glamoclija D, Demin M, Vucelic-Radovic B, Jovanovic Z, Milojkovic-Opsenica D, Jacobsen SE, Milovanovic M (2012) Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J Cereal Sci 55:132–138. doi:10.1016/j.jcs.2011.10.010

    Article  CAS  Google Scholar 

  • Urcelay C, Acho J, Joffre R (2011) Fungal root symbionts and their relationship with fine root proportion in native plants from the Bolivian Andean highlands above 3,700 m elevation. Mycorrhiza 21:323–330. doi:10.1007/s00572-010-0339-x

    Article  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotech 27:522–530. doi:10.1016/j.tibtech.2009.05.006

    Article  CAS  Google Scholar 

  • Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. J Sci Food Agr 90:2541–2547. doi:10.1002/jsfa.4158

    Article  CAS  Google Scholar 

  • Zeglin LH, Bottomley P, Jumpponen A, Rice CW, Arango M, Lindsley A, McGowan A, Mfombep P, Myrold DD (2013) Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales. Ecology. doi:10.1890/12-2018.1

    PubMed  Google Scholar 

  • Zhengkang H, Wang G, Yao W, Zhu W-Y (2006) Isoflavonic phytoestrogens—new prebiotics for farm animals: a review on research in China. Curr Iss Intest Microbiol 7:53–60

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the growers, communities, and stakeholders involved in quinoa cultivation. Stephen Wallenstein is gratefully acknowledged for critical reading of the manuscript and helpful inputs. This research contribution was supported by funds from Fondecyt (project no.3130624, 1100638). The EU IRSES program (PIRSES-GA-2008–230862) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Biondi.

About this article

Cite this article

Ruiz, K.B., Biondi, S., Oses, R. et al. Quinoa biodiversity and sustainability for food security under climate change. A review. Agron. Sustain. Dev. 34, 349–359 (2014). https://doi.org/10.1007/s13593-013-0195-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-013-0195-0

Keywords

Navigation