Skip to main content
Log in

Fermentation of quinoa and wheat slurries by Lactobacillus plantarum CRL 778: proteolytic activity

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Quinoa fermentation by lactic acid bacteria (LAB) is an interesting alternative to produce new bakery products with high nutritional value; furthermore, they are suitable for celiac patients because this pseudo-cereal contains no gluten. Growth and lactic acid production during slurry fermentations by Lactobacillus plantarum CRL 778 were greater in quinoa (9.8 log cfu/mL, 23.1 g/L) than in wheat (8.9 log cfu/mL, 13.9 g/L). Lactic fermentation indirectly stimulated flour protein hydrolysis by endogenous proteases of both slurries. However, quinoa protein hydrolysis was faster, reaching 40–100 % at 8 h of incubation, while wheat protein hydrolysis was only 0–20 %. In addition, higher amounts of peptides (24) and free amino acids (5 g/L) were determined in quinoa compared to wheat. Consequently, greater concentrations (approx. 2.6-fold) of the antifungal compounds (phenyllactic and hydroxyphenyllactic acids) were synthesized from Phe and Tyr in quinoa by L. plantarum CRL 778, an antifungal strain. These promising results suggest that this LAB strain could be used in the formulation of quinoa sourdough to obtain baked goods with improved nutritional quality and shelf life, suitable for celiac patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguirre L, Garro MS, Savoy De Giori G (2008) Enzymatic hydrolysis of soybean protein using lactic acid bacteria. Food Chem 111:976–982

    Article  CAS  Google Scholar 

  • Alvarez-Jubete A, Auty M, Arendt EK, Gallagher E (2010) Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. Eur Food Res Technol 230:437–445

    Article  CAS  Google Scholar 

  • Baer A, Ryba I, Meyer J, Butikofer U (1996) Microplate assay of free amino acids in Swiss cheeses. Food Sci Technol 29:58–62

    CAS  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2006) Chenopodium quinoa—an Indian perspective. Ind Crop Prod 23:73–87

    Article  CAS  Google Scholar 

  • Bicudo MOP, Vasques EC, Zuim DR, Candido LMB (2012) Elaboration and characterization of fermented drink from quinoa water soluble extract and pulp fruit. B CEPPA 30:19–26

    Google Scholar 

  • Bleukx W, Delcour JA (2000) A second aspartic proteinase associated with wheat gluten. J Cereal Sci 32:31–42

    Article  CAS  Google Scholar 

  • Bleukx W, Brijs K, Torrekens S, Van Leuven F, Delcour JA (1998) Specificity of a wheat gluten aspartic proteinase. Biochim Biophys Acta 1387:317–324

    Article  CAS  Google Scholar 

  • Borges JT, Bonomo RC, Paula CD, Oliveira L, Cesário MC (2010) Características físico-químicas, nutricionais e formas de consumo da quinoa (Chenopodium quinoa Willd.). Temas Agrarios 15:9–23

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brinegar C, Goundan S (1993) Isolation and characterization of chenopodin, the 11S seed storage protein of quinoa (Chenopodium quinoa). J Agric Food Chem 41:182–185

    Article  CAS  Google Scholar 

  • Brown JWS, Ersland DR, Hall TC (1982) Molecular aspects of storage protein synthesis during seed development. In: Khan AA (ed) The physiology and biochemistry of seed development, dormancy, and germination. Elsevier, New York, pp 3–42

    Google Scholar 

  • Clarke CI, Schober TJ, Dockery P, O’Sullivan K, Arendt EK (2004) Wheat sourdough fermentation: effects of time and acidification on fundamental rheological properties. Cereal Chem 81:409–417

    Article  CAS  Google Scholar 

  • Coda R, Rizzello CG, Gobbetti M (2010) Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). J Food Microbiol 137:236–245

    Article  CAS  Google Scholar 

  • Dallagnol AM, Font de Valdez G, Catalán C, Mercado MI, Rollán G (2011) Effect of biosynthetic intermediates and citrate on the phenyllactic and hydroxyphenyllactic acids production by Lactobacillus plantarum CRL 778. J Appl Microbiol 111:1447–1455

    Article  CAS  Google Scholar 

  • De Meo B, Freeman G, Marconi O, Booer C, Perretti G, Fantozzi P (2011) Behaviour of malted cereals and pseudo-cereals for gluten-free beer production. J Inst Brew 117:541–546

    Article  Google Scholar 

  • De Vuyst L, Neysens P (2005) The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci Technol 16:43–56

    Article  CAS  Google Scholar 

  • De Vuyst L, Vancanneyt M (2005) Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiol 24:120–127

    Article  CAS  Google Scholar 

  • Di Cagno R, De Angelis M, Lavermicocca P, De Vincenzi M, Giovannini C, Faccia M, Gobbetti M (2002) Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol 68:623–633

    Article  CAS  Google Scholar 

  • Edema MO, Sanni LO, Sanni AI (2005) Evaluation of maize–soybean flour blends for sour maize bread production in Nigeria. Afr J Biotechnol 4:911–918

    Google Scholar 

  • Enriquez N, Peltzer M, Raimundi A, Tosi V, Pollio ML (2003) Characterization of wheat and quinoa flour in relation to their breadmaking quality. J Argent Chem Soc 91:47–54

    CAS  Google Scholar 

  • Gänzle MG, Loponen J, Gobbetti M (2008) Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci Technol 19:513–521

    Article  CAS  Google Scholar 

  • Gerez CL, Rollán GC, De Valdez GF (2006) Gluten breakdown by lactobacilli and pediococci strains isolated from sourdough. Lett Appl Microbiol 42(5):459–464

    Article  CAS  Google Scholar 

  • Gerez CL, Torino MI, Rollán GC, Font de Valdez G (2009) Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control 20:144–148

    Article  CAS  Google Scholar 

  • Gerez CL, Torino MI, Obregozo MD, Font de Valdez G (2010) A ready-to-use antifungal starter culture improves the shelf life of packaged bread. J Food Prot 73:758–762

    CAS  Google Scholar 

  • Gerez CL, Dallagnol AM, Rollán G, Font de Valdez G (2012) A combination of two lactic acid bacteria improves the hydrolysis of gliadin during wheat dough fermentation. Food Microbiol 32:427–430

    Article  CAS  Google Scholar 

  • Gobbetti M (1998) The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends Food Sci Technol 9:267–274

    Article  CAS  Google Scholar 

  • Gorinstein S, Pawelzik E, Delgado-Licon E, Haruenkit R, Weisz M, Trakhtenberg S (2002) Characterization of pseudocereal and cereal proteins by protein and amino acid analyses. J Sci Food Agric 82:886–891

    Article  CAS  Google Scholar 

  • Hager AS, Wolter A, Czerny M, Bez J, Zannini E, Arendt EK, Czerny M (2012) Investigation of product quality, sensory profile and ultrastructure of breads made from a range of commercial gluten-free flours compared to their wheat counterparts. Eur Food Res Technol 235:333–344

    Article  CAS  Google Scholar 

  • Hebert EM, Raya RR, De Giori GS (2000) Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062. Appl Environ Microbiol 66:5316–5321

    Article  CAS  Google Scholar 

  • Ju ZY, Hettiarachchy NS, Rath N (2001) Extraction, denaturation and hydrophobic properties of rice flour proteins. Food Chem Toxicol 66:229–232

    CAS  Google Scholar 

  • Kleerebezem M, Boekhorst J, Van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, De Vries M, Ursing B, De Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lagrain B, Goderis B, Brijs K, Delcour JA (2010) Molecular basis of processing wheat gluten toward biobased materials. Biomacromolecules 11:533–541

    Article  CAS  Google Scholar 

  • Lee K, Lee J, Kim YH, Moon SH, Park YH (2001) Unique properties of four lactobacilli in amino acid production and symbiotic mixed culture for lactic acid biosynthesis. Curr Microbiol 43:383–390

    Article  CAS  Google Scholar 

  • Loponen J, Mikola M, Katina K, Sontag-Strohm T, Salovaara H (2004) Degradation of HMW glutenins during wheat sourdough fermentations. Cereal Chem 81:87–93

    Article  CAS  Google Scholar 

  • Lorenz K, Nyanzi F (1989) Enzyme activities in quinoa (Chenopodium quinoa). Int J Food Sci Technol 24:543–551

    Article  CAS  Google Scholar 

  • Loscalzo J (2004) l-Arginine and atherothrombosis. J Nutr 134:2798–2800

    Google Scholar 

  • Milesi MM, McSweeney PL, Hynes ER (2008) Viability and contribution to proteolysis of an adjunct culture of Lactobacillus plantarum in two model cheese systems: cheddar cheese-type and soft-cheese type. J Appl Microbiol 105:884–892

    Article  CAS  Google Scholar 

  • Minervini F, De Angelis M, Di Cagno R, Pinto D, Siragusa S, Rizzello CG, Gobbetti M (2010) Robustness of Lactobacillus plantarum starters during daily propagation of wheat flour sourdough type I. Food Microbiol 27:897–908

    Article  CAS  Google Scholar 

  • Moore MM, Dal Bello F, Arendt EK (2008) Sourdough fermented by Lactobacillus plantarum FST 1.7 improves the quality and shelf life of gluten-free bread. Eur Food Res Technol 226:1309–1316

    Article  CAS  Google Scholar 

  • Moroni AV, Dal Bello F, Arendt EK (2009) Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiol 26:676–684

    Article  CAS  Google Scholar 

  • Mujica A, Jacobsen SE (2006) La quinua (Chenopodium quinoa Willd.) y sus parientes silvestres. In: Moraes RM, Øllgaard B, Kvist LP, Borchsenius F, Balslev H (eds) Botánica Económica de los Andes Centrales. Instituto de Ecología UMSA, Bolivia, pp 449–457

    Google Scholar 

  • Playne MJ, McDonald P (1966) The buffering constituents of herbage and of silage. J Sci Food Agric 17:264–268

    Article  CAS  Google Scholar 

  • Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26:693–699

    Article  CAS  Google Scholar 

  • Ranhotra GS, Gelroth JA, Glaser BK, Lorenz KJ, Johnson DL (1993) Composition and protein nutritional quality of quinoa. Cereal Chem 70:103–105

    Google Scholar 

  • Repo-Carrasco R, Espinoza C, Jacobsen SE (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule). Food Rev Int 19:179–189

    Article  Google Scholar 

  • Ruales J, Nair BM (1994) Effect of processing on in vitro digestibility of protein and starch in quinoa seeds. Int J Food Sci Technol 42:1–11

    Google Scholar 

  • Schagger H, Von Jagow G (1987) Tricine–sodium dodecyl sulfate-ployacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  CAS  Google Scholar 

  • Thiele C, Gänzle MG, Vogel RF (2002) Contribution of sourdough lactobacilli, yeast and cereal enzymes to the generation of amino acids in dough relevant for bread flavour. Cereal Chem 79:45–51

    Article  CAS  Google Scholar 

  • Valerio F, Lavermicocca P, Pascale M, Visconti A (2004) Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol Lett 233:289–295

    Article  CAS  Google Scholar 

  • Van der Meulen R, Grosu-Tudor S, Mozzi F, Vaningelgem F, Zamfir M, Font de Valdez G, De Vuyst L (2007) Screening of lactic acid bacteria isolates from dairy and cereal products for exopolysaccharide production and genes involved. Int J Food Microbiol 118:250–258

    Article  CAS  Google Scholar 

  • Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. J Sci Food Agric 90:2541–2547

    Article  CAS  Google Scholar 

  • Vermeulen N, Gänzle MG, Vogel RF (2006) Influence of peptide supply and co-substrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451 and Lactobacillus plantarum TMW1.468. J Agric Food Chem 54:3832–3839

    Article  CAS  Google Scholar 

  • Watford M (2008) Glutamine metabolism and function in relation to proline synthesis and the safety of glutamine and proline supplementation. J Nutr 138:2003–2007

    Google Scholar 

  • Wick M, Böcker G, Stolz P, Lebault JM (2003) Influence of several process parameters on sourdough fermentation. Acta Biotechnol 23:51–61

    Article  CAS  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37

    Article  CAS  Google Scholar 

  • Zotta T, Piraino P, Ricciardi A, McSweeney PL, Parente E (2006) Proteolysis in model sourdough fermentations. J Agric Food Chem 54:2567–2574

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT), and Ministerio de Ciencia, Tecnología e Innovación Productiva (MINCyT) from Argentina. We thank Dr. Fernanda Mozzi and Dr. Raúl Raya (Centro de Referencia para Lactobacilos, Argentina) for helpful suggestions and Dr. Jorge Palacios for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela Rollán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dallagnol, A.M., Pescuma, M., De Valdez, G.F. et al. Fermentation of quinoa and wheat slurries by Lactobacillus plantarum CRL 778: proteolytic activity. Appl Microbiol Biotechnol 97, 3129–3140 (2013). https://doi.org/10.1007/s00253-012-4520-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4520-3

Keywords

Navigation