Skip to main content

Rhizospheric and Endophytic Microorganisms and Their Role in Alleviation of Salinity Stress in Plants

  • Chapter
  • First Online:
Plant, Soil and Microbes in Tropical Ecosystems

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

The acreage under salinity is increasing, and the stress thus generated in the plants causes severe damage to the quality and quantity of the produce. Salinity stress also increases the susceptibility of the plants against pests and diseases. Since the requirement to feed billions of mouths is ever-increasing, shortening of the arable lands is not desirable. Thus, measures to improve plant’s tolerance and performance under saline soils could be of great practical significance in crop production. The plant breeding approach for developing salinity-tolerant line has limitations for developing alternatives of the commercial cultivars. The microbial agents hold greater promise and suitability to be used as stress alleviator for wide varieties of crops and their commercial cultivars. This chapter summarizes the interaction of rhizosphere and endophytic microorganisms with plants and their role in improving salt tolerance. Various aspects of plant tolerance are discussed in this chapter that are proven to be enhanced by microbial agents such as nutrient uptake, ion homeostasis, reduction in reactive oxygen species by various antioxidants, membrane integrity, ACC deaminase production, and maintaining the osmotic balance of the plant cells. Exploring and characterizing such potential microbes could be useful tool in developing smart package and practices for increasing agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelshafy Mohamad OA, Ma JB, Liu YH, Zhang D, Hua S, Bhute S, Hedlund BP, Li WJ, Li L (2020) Beneficial endophytic bacterial populations associated with medicinal plant Thymus vulgaris alleviate salt stress and confer resistance to Fusarium oxysporum. Front Plant Sci 11:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Abo-Kora HA (2016) Endophytic colonization of maize (Zea mays) root plants by PGPRs under salinity stress. Nat Sci 14(7):34–51

    Google Scholar 

  • Afridi MS, Mahmood T, Salam A, Mukhtar T, Mehmood S, Ali J, Khatoon Z, Bibi M, Javed MT, Sultan T, Chaudhary HJ (2019) Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem 139:569–577

    Article  CAS  PubMed  Google Scholar 

  • Albdaiwi RN, Khaymi-Horani H, Ayad JY, Alananbeh KM, Kholoud M, Al-Sayaydeh R (2019) Isolation and characterization of halotolerant plant growth promoting rhizobacteria from durum wheat (Triticum turgidum subsp. durum) cultivated in saline areas of the dead sea region. Front Microbiol 10:1639

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali A, Shahzad R, Khan AL, Halo BA, Al-Yahyai R, Al-Harrasi A, Al-Rawahi A, Lee IJ (2017) Endophytic bacterial diversity of Avicennia marina helps to confer resistance against salinity stress in Solanum lycopersicum. J Plant Interact 12(1):312–322

    Article  CAS  Google Scholar 

  • Arnold AE, Lewis LC (2005) Ecology and evolution of fungal endophytes, and their roles against insects. Insect-Fungal Associations: Ecology Evolution, Oxford University Press, New York, NY, pp 74–96

    Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45(4):405–413

    Article  Google Scholar 

  • Barat SP, Gupta A, Singh D, Srivastav A (2016) Production of liquid biofertilizer by using Azotobacter species and their effect on plant growth. Int J Curr Microbiol App Sci 5(7):654–659

    Article  Google Scholar 

  • Bastías DA, Alejandra Martínez Ghersa M, Newman JA, Card SD, Mace WJ, Gundel PE (2018) The plant hormone salicylic acid interacts with the mechanism of antiherbivory conferred by fungal endophytes in grasses. Plant Cell Environ 41(2):395–405

    Article  PubMed  CAS  Google Scholar 

  • Biswas B, Gresshoff PM (2014) The role of symbiotic nitrogen fixation in sustainable production of biofuels. Int J Mol Sci 15(5):7380–7397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brahmaprakash GP, Sahu PK (2012) Biofertilizers for sustainability. J Indian Inst Sci 92(1):37–62

    CAS  Google Scholar 

  • Brahmaprakash GP, Sahu PK, Lavanya G, Nair SS, Gangaraddi VK, Gupta A (2017) Microbial functions of the rhizosphere. Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 177–210. https://doi.org/10.1007/978-981-10-5813-4_10

    Book  Google Scholar 

  • Buyer JS, Kratzke MG, Sikora LJ (1994) Microbial siderophores and rhizosphere ecology. Biochemistry of metal micronutrients in the rhizosphere. Lewis Publishers, Boca Raton, FL, pp 67–80

    Google Scholar 

  • Chakraborty U, Roy S, Chakraborty AP, Dey P, Chakraborty B (2011) Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Recent Res Sci Technol 3(11):61–70

    CAS  Google Scholar 

  • Chauhan PS, Lata C, Tiwari S, Chauhan AS, Mishra SK, Agrawal L, Chakrabarty D, Nautiyal CS (2019) Transcriptional alterations reveal Bacillus amyloliquefaciens-rice cooperation under salt stress. Sci Rep 9(1):1–13

    Article  Google Scholar 

  • Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J. plant Biochem. Biotech 22(1):27–34

    CAS  Google Scholar 

  • Chookietwattana K, Maneewan K (2012) Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress. Soil Environ 31(1):30–36

    CAS  Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizosphere. Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4743-6_8

    Book  Google Scholar 

  • Daami-Remadi M, Souissi A, Oun HB, Mansour M, Nasraoui B (2009) Salinity effects on Fusarium wilt severity and tomato growth. Dyn Soil Dyn Plant 3(1):61–69

    Google Scholar 

  • Egamberdieva D (2011) Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57(3):122–127

    Article  Google Scholar 

  • Fazal A, Bano A (2016) Role of plant growth-promoting rhizobacteria (PGPR), biochar, and chemical fertilizer under salinity stress. Commun Soil Sci Plant Anal 47(17):1985–1993

    Article  CAS  Google Scholar 

  • Fukami J, de la Osa C, Ollero FJ, Megías M, Hungria M (2018) Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Funct Plant Biol 45(3):328–339

    Article  CAS  PubMed  Google Scholar 

  • Fürnkranz M, Lukesch B, Müller H, Huss H, Grube M, Berg G (2012) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63(2):418–428

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Sahu PK (2017a) Coinoculation of Azospirillum with PGPR for plant growth promotion. Int J Res Appl Sci Engg Tech 5(8):383–385

    Article  Google Scholar 

  • Gupta A, Sahu PK (2017b) Azospirillum: bioformulations, product quality and survivability. Int J Res Appl Sci Engg Tech 5(8):467–470

    Article  Google Scholar 

  • Gupta A, Sahu PK (2017c) Phosphorus nutrition of plants: a microbial perspective. MOJ Ecol Environ Sci 2(6):00043

    Google Scholar 

  • Halo BA, Khan AL, Waqas M, Al-Harrasi A, Hussain J, Ali L, Adnan M, Lee IJ (2015) Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J Plant Interact 10(1):117–125

    Article  CAS  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33(3):797–802

    Article  Google Scholar 

  • Karlidag H, Yildirim E, Turan M, Pehluvan M, Donmez F (2013) Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria × ananassa). Hortic Sci 48(5):563–567

    CAS  Google Scholar 

  • Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61(2):217–227

    Article  Google Scholar 

  • Kearl J, McNary C, Lowman JS, Mei C, Aanderud ZT, Smith ST, West J, Colton E, Hamson M, Nielsen BL (2019) Salt-tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil. Front Microbiol 10:1849

    Article  PubMed  PubMed Central  Google Scholar 

  • Khademian R, Asghari B, Sedaghati B, Yaghoubian Y (2019) Plant beneficial rhizospheric microorganisms (PBRMs) mitigate deleterious effects of salinity in sesame (Sesamum indicum L.): physio-biochemical properties, fatty acids composition and secondary metabolites content. Ind Crop Prod 136:129–139

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Asaf S, Kamran M, Shahzad R, Bilal S, Khan MA, Kang SM, Kim YH, Yun BW, Al-Rawahi A (2017) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69

    Article  CAS  Google Scholar 

  • Khan MA, Asaf S, Khan AL, Ullah I, Ali S, Kang SM, Lee IJ (2019) Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann Microbiol 69(8):797–808

    Article  CAS  Google Scholar 

  • Krishnaveni MS (2010) Studies on phosphate solubilizing bacteria (PSB) in rhizosphere and non-rhizosphere soils in different varieties of foxtail millet (Setaria italica). Int J Agric Food Sci Technol 1(1):23–39

    Google Scholar 

  • Lee Y, Krishnamoorthy R, Selvakumar G, Kim K, Sa T (2015) Alleviation of salt stress in maize plant by co-inoculation of arbuscular mycorrhizal fungi and Methylobacterium oryzae CBMB20. J Korean Soc Appl Biol Chem 58(4):533–540

    Article  CAS  Google Scholar 

  • Lee GW, Lee KJ, Chae JC (2016) Herbaspirillum sp. strain GW103 alleviates salt stress in Brassica rapa L. ssp. pekinensis. Protoplasma 253(3):655–661

    Article  CAS  PubMed  Google Scholar 

  • López-Gómez M, Hidalgo-Castellanos J, Marín-Peña AJ, Herrera-Cervera JA (2019) Relationship between polyamines and osmoprotectants in the response to salinity of the legume–rhizobia symbiosis. In: Osmoprotectant-mediated abiotic stress tolerance in plants. Springer, Cham, pp 269–285

    Chapter  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Maheswari NU, Kalaiyarasi M (2015) Comparative study of liquid biofertilizer and carrier based biofertilizer on green leafy vegetables. Int J Pharm Sci Rev Res 33(1):229–232

    CAS  Google Scholar 

  • Malviya D, Sahu PK, Singh UB, Paul S, Gupta A, Gupta AR, Singh S, Kumar M, Paul D, Rai JP, Singh HV, Brahmaprakash GP (2020) Lesson from ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection. Int J Environ Res Public Health 17(4):1434

    Article  CAS  PubMed Central  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Ratnaprabha, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8(172):1–25

    Google Scholar 

  • Mohamed HI, Gomaa EZ (2012) Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 50(2):263–272

    Article  CAS  Google Scholar 

  • Moussa LA, Mohy EA, El Banna Ib M (2012) Zea mays cultivar behavior as affected by Rhizobium radiobacter inoculation in salt-stressed environments. Am J Sci 8(7):743–750

    Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29(1):6–22

    Article  CAS  Google Scholar 

  • Nadeem M, Ali M, Kubra G, Fareed A, Hasan H, Khursheed A, Gul A, Amir R, Fatima N, Khan SU (2020) Role of osmoprotectants in salinity tolerance in wheat. In: Climate change and food security with emphasis on wheat. Academic Press, New York, NY, pp 93–106

    Chapter  Google Scholar 

  • Nair SS, Sahu PK, Brahmaprakash GP (2017) Microbial inoculants for agriculture under changing climate. Mysore J Agric Sci 51(1):27–44

    Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Prabha R, Singh DP, Verma MK, Sahu P, Kumar P (2018) Bacterial diversity in rhizosphere of Paspalum scrobiculatum L.(kodo millet) is revealed with shotgun metagenome sequencing and data analysis. Data Brief 20:1653–1657

    Article  PubMed  PubMed Central  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces Camptothecin. J Nat Prod 68(12):1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotech Adv 34(7):1245–1259

    Article  CAS  Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2(1):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rashid M, Khalil S, Ayub N, Alam S, Latif F (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci 7(2):187–196

    Article  Google Scholar 

  • Reinhold-Hurek B, Krause A, Leyser B, Miché L, Hurek T (2007) The rice apoplast as a habitat for endophytic N 2-fixing bacteria. In: The apoplast of higher plants: compartment of storage, transport and reactions. Springer, Dordrecht, pp 427–443

    Chapter  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19(8):827–837

    Article  CAS  PubMed  Google Scholar 

  • Rossmann M, Pérez-Jaramillo JE, Kavamura VN, Chiaramonte JB, Dumack K, Fiore-Donno AM, Mendes LW, Ferreira MM, Bonkowski M, Raaijmakers JM, Mauchline TH (2020) Multitrophic interactions in the rhizosphere microbiome of wheat: from bacteria and fungi to protists. FEMS Microbiol Ecol 96(4):032

    Article  CAS  Google Scholar 

  • Sahu PK, Sharma L, Gupta L, Renu (2016a) Rhizospheric and endophytic beneficial microorganisms: treasure for biological control of plant pathogens. In: Santra S, Mallick A (eds) Recent biotechnological applications in India. ENVIS centre on Environ Biotech, Univ of Kalyani, Kalyani, pp 50–63

    Google Scholar 

  • Sahu PK, Lavanya G, Gupta A, Brahmaprakash GP (2016b) Fluid bed dried microbial consortium for enhanced plant growth: a step towards next generation bioformulation. Vegetos 29(4):6–10

    Article  Google Scholar 

  • Sahu PK, Gupta A, Sharma L, Bakade R (2017) Mechanisms of Azospirillum in plant growth promotion. Sch J Agric Vet Sci 4(9):338–343

    Google Scholar 

  • Sahu PK, Singh DP, Prabha R, Meena KK, Abhilash PC (2019) Connecting microbial capabilities with the soil and plant health: options for agricultural sustainability. Ecol Indic 105:601–612

    Article  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Waqas M, Kang SM, Lee IJ (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    Article  CAS  Google Scholar 

  • Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS One 11(6):e0155026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh RP, Jha PN (2017) Analysis of fatty acid composition of PGPR Klebsiella sp. SBP-8 and its role in ameliorating salt stress in wheat. Symbiosis 73(3):213–222

    Article  CAS  Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol 14(3):407–426

    Article  CAS  Google Scholar 

  • Singh DP, Singh V, Shukla R, Sahu P, Prabha R, Gupta A, Sarma BK, Gupta VK (2020a) Stage-dependent concomitant microbial fortification improves soil nutrient status, plant growth, antioxidative defense system and gene expression in rice. Microbiol Res 239:126538

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh UB, Trivedi M, Sahu PK, Paul S, Paul D, Saxena AK (2020b) Seed biopriming with salt-tolerant endophytic Pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize (Zea mays L.) grown in saline sodic soil. Int J Environ Res Public Health 17(1):253

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. CRC Crit Rev Plant Sci 19(1):1–30

    Article  Google Scholar 

  • Su CL, Zhang FM, Sun K, Zhang W, Dai CC (2019) Fungal Endophyte Phomopsis liquidambari improves iron and molybdenum nutrition uptake of peanut in consecutive monoculture soil. J Soil Sci Plant Nutr 19(1):71–80

    Article  CAS  Google Scholar 

  • Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403

    Article  PubMed  CAS  Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46(1):72–82

    Article  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Yasin NA, Akram W, Khan WU, Ahmad SR, Ahmad A, Ali A (2018) Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environ Sci Pollut Res 25(23):23236–23250

    Article  CAS  Google Scholar 

  • Yoo SJ, Weon HY, Song J, Sang MK (2019) Induced tolerance to salinity stress by halotolerant bacteria Bacillus aryabhattai H19–1 and B. mesonae H20–5 in tomato plants. J Microbiol Biotechnol 29(7):1124–1136

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang Y, Liu C, Chen F, Ge H, Tian F, Yang T, Ma K, Zhang Y (2019) Trichoderma harzianum mitigates salt stress in cucumber via multiple responses. Ecotoxicol Environ Saf 170:436–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support rendered by Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), under the project “Consortium of endophytic and rhizospheric bacteria for alleviation of salinity stress in tomato.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, P.K., Kumari, N., Gupta, A., Manzar, N. (2021). Rhizospheric and Endophytic Microorganisms and Their Role in Alleviation of Salinity Stress in Plants. In: Dubey, S.K., Verma, S.K. (eds) Plant, Soil and Microbes in Tropical Ecosystems. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-3364-5_2

Download citation

Publish with us

Policies and ethics