Skip to main content

Diversity and Classification of Streptomyces

  • Chapter
  • First Online:
Actinobacteria

Part of the book series: Rhizosphere Biology ((RHBIO))

  • 799 Accesses

Abstract

When compared to other bacteria, the genus Streptomyces involves a distinct assembly of Gram-positive bacteria that are universal in nature and display complex range in colony color, secretion of pigments, etc. The greatest role of Streptomyces is its capacity to generate biologically active specialized products, for instance, antivirals, antihypertensives, anticancer, fungicides, immunosuppressors, and most importantly antibiotics. Taxonomy or systematics of bacteria involves the study of a range of organisms that makes use of classification, nomenclature, and identification. Streptomyces taxonomy is established on limited characters such as structural coloration, bionomical necessities, and structural aspect of chains of fungal spore morphology. Streptomyces have been classified based on different approaches like the International Streptomyces Project (ISP) of 1966, genomic sequence (phylogenetic approach), molecular techniques (genotyping approach), chemical characteristics (chemotaxonomy), or numerical taxonomy. As far as the diversity is concerned, in the majority of the bacterial domain, the genus Streptomyces is highly diversified and is scattered around substantial terrestrial sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham J, Chauhan R (2018) Profiling of red pigment produced by Streptomyces sp. JAR6 and its bioactivity. 3 Biotech 8(1):1–9

    Article  CAS  Google Scholar 

  • Agarwal MK (1980) Streptozotocin: mechanisms of action. FEBS Lett 120(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Agate AD, Bhat JV (1963) A method for the preferential isolation of actinomycetes from soils. Antonie Van Leeuwenhoek 29(1):297–304

    Article  CAS  PubMed  Google Scholar 

  • Al-Dhabi NA, Esmail GA, Ghilan AKM, Arasu MV, Duraipandiyan V, Ponmurugan K (2020) Characterization and fermentation optimization of novel thermo stable alkaline protease from Streptomyces sp. Al-Dhabi-82 from the Saudi Arabian environment for eco-friendly and industrial applications. J King Saud Univ Sci 32(1):1258–1264

    Article  Google Scholar 

  • Al-Tawaha A, Odat N, Gzawi A, Al-udatt M, Turk M, Ababneh F (2008) Genomic and chemical approaches to weed control in pasture. Am Eurasian J Agric Environ Sci 3(2):187–193

    Google Scholar 

  • Anderson A, Wellington E (2001) The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51(3):797–814

    Article  CAS  PubMed  Google Scholar 

  • Barbe V, Bouzon M, Mangenot S, Badet B, Poulain J, Segurens B, Vallenet D, Marlière P, Weissenbach J (2011) Complete genome sequence of Streptomyces cattleya NRRL 8057, a producer of antibiotics and fluorometabolites. J Bacteriol 193(18):5055–5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley R, Meganathan R (1981) Geosmin and methylisoborneol biosynthesis in Streptomycetes. FEBS Lett 125(2):220–222

    Article  CAS  PubMed  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 9 417(6885):141–147

    Article  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26

    Article  Google Scholar 

  • Bignell DR, Seipke RF, Huguet-Tapia JC, Chambers AH, Parry RJ, Loria R (2010) Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant–microbe interactions. Mol Plant-Microbe Interact 23(2):161–175

    Article  CAS  PubMed  Google Scholar 

  • Bradley SG, Anderson DL, Jones LA (1961) Phylogeny of actinomycetes as revealed by susceptibility to actinophage. Dev Ind Microbiol 2:223–237

    Google Scholar 

  • Chater K (2016) Recent advances in understanding Streptomyces. F1000Research 5:2795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chater KF, Lomovskaya ND, Voeykova TA, Sladkova IA, Mkrtumian NM, Muravnik GL (1986) Streptomycesè C31-like phages: cloning vectors, genome changes and host range. In: Szabo G, Biro S, Goodfellow M (eds) Biological, biochemical and biomedical aspects of actinomycetes. Akademiai Kiado, Budapest, pp 45–54

    Google Scholar 

  • Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34(2):171–198

    Article  CAS  PubMed  Google Scholar 

  • Cox K, Baltz R (1984) Restriction of bacteriophage plaque formation in Streptomyces spp. J Bacteriol 159(2):499–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derry AM, Staddon WJ, Kevan PG, Trevors JT (1999) Functional diversity and community structure of micro-organisms in three arctic soils as determined by sole-carbon-source-utilization. Biodivers Conserv 8(2):205–221

    Article  Google Scholar 

  • Dietz A, Mathews J (1971) Classification of Streptomyces spore surfaces into five groups. Appl Microbiol 21(3):527–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doering-Saad C, Kämpfer P, Manulis S, Kritzman G, Schneider J, Zakrzewska-Czerwinska J, Schrempf H, Barash I (1992) Diversity among Streptomyces strains causing potato scab. Appl Environ Microbiol 58:3932–3940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duke S, Dayan F, Rimando A, Schrader K, Aliotta G, Oliva A, Romagni J (2002) Chemicals from nature for weed management. Invited Paper. Weed Sci 50(2):138–151

    Article  CAS  Google Scholar 

  • Dutton C, Gibson S, Goudie A, Holdom K, Pacey M, Ruddock J (1991) Novel avermectins produced by mutational biosynthesis. J Antibiot 44(3):357–365

    Article  CAS  Google Scholar 

  • El-Sabbagh S (2013) L-Asparaginase production by Streptomyces halstedii isolated from Egyptian Soil. J Faculty Sci Menoufia Univ XXVI:101–130

    Google Scholar 

  • Euzeby JP (2012) List of prokaryotic names with standing in nomenclature—genus Streptomyces. http://www.bacterio.cict.fr/s/Streptomycesb.html. Accessed 20 Feb 2012

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39(3):224–229

    Article  Google Scholar 

  • Folcher M, Gaillard H, Nguyen LT, Nguyen KT, Lacroix P, Bamas-Jacques N, Rinkel M, Thompson CJ (2001) Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276(47):44297–44306

    Article  CAS  PubMed  Google Scholar 

  • Foor F, Roberts G, Morin N, Snyder L, Hwang M, Gibbons P, Paradiso M, Stotish R, Ruby C, Wolanski B, Streicher S (1985) Isolation and characterization of the Streptomyces cattleya temperate phage TG1. Gene 39(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Gillespie D, Spiegelman S (1965) A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol 12(3):829–842

    Article  CAS  PubMed  Google Scholar 

  • Gillis M, Ley J, Cleene M (1970) The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12(1):143–153

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M (2000) Microbial systematics: background and uses. In: Priest FG, Goodfellow M (eds) Applied microbial systematics. Kluwer Academic, Dordrecht, pp 1–18

    Google Scholar 

  • Goodfellow M, O’Donnell AG (1993) Roots of bacterial systematic. In: Handbook of new bacterial systematics. Academic Press, London, pp 3–56

    Google Scholar 

  • Goodfellow M, Simpson KE (1987) Ecology of streptomycetes. Front Appl Microbiol 2:97–125

    Google Scholar 

  • Goris J, Suzuki K, Vos P, Nakase T, Kersters K (1998) Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44(12):1148–1153

    Article  CAS  Google Scholar 

  • Grimont F, Grimont P (1986) Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Annales de l’Institut Pasteur/Microbiologie 137(1):165–175

    Article  Google Scholar 

  • Habbeche A, Saoudi B, Jaouadi B, Haberra S, Kerouaz B, Boudelaa M, Badis A, Ladjama A (2014) Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J Biosci Bioeng 117(4):413–421

    Article  CAS  PubMed  Google Scholar 

  • Hadrys H, Balick M, Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol 1(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Hara O, Murakami T, Imai S, Anzai H, Itoh R, Kumada Y et al (1991) The bialaphos biosynthetic genes of Streptomyces viridochromogenes: cloning, heterospecific expression, and comparison with the genes of Streptomyces hygroscopicus. J Gen Microbiol 137(2):351–359

    CAS  PubMed  Google Scholar 

  • Harir M, Bendif H, Bellahcene M, Fortas, Rebecca Pogni Z (2018) Streptomyces secondary metabolites. In: Basic biology and applications of actinobacteria. IntechOpen, London

    Google Scholar 

  • Heinsch SC, Hsu SY, Otto-Hanson L, Kinkel L, Smanski MJ (2019) Complete genome sequences of Streptomyces spp. isolated from disease-suppressive soils. BMC Genomics 20(1):1–13

    Article  CAS  Google Scholar 

  • Hori S, Shirai M, Hirano S, Oki T, Inui T, Tsukagoshi S, Ishizuka M, Takeuchi T, Umezawa H (1977) Antitumor activity of new anthracycline antibiotics, aclacinomycin-A and its analogs, and their toxicity. Gann 68(5):685–690

    CAS  PubMed  Google Scholar 

  • Hori H, Higo K, Osawa S (1987) The rates of evolution in some ribosomal components. J Mol Evol 9(3):191–201

    Article  Google Scholar 

  • Huddleston A, Cresswell N, Neves M, Beringer J, Baumberg S, Thomas D, Wellington E (1997) Molecular detection of streptomycin-producing Streptomycetes in Brazilian soils. Appl Environ Microbiol 63(4):1288–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang B, Lim S, Kim B, Lee J, Moon S (2001) Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl Environ Microbiol 67(8):3739–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob N, Poorna CA, Prema P (2008) Purification and partial characterization of polygalacturonase from Streptomyces lydicus. Bioresour Technol 99(14):6697–6701

    Article  CAS  PubMed  Google Scholar 

  • Kampfer P, Glaeser SP, Parkes L, van Keulen G, Dyson P (2014) The Family Streptomycetaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30138-4_184

    Chapter  Google Scholar 

  • Kämpfer P, Kroppenstedt R, Dott W (1991) A numerical classification of the genera Streptomyces and Streptoverticillium using miniaturized physiological tests. J Gen Microbiol 137(8):1831–1891

    Article  Google Scholar 

  • Kataoka M, Ueda K, Kudo T, Seki T, Yoshida T (1997) Application of the variable region in 16S rDNA to create an index for rapid species identification in the genus Streptomyces. FEMS Microbiol Lett 151(2):249–255

    Article  CAS  PubMed  Google Scholar 

  • Katsifas EA, Giannoutsou EP, Karagouni AD (1999) Diversity of streptomycetes among specific Greek terrestrial ecosystems. Lett Appl Microbiol 29(1):48–51

    Article  Google Scholar 

  • Kirby R, Rybicki E (1986) Enzyme-linked immunosorbent assay (ELISA) as a means of taxonomic analysis of Streptomyces and related organisms. Microbiology 132(7):1891–1894

    Article  CAS  Google Scholar 

  • Klaus S, Krugel H, Suss F, Neigenfind M, Zimmermann I, Taubeneck U (1981) Properties of the temperate actinophage SH10. Microbiology 123(2):269–279

    Article  Google Scholar 

  • Kong J, Yi L, Xiong Y, Huang Y, Yang D, Yan X, Shen B, Duan Y, Zhu X (2018) The discovery and development of microbial bleomycin analogues. Appl Microbiol Biotechnol 102(16):6791–6798

    Article  CAS  PubMed  Google Scholar 

  • Korn-Wendisch F, Schneider J (1992) Phage typing – a useful tool in actinomycete systematics. Gene 115:243–247

    Article  CAS  PubMed  Google Scholar 

  • Kumar RR, Jadeja VJ (2016) Isolation of actinomycetes: a complete approach. Int J Curr Microbiol Appl Sci 5(5):606–618

    Article  CAS  Google Scholar 

  • Kutzner HJ, Waksman SA (1959) Streptomyces coelicolor Mueller and Streptomyces violaceoruber Waksman and Curtis, two distinctly different organisms. J Bacteriol 78(4):528–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langham C, Williams S, Sneath P, Mortimer A (1989) New probability matrices for identification of Streptomyces. Microbiology 135(1):121–133

    Article  CAS  Google Scholar 

  • Lanoot B (2004) Improved taxonomy of the genus Streptomyces. PhD thesis. University Gent, pp 1–321

    Google Scholar 

  • Lanoot B, Vancanneyt M, Dawyndt P, Cnockaert M, Zhang J, Huang Y, Liu Z, Swings J (2004) BOX-PCR fingerprinting as a powerful tool to reveal synonymous names in the genus Streptomyces. Emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. colombiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus. Syst Appl Microbiol 27(1):84–92

    Article  CAS  PubMed  Google Scholar 

  • Lechevalier M, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20(4):435–443

    Article  CAS  Google Scholar 

  • Lee HB, Kim CJ, Kim JS, Hong KS, Cho KY (2003) A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomycete strain Streptomyces sp. 8E-12. Lett Appl Microbiol 36(6):387–391

    Article  CAS  PubMed  Google Scholar 

  • Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12(1):133–142

    Article  PubMed  Google Scholar 

  • Li Y, Zhang C, Liu C, Ju J, Ma J (2018) Genome sequencing of Streptomyces atratus SCSIOZH16 and activation production of nocardamine via metabolic engineering. Front Microbiol 9:1269

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichenstein HS, Hastings AE, Langley KE, Mendiaz EA, Rohde MF, Elmore R, Zukowski MM (1990) Cloning and nucleotide sequence of the N-acetylmuramidase M1-encoding gene from Streptomyces globisporus. Gene 88(1):81–86

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Euzéby J, Schumann P, Busse HJ, Trujillo ME, Kämpfer P, Whitman WB (2012) Road map of the phylum actinobacteria. In: Bergey’s manual® of systematic bacteriology. Springer, New York, pp 1–28

    Google Scholar 

  • Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA, Brock T (2014) Brock biology of microorganisms. Pearson, London

    Google Scholar 

  • Manchester L, Pot B, Kersters K, Goodfellow M (1990) Classification of Streptomyces and Streptoverticillium species by numerical analysis of electrophoretic protein patterns. Syst Appl Microbiol 13(4):333–337

    Article  Google Scholar 

  • Manteca A, Alvarez R, Salazar N, Yagüe P, Sanchez J (2008) Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Appl Environ Microbiol 74(12):3877–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchant R, Banat I (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30(11):558–565

    Article  CAS  PubMed  Google Scholar 

  • Marinelli F (2009) Antibiotics and Streptomyces: the future and antibiotic discovery. Microbiol Today 2:20–23

    Google Scholar 

  • Martin P, Dary A, André A, Decaris B (2000) Identification and typing of Streptomyces strains: evaluation of interspecific, intraspecific and intraclonal differences by RAPD fingerprinting. Res Microbiol 151(10):853–864

    Article  CAS  PubMed  Google Scholar 

  • McCarthy B, Bolton E (1963) An approach to the measurement of genetic relatedness among organisms. Proc Natl Acad Sci 50(1):156–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo RRD, Persinoti GF, Paixão DAA, Squina FM, Ruller R, Sato HH (2017) Draft genome sequence of Streptomyces sp. strain F1, a potential source for glycoside hydrolases isolated from Brazilian soil. Braz J Microbiol 48(4):612–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikulík K, Janda I, Weiser J, Jiráňová A (1982) Ribosomal proteins of Streptomyces aureofaciens producing tetracycline. Biochim Biophys Acta 699(3):203–210

    Article  PubMed  Google Scholar 

  • Nascimento RP, Coelho RRR, Marques S, Alves L, Gırio FM, Bon EPS, Amaral-Collaço MT (2002) Production and partial characterisation of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzym Microb Technol 31(4):549–555

    Article  CAS  Google Scholar 

  • Nelson D, Bathgate A, Poxton I (1991) Monoclonal antibodies as probes for detecting lipopolysaccharide expression on Escherichia coli from different growth conditions. J Gen Microbiol 137(12):2741–2751

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TM, Kim J (2015) Streptomyces gilvifuscus sp. nov., an actinomycete that produces antibacterial compounds isolated from soil. Int J Syst Evol Microbiol 65(10):3493–3500

    Article  CAS  PubMed  Google Scholar 

  • Nindita Y, Cao Z, Fauzi AA, Teshima A, Misaki Y, Muslimin R, Yang Y, Shiwa Y, Yoshikawa H, Tagami M, Lezhava A (2019) The genome sequence of Streptomyces rochei 7434AN4, which carries a linear chromosome and three characteristic linear plasmids. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  • O’Farrell PH (1975) High-resolution two-dimensional electrophoresis of proteins. J Biol Chem 250(10):4007–4021

    Article  PubMed  Google Scholar 

  • Ochi K (1989) Heterogeneity of ribosomal proteins among Streptomyces species and its application to identification. Microbiology 135(10):2635–2642

    Article  CAS  Google Scholar 

  • Ochi K (1992) Polyacrylamide gel electrophoresis analysis of ribosomal protein: a new approach for actinomycete taxonomy. Gene 115(1–2):261–265

    Article  CAS  PubMed  Google Scholar 

  • Ochi K, Hiranuma H (1994) A taxonomic review of the genera Kitasatosporia and Streptoverticilliumby analysis of ribosomal protein AT-L30. Int J Syst Bacteriol 44(2):285–292

    Article  CAS  PubMed  Google Scholar 

  • Ochi K (1995) A taxonomic study of the genus Streptomyces by analysis of ribosomal protein AT-L30 Int. J Syst Bacteriol 45:507–514

    Article  CAS  Google Scholar 

  • Ohnishi, Y., Ishikawa, J., Hara, H., Suzuki, H., Ikenoya, M. And Ikeda, H. 2008. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol, 190(11), pp. 4050–4060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal P (2014) Ribotyping as a molecular biological technique for studying diversity in Shigella isolates—a review. Int Lett Nat Sci 14(2014):84–92

    Google Scholar 

  • Palaniappan N, Dhote V, Ayers S, Starosta A, Wilson D, Reynolds K (2009) Biosynthesis of the aminocyclitol subunit of hygromycin A in Streptomyces hygroscopicus NRRL 2388. Chem Biol 16(11):1180–1189

    Article  CAS  PubMed  Google Scholar 

  • Paradis E, Goyer C, Hodge N, Hogue R, Stall R, Beaulieu C (1994) Fatty acid and protein profiles of Streptomyces scabies strains isolated in eastern Canada. Int J Syst Bacteriol 44(3):561–564

    Article  CAS  Google Scholar 

  • Pot B, Vandamme P, Kersters K (1994) Analysis of electrophoretic whole-organism protein fingerprints. In: Goodfellow M, O’Donnell AG (eds) Modern microbial methods. Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 493–521

    Google Scholar 

  • Pridham TG, Anderson P, Foley C, Lindenfelser LA, Hesseltine CW, Benedict RG (1957) A selection of media for maintenance and taxonomic study of streptomycetes. A selection of media for maintenance and taxonomic study of streptomycetes. Antibiot, Ann

    Google Scholar 

  • Pridham T, Hesseltine C, Benedict R (1958) A guide for the classification of Streptomycetes according to selected groups. Placement of strains in morphological sections. Appl Microbiol 6(1):52–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procópio REDL, Silva IRD, Martins MK, Azevedo JLD, Araújo JMD (2012) Antibiotics produced by Streptomyces. Braz J Infect Dis 16(5):466–471

    Article  PubMed  Google Scholar 

  • Reda FM (2015) Kinetic properties of Streptomyces canarius L-glutaminase and its anticancer efficiency. Braz J Microbiol 46(4):957–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redenbach M, Flett F, Piendl W, Glocker I, Rauland U, Wafzig O, Kliem R, Leblond P, Cullum J (1993) The Streptomyces lividans 66 chromosome contains a 1 MB deletogenic region flanked by two amplifiable regions. Mol Gen Genet 241–241(3–4):255–262

    Article  Google Scholar 

  • Ridell M, Wallerström G, Williams S (1986) Immunodiffusion analyses of phenetically defined strains of Streptomyces, Streptoverticillium and Nocardiopsis. Syst Appl Microbiol 8(1–2):24–27

    Article  Google Scholar 

  • Saddler G, Goodfellow M, Minnikin D, O’Donnell A (1986) Influence of the growth cycle on the fatty acid and menaquinone composition of Streptomyces cyaneus NCIB 9616. J Appl Bacteriol 60(1):51–56

    Article  CAS  Google Scholar 

  • Saddler G, O’Donnell A, Goodfellow M, Minnikin D (1987) SIMCA pattern recognition in the analysis of streptomycete fatty acids. Microbiology 133(5):1137–1147

    Article  CAS  Google Scholar 

  • Sanglier J, Whitehead D, Saddler G, Ferguson E, Goodfellow M (1992) Pyrolysis mass spectrometry as a method for the classification, identification and selection of actinomycetes. Gene 115(1–2):235–242

    Article  CAS  PubMed  Google Scholar 

  • Schlatter D, Kinkel L (2014) Global biogeography of Streptomyces antibiotic inhibition, resistance, and resource use. FEMS Microbiol Ecol 88(2):386–397

    Article  CAS  PubMed  Google Scholar 

  • Sehgal S, Baker H, Vezina C (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot 28(10):727–732

    Article  CAS  Google Scholar 

  • Sharma M, Manhas RK (2019) Purification and characterization of actinomycins from Streptomyces strain M7 active against methicillin resistant Staphylococcus aureus and vancomycin resistant Enterococcus. BMC Microbiol 19(1):1–14

    Article  Google Scholar 

  • Smith D, Wilcox M, Williams P, Finch R, Denyer S (1991) Characterization of cell envelope proteins of Staphylococcus epidermidis cultured in human peritoneal dialysate. Infect Immun 59(2):617–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stackbrandt E, Goebel B (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44(4):846–849

    Article  Google Scholar 

  • Stackebrandt E, Liesack W, Witt D (1992) Ribosomal RNA and rDNA sequence analyses. Gene 115(1–2):255–260

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Rainey F, Ward-Rainey N (1997) Proposal for a new hierarchic classification system, actinobacteria classis nov. Int J Syst Bacteriol 47(2):479–491

    Article  Google Scholar 

  • Stankovic N, Senerovic L, Ilic-Tomic T, Vasiljevic B, Nikodinovic-Runic J (2014) Properties and applications of undecylprodigiosin and other bacterial prodigiosins. Appl Microbiol Biotechnol 98(9):3841–3858

    Article  CAS  PubMed  Google Scholar 

  • Taguchi S, Kojima S, Miura K, Momose H (1996) Taxonomic characterization of closely related Streptomyces spp. based on the amino acid sequence analysis of protease inhibitor proteins. FEMS Microbiol Lett 135(2–3):169–173

    CAS  PubMed  Google Scholar 

  • Tippelt A, Nett M, Gurovic MSV (2020) Complete genome sequence of the lignocellulose-degrading actinomycete Streptomyces albus CAS922. Microbiol Resour Announ 9(21):e00227–e00220

    Article  CAS  Google Scholar 

  • Truper HG, Schleifer KH (1991) Principles of characterization and identification of prokaryotes. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 126–149

    Google Scholar 

  • van der Aart L, Nouinoui I, Kloosterman A, Ingual J, Willemse J, Goodfellow M, van Wezel G (2018) Classification of the gifted natural product producer Streptomyces sp. nov. by polyphasic taxonomy. BioRxiv, p 310888.

    Google Scholar 

  • Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XJ, Wang XC, Xiang WS (2009) Improvement of milbemycin-producing Streptomyces bingchenggensis by rational screening of ultraviolet-and chemically induced mutants. World J Microbiol Biotechnol 25(6):1051–1056

    Article  CAS  Google Scholar 

  • Wang Y, Jiang Y (2016) Chemotaxonomy of actinobacteria. In: Dhanasekaran D (ed) Actinobacteria—basics and biotechnological applications. IntechOpen, London, p 61482

    Google Scholar 

  • Watve M, Tickoo R, Jog M, Bhole B (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176(5):386–390

    Article  CAS  PubMed  Google Scholar 

  • Wayne L, Moore W, Stackebrandt E, Kandler O, Colwell R, Krichevsky M, Truper H, Murray R, Grimont P, Brenner D, Starr M, Moore L (1987) Report of the Ad Hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37(4):463–464

    Article  Google Scholar 

  • Wellington EMH, Williams ST (1981) Host ranges of phages isolated to Streptomyces and other genera. ZentralblattfürBakteriologie, Mikrobiologie und Hygiene Abteilung Supplement 11:93–98

    Google Scholar 

  • Whiffen A (1948) The production, assay, and antibiotic activity of actidione, an antiobiotic from Streptomyces griseus. J Bacteriol 56(3):283–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams S, Davies F, Mayfield C, Khan M (1971) Studies on the ecology of actinomycetes in soil II. The pH requirements of streptomycetes from two acid soils. Soil Biol Biochem 3(3):187–195

    Article  CAS  Google Scholar 

  • Williams S, Goodfellow M, Alderson G, Wellington E, Sneath P, Sackin M (1983a) Numerical classification of Streptomyces and related genera. Microbiology 129(6):1743–1813

    Article  CAS  Google Scholar 

  • Williams S, Goodfellow M, Wellington E, Vickers J, Alderson G, Sneath P, Sackin M, Mortimer A (1983b) A probability matrix for identification of some Streptomycetes. Microbiology 129(6):1815–1830

    Article  CAS  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G (1989) Streptomyces Waksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 2452–2492

    Google Scholar 

  • Wipat A, Wellington EM, Saunders VA (1994) Monoclonal antibodies for Streptomyces lividans and their use for immunomagnetic capture of spores from soil. Microbiology 140(8):2067–2076

    Article  CAS  PubMed  Google Scholar 

  • Witt D, Stackebrandt E (1990) Unification of the genera Streptoverticillum and Streptomyces, and amendation of Streptomyces Waksman and Henrici 1943, 339AL. Syst Appl Microbiol 13(4):361–371

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hungund, B.S., Honnangi, S., Desai, S.S., Badiger, K., Tennalli, G.B. (2021). Diversity and Classification of Streptomyces. In: Yaradoddi, J.S., Kontro, M.H., Ganachari, S.V. (eds) Actinobacteria. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-3353-9_6

Download citation

Publish with us

Policies and ethics