Skip to main content

The Family Streptomycetaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The family Streptomycetaceae comprises the genera Streptomyces, Kitasatospora, and Streptacidiphilus that are very difficult to differentiate both with genotypic and phenotypic characteristics. A separate generic status for Kitasatospora and Streptacidiphilus is questionable. Members of the family can be characterized as non-acid-alcohol-fast actinomycetes that generate most often an extensively branched substrate mycelium that rarely fragments. At maturity, the aerial mycelium forms chains of few to many spores. A large variety of pigments is produced, responsible for the color of the substrate and aerial mycelium. The organisms are chemoorganotrophic with an oxidative type of metabolism and grow within different pH ranges. Streptomyces are notable for their complex developmental cycle and production of bioactive secondary metabolites, producing more than a third of commercially available antibiotics. Antibacterial, antifungal, antiparasitic, and immunosuppressant compounds have been identified as products of Streptomyces secondary metabolism. Streptomyces can be distinguished from other filamentous actinomycetes on the basis of morphological characteristics, in particular by vegetative mycelium, aerial mycelium, and arthrospores. The genus comprises at the time of writing more than 600 species with validated names. 16S rRNA gene sequence-based analysis for species delineation within the Streptomycetaceae is of limited value. The variations within the 16S rRNA genes—even in the variable regions—are too small to resolve problems of species differentiation and to establish a taxonomic structure within the genus. Comprehensive comparative studies including protein-coding gene sequences with higher phylogenetic resolution and genome-based studies are needed to clarify the species delineation within the Streptomycetaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    AL denotes the inclusion of this name on the Approved Lists of Bacterial Names (1980).

References

  • Acosta-Martinez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40:2762–2770

    Article  CAS  Google Scholar 

  • Adams MJ, Lapwood DH (1978) Studies on the lenticel development, surface microflora and infection by common scab (Streptomyces scabies) of potato tubers growing in wet and dry soils. Ann Appl Biol 90:335–343

    Article  Google Scholar 

  • Aharonowitz Y, Cohen G (1992) Penicillin and cephalosporin biosynthesis genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 46:461–495

    Article  CAS  PubMed  Google Scholar 

  • Aínsa JA, Parry HD, Chater KF (1999) A response regulator-like protein that functions at an intermediate stage of sporulation in Streptomyces coelicolor A3(2). Mol Microbiol 34(3):607–619

    Article  PubMed  Google Scholar 

  • Aínsa JA, Ryding NJ, Hartley N, Findlay KC, Bruton CJ, Chater KF (2000) WhiA, a protein of unknown function conserved among gram-positive bacteria, is essential for sporulation in Streptomyces coelicolor A3(2). J Bacteriol 182(19):5470–5478

    Article  PubMed Central  PubMed  Google Scholar 

  • Aínsa JA, Bird N, Ryding NJ, Findlay KC, Chater KF (2010) The complex whiJ locus mediates environmentally sensitive repression of development of Streptomyces coelicolor A3(2). Antonie Van Leeuwenhoek 98(2):225–236

    Article  PubMed  CAS  Google Scholar 

  • Akanuma G, Ueki M, Ishizuka M, Ohnishi Y, Horinouchi S (2011) Control of aerial mycelium formation by the BldK oligopeptide ABC transporter in Streptomyces griseus. FEMS Microbiol Lett 315(1):54–62

    Article  CAS  PubMed  Google Scholar 

  • Al-Diwany LJ, Cross T (1978) Ecological studies on nocardioforms and other actinomycetes in aquatic habitats. In: Mordarski M, Kurylowicz W, Jeljaszewicz J (eds) Nocardia and Streptomyces. Proceedings of international symposium on Nocardia and Streptomyces, Warsaw, 1976. Gustav Fischer Verlag, Stuttgart, pp 153–160

    Google Scholar 

  • Amoroso MJ, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. J Basic Microbiol 40:295–301

    Article  CAS  PubMed  Google Scholar 

  • Andersen AS, Wellington EMH (2001) The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51:797–814

    Article  Google Scholar 

  • Antai SP, Crawford DL (1981) Degradation of softwood, hardwood and grass lignocelluloses by two Streptomyces strains. Appl Environ Microbiol 42:378–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antony-Babu S, Goodfellow M (2008) Biosystematics of alkaliphilic streptomycetes isolated from seven locations across a beach and dune sand system. Antonie Van Leeuwenhoek 94:581–591

    Article  PubMed  Google Scholar 

  • Antony-Babu S, Stach JEM, Goodfellow M (2010) Computer-assisted numerical analysis of colour-group data for dereplication of streptomycetes for bioprospecting and ecological purposes. Antonie Van Leeuwenhoek 97:231–239

    Article  PubMed  Google Scholar 

  • Anukool U, Gaze WH, Wellington EMH (2004) In situ monitoring of streptothricin production by Streptomyces rochei F20 in soil and rhizosphere. Appl Environ Microbiol 70:5222–5228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anzai Y, Okuda T, Watanabe J (1994) Application of the random amplified polymorphic DNA using the polymerase chain reaction for accient elimination of duplicate strains in microbial screening. II. Actinomycetes. J Antibiot 47:183–193

    Article  CAS  PubMed  Google Scholar 

  • Archuleta JG, Easton GD (1981) The cause of deep-pitted scab of potatoes. Am Potato J 58:385–392

    Article  Google Scholar 

  • Arias ME, Arenas M, Rodriguez J, Soliveri J, Ball AS, Hernandez M (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 69:1953–1958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atalan E, Manfio GP, Ward AC, Kroppenstedt RM, Goodfellow M (2000) Biosystematic studies on novel streptomycetes from soil. Antonie Van Leeuwenhoek 77:337–353

    Article  CAS  PubMed  Google Scholar 

  • August PR, Tang L, Yoon YJ, Ning S, Muller R, Yu TW, Taylor M, Hoffmann D, Kim CG, Zhang XH, Hutchinson CR, Floss HG (1998) Biosynthesis of the ansamycin antibiotic rifamycin—deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5:69–79

    Article  CAS  PubMed  Google Scholar 

  • Ausmees N, Wahlstedt H, Bagchi S, Elliot MA, Buttner MJ, Flärdh K (2007) SmeA, a small membrane protein with multiple functions in Streptomyces sporulation including targeting of a SpoIIIE/FtsK-like protein to cell division septa. Mol Microbiol 65(6):1458–1473

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO, Kirby BM, Le Roes-Hill M, Cook AE, Cary SC, Burton SG, Cowan DA (2009) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11:566–576

    Article  CAS  PubMed  Google Scholar 

  • Bachoon DS, Araujo R, Molina M, Hodson RE (2001) Microbial community dynamics and evaluation of bioremediation strategies in oil-impacted salt marsh sediment microcosms. J Ind Microbiol Biotechnol 27:72–79

    Article  CAS  PubMed  Google Scholar 

  • Bailey CR, Bruton CJ, Butler MJ, Chater KF, Harris JE, Hopwood DA (1986) Properties of in vitro recombinant derivatives of pJV1, a multi-copy plasmid from Streptomyces phaeochromogenes. J Gen Microbiol 132:2071–2078

    CAS  PubMed  Google Scholar 

  • Baldacci E (1958) Development in the classification of actinomycetes. G Microbiol 6:10–27

    Google Scholar 

  • Baldacci E, Spalla C, Grein A (1954) The classification of Actinomyces species (Streptomyces). Arch Mikrobiol 20:347–357

    Article  CAS  PubMed  Google Scholar 

  • Banchio C, Gramajo HC (1997) Medium- and long-chain fatty acid uptake and utilization by Streptomyces coelicolor A3(2): first characterization of a Gram-positive bacterial system. Microbiology 143:2439–2447

    Article  CAS  PubMed  Google Scholar 

  • Barbe V, Bouzon M, Mangenot S, Badet B, Poulain J, Segurens B, Vallenet D, Marlière P, Weissenbach J (2011) Complete genome sequence of Streptomyces cattleya NRRL 8057, a producer of antibiotics and fluorometabolites. J Bacteriol 193(18):5055–5056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barke J, Seipke RF, Yu DW, Hutchings MI (2011) A mutualistic microbiome: how do fungus-growing ants select their antibiotic-producing bacteria? Commun Integr Biol 4:41–43

    PubMed Central  PubMed  Google Scholar 

  • Barto EK, Alt F, Oelmann Y, Wilcke W, Rillig MC (2010) Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biol Biochem 42:2316–2324

    Article  CAS  Google Scholar 

  • Behal V (2000) Bioactive products from Streptomyces. Adv Appl Microbiol 47:113–156

    Article  CAS  PubMed  Google Scholar 

  • Benedict RG, Pridham TG, Lindenfelser LA, Hall HH, Jackson RW (1955) Further studies in the evaluation of carbohydrate utilization tests as aids in the differentiation of species of Streptomyces. Appl Microbiol 3:1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147

    Article  PubMed  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26

    Article  Google Scholar 

  • Berger DR, Reynolds DM (1958) The chitinase system of a strain Streptomyces griseus. Biochim Biophys Acta 29:522–534

    Article  CAS  PubMed  Google Scholar 

  • Beyazova M, Lechevalier MP (1993) Taxonomic utility of restriction endonuclease fingerprinting of large DNA fragments from Streptomyces strains. Int J Syst Bacteriol 43:674–682

    Article  Google Scholar 

  • Beyer M, Diekmann D (1985) The chitinase system of Streptomyces sp. ATCC 11238 and its significance for fungal cell wall degradation. Appl Microbiol Biotechnol 23:140–146

    Article  CAS  Google Scholar 

  • Bibb MJ, Sherman DH, Omura S, Hopwood DA (1994) Cloning, sequencing and deduced functions of a cluster of Streptomyces genes probably encoding biosynthesis of the polyketide antibiotic frenolicin. Gene 142:31–39

    Article  CAS  PubMed  Google Scholar 

  • Bibb MJ, Molle V, Buttner MJ (2000) Sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J Bacteriol 182(16):4606–4616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bignell DE (1984) The arthropod gut as an environment for microorganisms. In: Anderson JM, Rayner ADM, Walton DWH (eds) Invertebrate-microbial interactions. Cambridge University Press, Cambridge, UK, pp 205–227

    Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM (1980) Colonization of the epithelial face of the peritrophic membrane and the ectoperitrophic space by actinomycetes in a soil-feeding termite. J Invertebr Pathol 36:426–428

    Article  Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM (1981) Association of actinomycetes with soil-feeding termites: a novel symbiotic relationship? In: Schaal KP, Pulverer G (eds) Actinomycetes. Proceedings of 4th international Symposium on actinomycete biology, Cologne, 1979. Gustav Fischer, Stuttgart, pp 201–206

    Google Scholar 

  • Bignell DR, Warawa JL, Strap JL, Chater KF, Leskiw BK (2000) Study of the bldG locus suggests that an anti-anti-sigma factor and an anti-sigma factor may be involved in Streptomyces coelicolor antibiotic production and sporulation. Microbiology 146(9):2161–2173

    CAS  PubMed  Google Scholar 

  • Binnie C, Warren M, Butler MJ (1989) Cloning and heterologous expression in Streptomyces lividans of Streptomyces rimosus genes involved in oxytetracycline biosynthesis. J Bacteriol 171:887–895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blaak H, Schrempf H (1995) Binding and substrate specificities of a Streptomyces olivaceoviridis chitinase in comparison with its proteolytically processed form. Eur J Biochem 229:132–139

    Article  CAS  PubMed  Google Scholar 

  • Blanco G, Rodicio MR, Puglia AM, Méndez C, Thompson CJ, Salas JA (1994) Synthesis of ribosomal proteins during growth of Streptomyces coelicolor. Mol Microbiol 12:375–385

    Article  CAS  PubMed  Google Scholar 

  • Bormann C, Möhrle V, Bruntner C (1996) Cloning and heterologous expression of the entire set of structural genes for nikkomycin synthesis from Streptomyces tendae Tü901 in Streptomyces lividans. J Bacteriol 178:1216–1218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borodina I, Krabben P, Nielsen J (2005a) Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res 15:820–829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borodina I, Scholler C, Eliasson A, Nielsen J (2005b) Metabolic network analysis of Streptomyces tenebrarius, a Streptomyces species with an active Entner-Doudoroff pathway. Appl Environ Microbiol 71:2294–2302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L, Nielsen J (2008) Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion. J Biol Chem 283:25186–25199

    Article  CAS  PubMed  Google Scholar 

  • Bouchek-Mechiche K, Gardan L, Normand P, Jouan B (2000) DNA relatedness among strains of Streptomyces pathogenic to potato in France: description of three new species, S. europaeiscabiei sp. nov. and S. stelliscabiei sp. nov. associated with common scab, and S. reticuliscabiei sp. nov. associated with netted scab. Int J Syst Evol Microbiol 50:91–99

    Article  CAS  PubMed  Google Scholar 

  • Bouchek-Mechiche K, Gardan L, Andrivon D, Normand P (2006) Streptomyces turgidiscabies and Streptomyces reticuliscabiei: one genomic species, two pathogenic groups. Int J Syst Evol Microbiol 56:2771–2776

    Article  CAS  PubMed  Google Scholar 

  • Braña AF, Méndez C, Díaz LA, Manzanal MB, Hardisson C (1986) Glycogen and trehalose accumulation during colony development in Streptomyces antibioticus. J Gen Microbiol 132(5):1319–1326

    PubMed  Google Scholar 

  • Brian PW (1957) The ecological significance of antibiotic production. In: Williams REO, Spicer CC (eds) Microbial ecology. Cambridge University Press, Cambridge, UK, pp 168–188

    Google Scholar 

  • Brown RL, Peterson GE (1966) Cholesterol oxidation by soil actinomycetes. J Gen Microbiol 45:441–450

    Article  CAS  Google Scholar 

  • Brüsewitz G (1959) Untersuchungen über den Einfluss des Regenwurms auf Zahl, Art und Leistungen von Mikroorganismen im Boden. Arch Microbiol 33:52–82

    Google Scholar 

  • Buckley DH, Schmidt TM (2003) Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ Microbiol 5:441–452

    Article  PubMed  Google Scholar 

  • Burkholder PR, Sun SH, Ehrlich J, Anderson L (1954) Criteria of speciation in the genus Streptomyces. Ann NY Acad Sci 60:102–123

    Article  CAS  PubMed  Google Scholar 

  • Burman NP (1973) The occurrence and significance of actinomycetes in water supply. In: Sykes G, Skinner FA (eds) Actinomycetales: characteristics and practical importance. Academic, London, pp 219–230

    Google Scholar 

  • Burman NP, Oliver CP, Stevens JK (1969) Membrane filtration techniques for the isolation from water, of coli-aerogenes, Escherichia coli, faecal streptococci, Clostridium perfringens, actinomycetes and microfungi. In: Shapton DA, Gould GW (eds) Isolation Methods for Microbiologists. Academic, London, pp 127–134

    Google Scholar 

  • Butler M, Bruheim J, Jovetic P, Marinelli S, Postma F, Bibb MJ (2002) Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl Environ Microbiol 68:4731–4739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calcutt MJ, Schmidt FJ (1992) Conserved gene arrangement in the origin region of the Streptomyces coelicolor chromosome. J Bacteriol 174:3220–3226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Capstick DS, Willey JM, Buttner MJ, Elliot MA (2007) SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor. Mol Microbiol 64(3):602–613

    Article  CAS  PubMed  Google Scholar 

  • Capstick DS, Jomaa A, Hanke C, Ortega J, Elliot MA (2011) Dual amyloid domains promote differential functioning of the chaplin proteins during Streptomyces aerial morphogenesis. Proc Natl Acad Sci U S A 108(24):9821–9826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carvajal F (1947) The production of spores in submerged cultures by some Streptomycetes. Mycologia 39:426–440

    Article  CAS  PubMed  Google Scholar 

  • Carvajal F (1953) Phage problems in the streptomycin fermentation. Mycologia 45:209–234

    Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 100(Suppl 2):14555–14561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chamberlain K, Crawford DL (2000) Thatch biodegradation and antifungal activities of two lignocellulolytic Streptomyces strains in laboratory cultures and in golf green turfgrass. Can J Microbiol 46:550–558

    Article  CAS  PubMed  Google Scholar 

  • Champness WC (1988) New loci required for Streptomyces coelicolor morphological and physiological differentiation. J Bacteriol 170(3):1168–1174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chandramohan D, Ramu S, Natarajan R (1972) Cellulolytic activity of marine streptomycetes. Curr Sci 41:245–246

    Google Scholar 

  • Chater KF (1972) A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor. J Gen Microbiol 72(1):9–28

    Article  CAS  PubMed  Google Scholar 

  • Chater KF (1986) Streptomyces phages and their applications for Streptomyces genetics. In: Queener SW, Day LE (eds) The bacteria, vol 9, Antibiotic-producing Streptomyces. Academic, Orlando, pp 119–158

    Google Scholar 

  • Chater KF (1998) Taking a genetic scalpel to the Streptomyces colony. Microbiology 144:1465–1478

    Article  CAS  Google Scholar 

  • Chater KF (2006) Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc Lond B Biol Sci 361(1469):761–768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chater KF, Bruton CJ (1985) Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO J 4:1893–1897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chater KF, Chandra G (2006) The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol Rev 30:651–672

    Article  CAS  PubMed  Google Scholar 

  • Chater KF, Horinouchi S (2003) Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 48:9–15

    Article  CAS  PubMed  Google Scholar 

  • Chater KF, Lomovskaya ND, Voeykova TA, Sladkova IA, Mkrtumian NM, Muravnik GL (1986) Streptomyces ÈC31-like phages: cloning vectors, genome changes and host range. In: Szabo G, Biro S, Goodfellow M (eds) Biological, biochemical and biomedical aspects of actinomycetes. Akademiai Kiado, Budapest, pp 45–54

    Google Scholar 

  • Chater KF, Bruton CJ, Plaskitt KA, Buttner MJ, Méndez C, Helmann JD (1989) The developmental fate of S. coelicolor hyphae depends upon a gene product homologous with the motility sigma factor of B. subtilis. Cell 59(1):133–143

    Article  CAS  PubMed  Google Scholar 

  • Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198

    Article  CAS  PubMed  Google Scholar 

  • Chen CW (1995) The unstable ends of the Streptomyces linear chromosomes: a nuisance without cures? Trends Biotechnol 13:157–160

    Article  CAS  Google Scholar 

  • Chen CW, Huang CH, Lee HH, Tsai HH, Kirby R (2002) Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. Trends Genet 18:522–529

    Article  CAS  PubMed  Google Scholar 

  • Chesters CGC, Apinis A, Turner M (1956) Studies of the decomposition of seaweeds and seaweed products by microorganisms. Proc Linn Soc Lond 166:87–97

    Article  Google Scholar 

  • Cho YH, Lee EJ, Ahn BE, Roe JH (2001) SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor. Mol Microbiol 42(1):205–214

    Article  CAS  PubMed  Google Scholar 

  • Cho SH, Han JH, Seong CN, Kim SB (2006) Phylogenetic diversity of acidophilic sporoactinobacteria isolated from various soils. J Microbiol 44:600–606

    CAS  PubMed  Google Scholar 

  • Cho SH, Han JH, Ko HY, Kim SB (2008) Streptacidiphilus anmyonensis sp. nov., Streptacidiphilus rugosus sp. nov. and Streptacidiphilus melanogenes sp. nov., acidophilic actinobacteria isolated from Pinus soils. Int J Syst Evol Microbiol 58:1566–1570

    Article  CAS  PubMed  Google Scholar 

  • Choulet F, Aigle B, Gallois A, Mangenot S, Gerbaud C, Truong C, Francou FX, Fourrier C, Guérineau M, Decaris B, Barbe V, Pernodet JL, Leblond P (2006) Evolution of the terminal regions of the Streptomyces linear chromosome. Mol Biol Evol 23:2361–2369

    Article  CAS  PubMed  Google Scholar 

  • Chronakova A, Kristufek V, Tichy M, Elhottova D (2010) Biodiversity of streptomycetes isolated from a succession sequence at a post-mining site and their evidence in Miocene lacustrine sediment. Microbiol Res 165:594–608

    Article  CAS  PubMed  Google Scholar 

  • Claessen D, Wösten HA, van Keulen G, Faber OG, Alves AM, Meijer WG, Dijkhuizen L (2002) Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Mol Microbiol 44(6):1483–1492

    Article  CAS  PubMed  Google Scholar 

  • Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P, Boersma FG, Dijkhuizen L, Wosten HA (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17(14):1714–1726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Claessen D, Stokroos I, Deelstra HJ, Penninga NA, Bormann C, Salas JA, Dijkhuizen L, Wösten HA (2004) The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol Microbiol 53:433–443

    Article  CAS  PubMed  Google Scholar 

  • Clarke SD, Ritchie DA, Williams ST (1993) Ribosomal DNA restriction fragment analysis of some closely related Streptomyces species. Syst Appl Microbiol 16:256–260

    Article  CAS  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corke CT, Chase FE (1956) The selective enumeration of actinomycetes in the presence of large numbers of fungi. Can J Microbiol 2:12–16

    Article  CAS  PubMed  Google Scholar 

  • Craveri R, Pagani H (1962) Thermophilic microorganisms among actinomycetes in the soil. Ann Microbiol 12:115–130

    Google Scholar 

  • Crawford DL (1978) Lignocellulose decomposition by selected Streptomyces strains. Appl Environ Microbiol 3:1041–1045

    Google Scholar 

  • Crawford RL (1981) Lignin biodegradation and transformation. Wiley, New York

    Google Scholar 

  • Crawford DL (1988) Biodegradation of agricultural and urban wastes. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic, London, pp 433–459

    Chapter  Google Scholar 

  • Crawford DL, McCoy E (1972) Cellulases of Thermomonospora fusca and Streptomyces thermodiastaticus. Appl Microbiol 24:150–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crawford DL, Doyle JD, Wang Z, Hendricks CW, Bentjen SA, Bolton H Jr, Fredrickson JK, Bleakley BH (1993) Effects of lignin peroxidase-expressing recombinant, Streptomyces lividans TK23.1, on biogeochemical cycling and the numbers and activities of microorganisms in soil. Appl Environ Microbiol 59:508–518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crespi M, Messens E, Caplan AB, Vanmontagu M, Desomer J (1992) Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J 11:795–804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crook P, Carpenter CC, Klens PF (1950) The use of sodium propionate in isolating actinomycetes from soils. Science 111:656

    Article  Google Scholar 

  • Cross T (1968) Thermophilic actinomycetes. J Appl Bacteriol 31:36–53

    Article  CAS  PubMed  Google Scholar 

  • Cross T (1981a) Aquatic actinomycetes: a critical survey of the occurrence, growth and role of actinomycetes in aquatic habitats. J Appl Bacteriol 50:397–423

    Article  CAS  PubMed  Google Scholar 

  • Cross T (1981b) The monosporic actinomycetes. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, a handbook on habitats, isolation and identification of bacteria. Springer, Berlin, pp 2091–2102

    Google Scholar 

  • Cross T (1982) Actinomycetes: a continuing source of new metabolites. Devlop Indust Microbiol 23:1–18

    Google Scholar 

  • Cundell AM, Mulcock AP (1975) The biodegradation of vulcanized rubber. Devlop Indust Microbiol 16:88–96

    CAS  Google Scholar 

  • D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377

    Article  PubMed  Google Scholar 

  • Dalton KA, Thibessard A, Hunter JI, Kelemen GH (2007) A novel compartment, the ‘subapical stem’ of the aerial hyphae, is the location of a SigN-dependent, developmentally distinct transcription in Streptomyces coelicolor. Mol Microbiol 64(3):719–737

    Article  CAS  PubMed  Google Scholar 

  • Dance A (2008) Soil ecology: what lies beneath. Nature 455:724–725

    Article  CAS  PubMed  Google Scholar 

  • Davis NK, Chater KF (1990) Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol 4(10):1679–1691

    Article  CAS  PubMed  Google Scholar 

  • de Jong W, Manteca A, Sanchez J, Bucca G, Smith CP, Dijkhuizen L, Claessen D, Wösten HA (2009) NepA is a structural cell wall protein involved in maintenance of spore dormancy in Streptomyces coelicolor. Mol Microbiol 71(6):1591–1603

    Article  PubMed  CAS  Google Scholar 

  • Decker H, Haag S (1995) Cloning and characterization of a polyketide synthase gene from Streptomyces fradiae Tu2717, which carries the genes for biosynthesis of the angucycline antibiotic urdamycin A and a gene probably involved in its oxygenation. J Bacteriol 177:6126–6136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Del Sol R, Pitman A, Herron P, Dyson P (2003) The product of a developmental gene, crgA, that coordinates reproductive growth in Streptomyces belongs to a novel family of small actinomycete-specific proteins. J Bacteriol 185(22):6678–6685

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Del Sol R, Mullins JG, Grantcharova N, Flärdh K, Dyson P (2006) Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor. J Bacteriol 188(4):1540–1550

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Delafield FP, Doudoroff M, Palleroni NJ, Lusty CJ, Contolpoulos R (1965) Decomposition of poly-hydroxybutyrate by pseudomonads. J Bacteriol 90:1455–1466

    CAS  PubMed Central  PubMed  Google Scholar 

  • den Hengst CD, Tran NT, Bibb MJ, Chandra G, Leskiw BK, Buttner MJ (2010) Genes essential for morphological development and antibiotic production in Streptomyces coelicolor are targets of BldD during vegetative growth. Mol Microbiol 78(2):361–379

    Article  CAS  Google Scholar 

  • Deobald LA, Crawford DL (1987) Activities of cellulase and other extracellular enzymes during lignin solubilization by Streptomyces viridosporus. Appl Microbiol Biotechnol 26:158–163

    Article  CAS  Google Scholar 

  • Develoux M, Dieng MT, Ndiaye B (1999) Mycetoma of the neck and scalp in Dakar. J Mycol Med 9:179–209

    Google Scholar 

  • Dharmatilake AJ, Kendrick KE (1994) Expression of the division-controlling gene ftsZ during growth and sporulation of the filamentous bacterium Streptomyces griseus. Gene 147:21–28

    Article  CAS  PubMed  Google Scholar 

  • Di Berardo C, Capstick DS, Bibb MJ, Findlay KC, Buttner MJ, Elliot MA (2008) Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in Streptomyces coelicolor. J Bacteriol 190:5879–5889

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dietz A, Mathews J (1971) Classification of Streptomyces spore surfaces into five groups. Appl Microbiol 21:527–533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Distler J, Ebert A, Mansouri K, Pissowotzki K, Stockmann M, Piepersberg W (1987) Gene cluster for streptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Res 15:8041–8056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Donadio S, Sosio M, Lancini G (2002) Impact of the first Streptomyces genome sequence on the discovery and production of bioactive substances. Appl Microbiol Biotechnol 60:377–380

    Article  CAS  PubMed  Google Scholar 

  • Doroghazi JR, Buckley DH (2010) Widespread homologous recombination within and between Streptomyces species. ISME J 4(9):1136–1143

    Article  CAS  PubMed  Google Scholar 

  • Dosch DC, Strohl WR, Floss HG (1988) Molecular cloning of the nosiheptide resistance gene from Streptomyces actuosus ATCC 25421. Biochem Biophys Res Commun 156:517–523

    Article  CAS  PubMed  Google Scholar 

  • Ducote MJ, Prakash S, Pettis GS (2000) Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region. J Bacteriol 182:6834–6841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dyson P (ed) (2010) Streptomyces: molecular biology and biotechnology. Caister Academic Press, Norfolk

    Google Scholar 

  • Eccleston M, Ali RA, Seyler R, Westpheling J, Nodwell J (2002) Structural and genetic analysis of the BldB protein of Streptomyces coelicolor. J Bacteriol 184(15):4270–4276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elliot MA, Leskiw BK (1999) The BldD protein from Streptomyces coelicolor is a DNA-binding protein. J Bacteriol 181(21):6832–6835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elliot M, Damji F, Passantino R, Chater K, Leskiw B (1998) The bldD gene of Streptomyces coelicolor A3(2): a regulatory gene involved in morphogenesis and antibiotic production. J Bacteriol 180(6):1549–1555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elliot MA, Bibb MJ, Buttner MJ, Leskiw BK (2001) BldD is a direct regulator of key developmental genes in Streptomyces coelicolor A3(2). Mol Microbiol 40(1):257–269

    Article  CAS  PubMed  Google Scholar 

  • Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN, Kao CM, Buttner MJ (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17(14):1727–1740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • El-Nakeeb MA, Lechevalier HA (1963) Selective isolation of aerobic actinomycetes. Appl Microbiol 11:75–77

    CAS  PubMed Central  PubMed  Google Scholar 

  • Enger MD, Sleeper BP (1965) Multiple cellulase system from Streptomyces antibioticus. J Bacteriol 89:23–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ensign JC (1978) Formation, properties, and germination of actinomycete spores. Annu Rev Microbiol 32:185–219

    Article  CAS  PubMed  Google Scholar 

  • Epp JK, Burgett SG, Schoner BE (1987) Cloning and nucleotide sequence of a carbomycin-resistance gene from Streptomyces thermotolerans. Gene 53:73–83

    Article  CAS  PubMed  Google Scholar 

  • Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74(4):504–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ettlinger L, Corbaz R, Hütter R (1958) Zur Systematik der Actinomyceten. 4. Eine Arteinteilung der Gattung Streptomyces Waksman et Henrici. Arch Mikrobiol 31:326–358

    Article  Google Scholar 

  • Facey PD, Hitchings MD, Saavedra-Garcia P, Fernandez-Martinez L, Dyson PJ, Del Sol R (2009) Streptomyces coelicolor Dps-like proteins: differential dual roles in response to stress during vegetative growth and in nucleoid condensation during reproductive cell division. Mol Microbiol 73(6):1186–1202

    Article  CAS  PubMed  Google Scholar 

  • Facey PD, Sevcikova B, Novakova R, Hitchings MD, Crack JC, Kormanec J, Dyson PJ, Del Sol R (2011) The dpsA gene of Streptomyces coelicolor: induction of expression from a single promoter in response to environmental stress or during development. PLoS One 6(9):e25593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fahal AH (2004) Mycetoma a thorn in the flesh. Trans R Soc Trop Med Hyg 98:3–11

    Article  CAS  PubMed  Google Scholar 

  • Fahal AH (2006) Mycetoma: clinicopathological monograph. Karthoum University Press, Khartoum

    Google Scholar 

  • Fahal AH, Hasan MA (1992) Mycetoma. Br J Surg 79:1138–1141

    Article  CAS  PubMed  Google Scholar 

  • Fairbairn DA, Priest FG, Stark JR (1986) Extracellular amylase synthesis by Streptomyces limosus. Enzyme Microb Technol 8:89–92

    Article  CAS  Google Scholar 

  • Feitelson JS, Hopwood DA (1983) Cloning of a Streptomyces gene for an O-methyltransferase involved in antibiotic biosynthesis. Mol Gen Genet 190:394–398

    Article  CAS  PubMed  Google Scholar 

  • Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    Article  CAS  PubMed  Google Scholar 

  • Fergus CL (1964) Thermophilic and thermotolerant molds and actinomycetes of mushroom compost during peak heating. Mycologia 56:267–284

    Article  Google Scholar 

  • Ferguson EV, Ward AC, Sanglier J-J, Goodfellow M (1997) Evaluation of Streptomyces species-groups by pyrolysis mass spectrometry. Zentralbl Bakteriol 285:169–181

    Article  CAS  PubMed  Google Scholar 

  • Festenstein GN, Lacey J, Skinner FA, Jenkins PA, Pepys J (1965) Selfheating of hay and grain in Dewar flasks and the development of farmer’s lung gay antigens. J Gen Microbiol 41:389–407

    Article  CAS  PubMed  Google Scholar 

  • Fischer M, Alderson J, van Keulen G, White J, Sawers RG (2010) The obligate aerobe Streptomyces coelicolor A3(2) synthesizes three active respiratory nitrate reductases. Microbiology (UK) 156:3166–3179

    Article  CAS  Google Scholar 

  • Fishman SE, Cox K, Larson JL, Reynolds PA, Seno ET, Yeh WK, van Frank R, Hershberger CL (1987) Cloning genes for the biosynthesis of a macrolide antibiotic. Proc Natl Acad Sci U S A 84:8248–8252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flaig W, Kutzner HJ (1954) Zur Systematik der Gattung Streptomyces. Naturwissenschaften 41:287

    Article  Google Scholar 

  • Flaig W, Kutzner HJ (1960a) Beitrag zur Systematik der Gattung Streptomyces Waksman and Henrici. Arch Mikrobiol 35:105–138

    Article  CAS  PubMed  Google Scholar 

  • Flaig W, Kutzner HJ (1960b) Beitrag zur Ökologie der Gattung Streptomyces Waksman et Henrici. Arch Mikrobiol 35:207–228

    Article  CAS  PubMed  Google Scholar 

  • Flowers TH, Williams ST (1977a) Measurements of growth rates of streptomycetes: comparison of turbidimetric and gravimetric techniques. J Gen Microbiol 98:285–289

    Article  CAS  PubMed  Google Scholar 

  • Flowers TH, Williams ST (1977b) The influence of pH on the growth rate and viability of neutrophilic and acidophilic streptomycetes. Microbios 18:223–228

    Google Scholar 

  • Fowler-Goldsworthy K, Gust B, Mouz S, Chandra G, Findlay KC, Chater KF (2011) The Actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). Microbiology 157(Pt 5):1312–1328

    Google Scholar 

  • Fulton TR, Losada MC, Fluder EM, Chou GT (1995) Ribosomal-RNA operon restriction derived taxa for streptomycetes (RIDITS). FEMS Microbiol Lett 125:149–158

    Article  CAS  PubMed  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Gauze GF, Preobrazhenskaya TP, Kudrina ES, Blinov NO, Ryabova ID, Sveshnikova MA (1957) Problems in the classification of antagonistic actinomycetes. State Publishing House for Medical Literature (in Russian), Medzig

    Google Scholar 

  • Gehring AM, Yoo NJ, Losick R (2001) RNA polymerase sigma factor that blocks morphological differentiation by Streptomyces coelicolor. J Bacteriol 183(20):5991–5996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Genner C, Hill EC (1981) Fuels and oils. In: Rose AH (ed) Microbial biodeterioration, vol 6, Economic microbiology. Academic, London, pp 259–306

    Google Scholar 

  • Gerber NN (1979a) Odorous substances from actinomycetes. Devlop Indust Microbiol 20:225–238

    Google Scholar 

  • Gerber NN (1979b) Volatile substances from actinomycetes: their role in the odor pollution of water. Crit Rev Microbiol 9:191–214

    Article  Google Scholar 

  • Gladek A, Mordarski M, Goodfellow M, Williams ST (1985) Ribosomal ribonucleic acid similarities in the classification of Streptomyces. FEMS Microbiol Lett 26:175–180

    Article  CAS  Google Scholar 

  • Glauert AM, Hopwood DA (1960) The fine structure of Streptomyces coelicolor I. The cytoplasmic membrane system. J Biophys Biochem Cytol 7:479–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Godden B, Legon T, Helvenstein P, Penninckx M (1989) Regulation of the production of hemicellulolytic and cellulolytic enzymes by a Streptomyces sp. growing on lignocellulose. J Gen Microbiol 135:285–292

    CAS  PubMed  Google Scholar 

  • Goodfellow M, Dawson D (1978) Qualitative and quantitative studies of bacteria colonizing Picea sitchensis litter. Soil Biol Biochem 10:303–307

    Article  Google Scholar 

  • Goodfellow M, Fiedler H-P (2010) A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie Van Leeuwenhoek 98:119–142

    Article  PubMed  Google Scholar 

  • Goodfellow M, Haynes JA (1984) Actinomycetes in marine sediments. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomedical aspects of actinomycetes. Proceedings of the 5th international symposium on actinomycetes biology, Oaxtepec, Mexico, 1982. Academic, Orlando, pp 453–472

    Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Williams ST (1986) New strategies for the selective isolation of industrially important bacteria. Biotechnol Genet Eng Rev 4:213–262

    Article  CAS  Google Scholar 

  • Goodfellow M, Williams ST, Alderson G (1986a) In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 22. Int J Syst Bacteriol 36:573–576

    Article  Google Scholar 

  • Goodfellow M, Williams ST, Alderson G (1986b) Transfer of Actinosporangium violaceum Krasil’nikov and Yuan, Actinosporangium vitaminophilum Shomura et al. and Actinopycnidium caeruleum Krasil’nikov to the genus Streptomyces, with emended descriptions of the species. Syst Appl Microbiol 8:61–64

    Article  Google Scholar 

  • Goodfellow M, Williams ST, Alderson G (1986c) Transfer of Chainia species to the genus Streptomyces with emended description of the species. Syst Appl Microbiol 8:55–60

    Article  Google Scholar 

  • Goodfellow M, Williams ST, Alderson G (1986d) Transfer of Elytrosporangium brasiliense Falcão de Morais et al., Elytrosporangium carpinense Falcão de Morais et al., Elytrosporangium spirale Falcão de Morais et al., Microellobospora cinerea Cross et al., Microellobosporia flavea Cross et al., Microellobosporia grisea (Konev et al.) Pridham and Microellobosporia violacea (Tsyganov et al.) Pridham to the genus Streptomyces with emended description of the species. Syst Appl Microbiol 8:48–54

    Article  Google Scholar 

  • Goodfellow M, Williams ST, Alderson G (1986e) Transfer of Kitasatoa purpurea Matsumae and Hata to the genus Streptomyces as Streptomyces purpureus comb. nov. Syst Appl Microbiol 8:65–66

    Article  Google Scholar 

  • Goodfellow M, Lonsdale C, James AL, MacNamara OC (1987) Rapid biochemical tests for the characterisation of streptomycetes. FEMS Microbiol Lett 43:39–44

    Article  CAS  Google Scholar 

  • Gottschalk LM, Nobrega R, Bon EP (2003) Effect of aeration on lignin peroxidase production by Streptomyces viridosporus T7A. Appl Biochem Biotechnol 105:799–807

    Article  PubMed  Google Scholar 

  • Grantcharova N, Ubhayasekera W, Mowbray SL, McCormick JR, Flardh K (2003) A missense mutation in ftsZ differentially affects vegetative and developmentally controlled cell division in Streptomyces coelicolor A3(2). Mol Microbiol 47:645–656

    Article  CAS  PubMed  Google Scholar 

  • Grantcharova N, Lustig U, Flärdh K (2005) Dynamics of FtsZ assembly during sporulation in Streptomyces coelicolor A3(2). J Bacteriol 187(9):3227–3237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gravius B, Glocker D, Pigac J, Pandza K, Hranueli D, Cullum J (1994) The 387 kb linear plasmid pPZG101 of Streptomyces rimosus and its interactions with the chromosome. Microbiology 140:2271–2277

    Article  CAS  PubMed  Google Scholar 

  • Gray DI, Gooday GW, Prosser JI (1990) Apical hyphal extension in Streptomyces coelicolor A3(2). J Gen Microbiol 136(6):1077–1084

    Article  CAS  PubMed  Google Scholar 

  • Gregory PH, Lacey ME (1963) Mycological examination of dust from mouldy hay associated with farmer’s lung disease. J Gen Microbiol 30:75–88

    Article  CAS  PubMed  Google Scholar 

  • Greiner-Mai E, Kroppenstedt RM, Korn-Wendisch F, Kutzner HJ (1987) Morphological and biochemical characterization and emended descriptions of thermophilic actinomycetes species. Syst Appl Microbiol 9:97–106

    Article  CAS  Google Scholar 

  • Groth I, Rodriguez C, Schütze B, Schmitz P, Leistner E, Goodfellow M (2004) Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov. and K. terrestris sp. nov. Int J Syst Evol Microbiol 54:2121–2129

    Article  CAS  PubMed  Google Scholar 

  • Grubbs KJ, Biedermann PHW, Suen G, Adams SM, Moeller JA, Klassen JL, Goodwin LA, Woyke T, Munk AC, Bruce D, Detter C, Tapia R, Han CS, Currie CR (2011) Genome sequence of Streptomyces griseus strain XylebKG-1, an ambrosia beetle-associated actinomycete. J Bacteriol 193:2890–2891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gumaa SA (1994) The aetiology and epidemiology of mycetoma. Sudan Med J 32(Suppl):14–22

    Google Scholar 

  • Gumaa SA, Mahgoub ES (1975) Counterimmunoelectrophoresis in the diagnosis of mycetoma and its sensitivity as compared to immunodiffusion. Sabouradia 13:309–315

    Article  CAS  Google Scholar 

  • Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357

    Article  PubMed  Google Scholar 

  • Guo Y, Zheng W, Rong X, Huang Y (2008) A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 58:149–159

    Article  CAS  PubMed  Google Scholar 

  • Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci U S A 106:4742–4746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn C (1976) Influences of soil acidity on Streptomyces populations inhabiting forest soils. Appl Environ Microbiol 32:368–375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagege J, Pernodet J-L, Friedmann A, Guérineau M (1993) Mode and origin of replication of pSAM2, a conjugative integrating element of Streptomyces ambofaciens. Mol Microbiol 10:799–812

    Article  CAS  PubMed  Google Scholar 

  • Hain T, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E, Rainey FA (1997) Discrimination of Streptomyces albidoflavus strains based on the size and number of 16S-23S ribosomal DNA intergenic spacers. Int J Syst Bacteriol 47:202–206

    Article  CAS  PubMed  Google Scholar 

  • Haldenwang WG, Losick R (1979) A modified RNA polymerase transcribes a cloned gene under sporulation control in Bacillus subtilis. Nature 282(5736):256–260

    Article  CAS  PubMed  Google Scholar 

  • Han L, Yang K, Ramalingam E, Mosher RH, Vining LC (1994) Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 140:3379–3389

    Article  CAS  PubMed  Google Scholar 

  • Han JH, Cho MH, Kim SB (2012) Ribosomal and protein coding gene based multigene phylogeny on the family Streptomycetaceae. Syst Appl Microbiol 35(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Hanka LJ, Schaadt RD (1988) Methods for isolation of Streptoverticillia from soils. J Antibiot 41:576–578

    Article  CAS  PubMed  Google Scholar 

  • Hanka LJ, Rueckert PW, Cross T (1985) Method for isolating strains of the genus Streptoverticillium from soil. FEMS Microbiol Lett 30:365–368

    Article  Google Scholar 

  • Hansen LH, Ferrari B, Sorensen AH, Veal D, Sorensen SJ (2001) Detection of oxytetracycline production by Streptomyces rimosus in soil microcosms by combining whole-cell biosensors and flow cytometry. Appl Environ Microbiol 67:239–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harchand RK, Singh S (1997) Extracellular cellulase system of a thermotolerant streptomycete: Streptomyces albaduncus. Acta Microbiol Immunol Hung 44:229–239

    CAS  PubMed  Google Scholar 

  • Hatano K, Nishi T, Kasai H (2003) Taxonomic re-evaluation of whorl-forming Streptomyces (formerly Streptoverticillium) species by using phenotypes, DNA-DNA hybridization and sequences of gyrB, and proposal of Streptomyces luteireticuli (ex Katoh and Arai 1957) corrig., sp. nov., nom. rev. Int J Syst Evol Microbiol 53:1519–1529

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa M, Nonomura H (1987a) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  • Hayakawa M, Nonomura H (1987b) Efficacy of artificial humic acid as a selective nutrient in HV agar used for the isolation of soil actinomycetes. J Ferment Technol 65:609–616

    Article  CAS  Google Scholar 

  • Herron P, Wellington EMH (1990) New method for the extraction of streptomycete spores from soil and application to the study of lysogeny in sterile amended and nonsterile soil. Appl Environ Microbiol 56:1406–1412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hesketh AR, Chandra G, Shaw AD, Rowland JJ, Kell DB, Bibb MJ, Chater KF (2002a) Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor. Mol Microbiol 46:917–932

    Article  CAS  PubMed  Google Scholar 

  • Hesketh A, Fink D, Gust B, Rexer HU, Scheel B, Chater K, Wohlleben W, Engels A (2002b) The GlnD and GlnK homologues of Streptomyces coelicolor A3(2) are functionally dissimilar to their nitrogen regulatory system counterparts from enteric bacteria. Mol Microbiol 46:319–330

    Article  CAS  PubMed  Google Scholar 

  • Hesseltine CW, Porter JN, Deduck N, Hauck M, Bohonos M, Williams JH (1954) A new species of Streptomyces. Mycologia 46:16–22

    Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiraga K, Suzuki T, Oda K (2000) A novel double-headed proteinaceous inhibitor for metalloproteinase and serine proteinase. J Biol Chem 275:25173–25179

    Article  CAS  PubMed  Google Scholar 

  • Hirsch CF, Christensen DL (1983) Novel method for selective isolation of actinomycetes. Appl Environ Microbiol 46:925–929

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hofheinz W, Grisebach H (1965) Die Fettsäuren von Streptomyces erythreus und Streptomyces halstedii. Z Naturforsch 20B:43

    CAS  Google Scholar 

  • Homerova D, Sevcikova B, Rezuchova B, Kormanec J (2012) Regulation of an alternative sigma factor σI by a partner switching mechanism with an anti-sigma factor PrsI and an anti-anti-sigma factor ArsI in Streptomyces coelicolor A3(2). Gene 492(1):71–80

    Article  CAS  PubMed  Google Scholar 

  • Hong ST, Carney JR, Gould SJ (1997) Cloning and heterologous expression of the entire gene clusters for PD 116740 from Streptomyces strain WP 4669 and tetrangulol and tetrangomycin from Streptomyces rimosus NRRL 3016. J Bacteriol 179:470–476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hopkins DW, MacNaughton SJ, O’Donnell AG (1991) A dispersion and differential centrifugation technique for representative sampling microorganisms from soil. Soil Biol Biochem 23:217–225

    Article  Google Scholar 

  • Hopwood DA (1999) Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. Microbiology 145(Pt 9):2183–2202

    CAS  PubMed  Google Scholar 

  • Hopwood DA (2003) Streptomyces genes: from Waksman to Sanger. J Ind Microbiol Biotechnol 30:468–471

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA (2007a) Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, New York

    Google Scholar 

  • Hopwood DA (2007b) Streptomyces in nature and medicine. The antibiotic makers. John Innes Centre, Oxford University Press, Oxford

    Google Scholar 

  • Hopwood DA, Ferguson HM (1969) A rapid method for lyophilizing Streptomyces cultures. J Appl Bacteriol 32:434–436

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA, Wildermuth H, Palmer HM (1970) Mutants of Streptomyces coelicolor defective in sporulation. J Gen Microbiol 61(3):397–408

    Article  CAS  PubMed  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. John Innes Foundation, Norwich

    Google Scholar 

  • Hori H, Osawa S (1987) The rates of evolution in some ribosomal components. J Mol Evol 9:191–201

    Article  Google Scholar 

  • Horinouchi S (2002) A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front Biosci 7:2045–2057

    Article  Google Scholar 

  • Hotta K, Saito N, Okami Y (1980) Studies on new aminoglycoside antibiotics, istamycins, from an actinomycete isolated from a marine environment. I. The use of plasmid profiles in screening antibiotic-producing streptomycetes. J Antibiot (Tokyo) 33:1502–1509

    Article  CAS  Google Scholar 

  • Hsiao N-H, Kirby R (2008) Comparative genomics of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens using a Streptomyces coelicolor microarray system. Antonie Van Leeuwenhoek 93:1–25

    Article  PubMed Central  PubMed  Google Scholar 

  • Hsieh C-J, Jones GH (1995) Nucleotide sequence, transcriptional analysis, and glucose regulation of the phenoxazinone synthase gene (phsA) from Streptomyces antibioticus. J Bacteriol 177:5740–5747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu SC, Lockwood JL (1975) Powered chitin as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang J, Lih CJ, Pan KH, Cohen SN (2001) Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev 15:3183–3192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huddleston AS, Hinks JL, Beyazova M, Horan A, Thomas DI, Baumberg S, Wellington EMH (1995) Studies on the diversity of streptomycin-producing streptomycetes. Biotekhnologia 7+8:242–253

    Google Scholar 

  • Huddleston AS, Cresswell N, Neves MCP, Beringer JE, Baumberg S, Thomas DI, Wellington EMH (1997) Molecular detection of streptomycin-producing streptomycetes in Brazilian soils. Appl Environ Microbiol 63:1288–1297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Humm JH, Shepard KS (1946) Three new agar-digesting actinomycetes. Duke Univ Marine Station Bull 3:76–80

    Google Scholar 

  • Hunt AC, Servín-González L, Kelemen GH, Buttner MJ (2005) The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family. J Bacteriol 187(2):716–728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hutchinson M, Ridgway JW, Cross T (1975) Biodeterioration of rubber in contact with water, sewage and soil. In: Lovelock DW, Gilbert RJ (eds) Microbial aspects of deterioration of materials. Academic, London, pp 187–202

    Google Scholar 

  • Hütter R (1962) Zur Systematik der Actinomyceten 8. Quirlbildende Streptomyceten. Arch Mikrobiol 43:365–391

    Article  Google Scholar 

  • Hütter R, Eckhardt T (1988) Genetic manipulation. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic, London, pp 89–184

    Chapter  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21(5):526–531

    Article  PubMed  Google Scholar 

  • Indiragandhi P, Yoon C, Yang JO, Cho S, Sa TM, Kim GH (2010) Microbial communities in the developmental stages of B and Q biotypes of sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). J Korean Soc Appl Biol Chem 53:605–617

    Article  CAS  Google Scholar 

  • Jagnow G (1957) Beiträge zur Ökologie der Streptomyceten. Arch Mikrobiol 26:175–191

    Article  CAS  PubMed  Google Scholar 

  • Jakimowicz D, Majka J, Messer W, Speck C, Fernandez M, Cruz Martin M, Sanchez J, Schauwecker F, Keller U, Schrempf H, Zakrzewska-Czerwinska J (1998) Structural elements of the Streptomyces oriC region and their interactions with the DnaA protein. Microbiology 144:1281–1290

    Article  CAS  PubMed  Google Scholar 

  • Jakimowicz D, Mouz S, Zakrzewska-Czerwinska J, Chater KF (2006) Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor. J Bacteriol 188(5):1710–1720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Janshekar H, Fiechter A (1983) Lignin: biosynthesis, application and biodegradation. Adv Biochem Eng Biotechnol 27:120–178

    Google Scholar 

  • Jenkins SN, Waite IS, Blackburn A, Husband R, Rushton SP, Manning DC, O’Donnell AG (2009) Actinobacterial community dynamics in long term managed grasslands. Antonie Van Leeuwenhoek 95:319–334

    Article  PubMed  Google Scholar 

  • Jensen HL (1930) The genus Micromonospora Ørskov, a little known group of soil microorganisms. Proc Linn Soc N S W 55:231–249

    Google Scholar 

  • Jeuniaux C (1966) Chitinases. Methods Enzymol 8:644–650

    Article  CAS  Google Scholar 

  • Jiang CL, Xu LH (1996) Diversity of aquatic actinomycetes in lakes of the Middle Plateau, Yunnan, China. Appl Environ Microbiol 62:249–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jonsbu E, Christensen B, Nielsen J (2001) Changes of in vivo fluxes through central metabolic pathways during the production of nystatin by Streptomyces noursei in batch culture. Appl Microbiol Biotechnol 56:93–100

    Article  CAS  PubMed  Google Scholar 

  • Kalkus J, Dörrie C, Fischer D, Reh M, Schlegel HG (1993) The giant linear plasmid pHG207 from Rhodococcus sp. encoding hydrogen autotrophy: characterization of the plasmid and its termini. J Gen Microbiol 139:2055–2065

    Article  CAS  PubMed  Google Scholar 

  • Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535

    Article  CAS  PubMed  Google Scholar 

  • Kaltenpoth M, Goettler W, Dale C, Stubblefield JW, Herzner G, Roeser-Mueller K, Strohm E (2006) ‘Candidatus Streptomyces philanthi’, an endosymbiotic streptomycete in the antennae of Philanthus digger wasps. Int J Syst Evol Microbiol 56:1403–1411

    Article  CAS  PubMed  Google Scholar 

  • Kämpfer P (2006) The family Streptomycetaceae—part 1: taxonomy. In: Dworkin M et al (eds) The prokaryotes, vol 3, Bacteria: firmicutes, actinomycetes. Springer, New York, pp 538–604

    Chapter  Google Scholar 

  • Kämpfer P (2012) Family I. Streptomycetaceae Waksman and Henrici 1943, 339AL emend. Rainey, Ward-Rainey and Stackebrandt 1997, 486 emend. Kim, Lonsdale, Seong and Goodfellow 2003b, 113 emend. Zhi, Li and Stackebrandt 2009, 600. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki KI, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn, The Actinobacteria. Springer, New York, pp 1446–1455

    Google Scholar 

  • Kämpfer P, Glaeser SP (2012) Prokaryotic taxonomy in the sequencing era—the polyphasic approach revisited. Environ Microbiol 14(2):291–317

    Article  PubMed  CAS  Google Scholar 

  • Kämpfer P, Kroppenstedt RM, Dott W (1991) A numerical classification of the genera Streptomyces and Streptoverticillium using miniaturized physiological tests. J Gen Microbiol 137:1831–1891

    Article  Google Scholar 

  • Kaneko M, Ohnishi Y, Horinouchi S (2003) Cinnamate: coenzyme A ligase from the filamentous bacterium Streptomyces coelicolor A3(2). J Bacteriol 185:20–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kataoka M, Ueda K, Kudo T, Seki T, Yoshida T (1997) Application of the variable region in 16S rDNA to create an index for rapid species identification in the genus Streptomyces. FEMS Microbiol Lett 151:249–255

    Article  CAS  PubMed  Google Scholar 

  • Katsifas EA, Giannoutsou EP, Karagouni AD (1999) Diversity of streptomycetes among specific Greek terrestrial ecosystems. Lett Appl Microbiol 29:48–51

    Article  Google Scholar 

  • Kebeler M, Dabbs ER, Averhoff B, Gottschalk G (1996) Studies on the isopropylbenzene 2,3-dioxygenase and the 3′-isopropylcatechol 2,3-dioxygenase genes encoded by the linear plasmid of Rhodococcus erythropolis BD2. Microbiology 142:3241–3251

    Article  Google Scholar 

  • Keijser BJ, Noens EE, Kraal B, Koerten HK, van Wezel GP (2003) The Streptomyces coelicolor ssgB gene is required for early stages of sporulation. FEMS Microbiol Lett 225(1):59–67

    Article  CAS  PubMed  Google Scholar 

  • Kelemen GH, Buttner MJ (1998) Initiation of aerial mycelium formation in Streptomyces. Curr Opin Microbiol 1(6):656–662

    Article  CAS  PubMed  Google Scholar 

  • Kelemen GH, Brown GL, Kormanec J, Potúcková L, Chater KF, Buttner MJ (1996) The positions of the sigma factor genes, whiG and sigF, in the hierarchy controlling the development of spore chains in the aerial hyphae of Streptomyces coelicolor A3(2). Mol Microbiol 21:593–603

    Article  CAS  PubMed  Google Scholar 

  • Kelemen GH, Brian P, Flärdh K, Chamberlin L, Chater KF, Buttner MJ (1998) Developmental regulation of transcription of whiE, a locus specifying the polyketide spore pigment in Streptomyces coelicolor A3 (2). J Bacteriol 180(9):2515–2521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelemen GH, Viollier PH, Tenor J, Marri L, Buttner MJ, Thompson CJ (2001) A connection between stress and development in the multicellular prokaryote Streptomyces coelicolor A3(2). Mol Microbiol 40(4):804–814

    Article  CAS  PubMed  Google Scholar 

  • KenKnight G, Munzie JH (1939) Isolation of phytopathogenic actinomycetes. Phytopathology 29:1000–1001

    Google Scholar 

  • Khan MR, Williams ST (1975) Studies on the ecology of actinomycetes in soil. VIII. Distribution and characteristics of acidophilic actinomycetes. Soil Biol Biochem 7:345–348

    Article  Google Scholar 

  • Khan MR, Williams ST, Saha ML (1978) Studies on the microbial degradation of jute. Bangladesh J Jute Fibre Res 3:45–52

    Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Kim SB, Goodfellow M (2002) Streptomyces avermitilis sp. nov., nom. rev., a taxonomic home for the avermectin-producing streptomycetes. Int J Syst Evol Microbiol 52:2011–2014

    Article  CAS  PubMed  Google Scholar 

  • Kim IS, Lee KJ (1995) Physiological roles of leupeptin and extracellular proteases in mycelium development of Streptomyces exfoliatus SMF13. Microbiology 141:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Chun J, Sahin N, Hah YC, Goodfellow M (1996) Analysis of the thermophilic clades within the genus Streptomyces by 16S ribosomal DNA sequence comparisons. Int J Syst Bacteriol 46:581–587

    Article  CAS  Google Scholar 

  • Kim SB, Falconer C, Williams E, Goodfellow M (1998) Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int J Syst Bacteriol 48:59–68

    Article  PubMed  Google Scholar 

  • Kim B, Sahin N, Minnikin DE, Zakrzewska-Czerwinska J, Mordarski M, Goodfellow M (1999) Classification of thermophilic streptomycetes, including the description of Streptomyces thermoalcalitolerans sp. nov. Int J Syst Bacteriol 49:7–17

    Article  PubMed  Google Scholar 

  • Kim B, Al-Tai AM, Kim SB, Somasundaram P, Goodfellow M (2000a) Streptomyces thermocoprophilus sp. nov., a cellulase-free endo-xylanase-producing streptomycete. Int J Syst Evol Microbiol 50:505–509

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Calcutt MJ, Schmidt FJ, Chater KF (2000b) Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus. J Bacteriol 182:1313–1320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SB, Lonsdale J, Seong CN, Goodfellow M (2003) Streptacidiphilus gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici 1943AL) emend. Rainey et al. 1997. Antonie Van Leeuwenhoek 83:107–116

    Article  CAS  PubMed  Google Scholar 

  • Kim SB, Seong CN, Jeon SJ, Bae KS, Goodfellow M (2004) Taxonomic study of neutrotolerant acidophilic actinomycetes isolated from soil and description of Streptomyces yeochonensis sp. nov. Int J Syst Evol Microbiol 54:211–214

    Article  CAS  PubMed  Google Scholar 

  • Kim IK, Lee CJ, Kim MK, Kim JM, Kim JH, Yim HS, Cha SS, Kang SO (2006) Crystal structure of the DNA-binding domain of BldD, a central regulator of aerial mycelium formation in Streptomyces coelicolor A3(2). Mol Microbiol 60(5):1179–1193

    Article  CAS  PubMed  Google Scholar 

  • Kinashi H, Shimaji-Murayama M, Hanafusa T (1991) Nucleotide sequence analysis of the unusually long terminal inverted repeats of a giant linear plasmid, SCP1. Plasmid 26:123–130

    Article  CAS  PubMed  Google Scholar 

  • Kinkel LL, Schlatter DC, Bakker MG, Arenz BE (2012) Streptomyces competition and co-evolution in relation to plant disease suppression. Res Microbiol 163:490–499

    Article  PubMed  Google Scholar 

  • Kirby R, Rybicki EP (1986) Enzyme-linked immunosorbent assay (ELISA) as a means of taxonomic analysis of Streptomyces and related organisms. J Gen Microbiol 132:1891–1894

    CAS  PubMed  Google Scholar 

  • Kirk TK, Farell RL (1987) Enzymatic combustion: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  PubMed  Google Scholar 

  • Kirsop BE, Snell JJS (1984) Maintenance of microorganisms. A manual of laboratory methods. Academic, London

    Google Scholar 

  • Kluepfel D, Ishaque M (1982) Xylan-induced cellulolytic enzymes in Streptomyces flavogriseus. Devlop Indust Microbiol 23:389–395

    CAS  Google Scholar 

  • Kluepfel D, Shareck F, Mondou F, Morosoli R (1986) Characterisation of cellulase and xylanase activities of Streptomyces lividans. Appl Microbiol Biotechnol 24:230–234

    Article  CAS  Google Scholar 

  • Kodani S, Hudson ME, Durrant MC, Buttner MJ, Nodwell JR, Willey JM (2004) The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci U S A 101(31):11448–11453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kormanec J, Homerova D, Barak I, Sevcikova B (1999) A new gene, sigG, encoding a putative alternative sigma factor of Streptomyces coelicolor A3(2). FEMS Microbiol Lett 172:153–158

    Article  CAS  PubMed  Google Scholar 

  • Kormanec J, Novakova R, Hamerova D, Rezuchova B (2001) Streptomyces aureofaciens sporulation-specific sigma factor sigma (rpoZ) directs expression of a gene encoding protein similar to hydrolases involved in degradation of the lignin-related biphenyl compounds. Res Microbiol 152:883–888

    Article  CAS  PubMed  Google Scholar 

  • Korn F, Weingärtner B, Kutzner HJ (1978) A study of twenty actinophages: morphology, serological relationships and host range. In: Freeksen E, Tarnok I, Thumin JH (eds) Genetics of the actinomycetales. Gustav Fischer, Stuttgart, pp 251–270

    Google Scholar 

  • Kornillowicz-Kowalska T, Bohacz J (2011) Biodegradation of keratin waste: theory and practical aspects. Waste Manag 31:1689–1701

    Article  CAS  PubMed  Google Scholar 

  • Korn-Wendisch F (1982) Phagentypisierung und Lysogenie bei Actinomyceten. PhD dissertation, TH Darmstadt

    Google Scholar 

  • Korn-Wendisch F, Kutzner HJ (1992) The family Streptomycetaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 921–995

    Google Scholar 

  • Korn-Wendisch F, Schneider J (1992) Phage typing: a useful tool in actinomycete systematics. Gene 115:243–247

    Article  CAS  PubMed  Google Scholar 

  • Kosono S, Maeda M, Fuji F, Arai H, Kudo T (1997) Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl Environ Microbiol 63:3282–3285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krasil’nikov NA (1970) Pigmentation of actinomycetes and its significance in taxonomy. In: Prauser H (ed) The actinomycetales. Gustav Fischer, Jena, pp 123–131

    Google Scholar 

  • Krasil’nikov NA (1960) Taxonomic principles in the actinomycetes. J Bacteriol 79:65–71

    PubMed Central  PubMed  Google Scholar 

  • Krasil’nikov NA, Yuan CS (1961) Actinosporangium, a new genus of the family Actinoplanaceae. Izv Akad Nauk SSSR Ser Biol 8:113–116

    Google Scholar 

  • Kristufek V, Ravasz K, Pizl V (1993) Actinomycete communities in earthworm guts and surrounding soil. Pedobiologia 37:379–384

    Google Scholar 

  • Kristufek V, Hallmann M, Westheide W, Schrempf H (1995) Selection of various Streptomyces species by Enchytraeus crypticus (Oligochaeta). Pedobiologia 39:547–554

    Google Scholar 

  • Kroppenstedt RM (1977) Untersuchungen zur Chemotaxonomie der Ordnung Actinomycetales Buchanan 1917. PhD thesis, University Darmstadt

    Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic, London, pp 173–199

    Google Scholar 

  • Kroppenstedt RM (1992) The genus Nocardiopsis. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 1139–1156

    Google Scholar 

  • Kroppenstedt RM, Korn-Wendisch F, Fowler VJ, Stackebrandt E (1981) Biochemical and molecular evidence for a transfer of Actinoplanes armeniacus into the family Streptomycetaceae. Zentralbl Bakteriol Mikrobiol Hyg 1 Abt Orig C2:254–262

    Google Scholar 

  • Kurapova AI, Zenova GM, Sudnitsyn II, Kizilova AK, Manucharova NA, Norovsuren Z, Zvyagintsev DG (2012) Thermotolerant and thermophilic actinomycetes from soils of Mongolia desert steppe zone. Microbiology (Moscow) 81:98–108

    Article  CAS  Google Scholar 

  • Küster E, Williams ST (1964a) Production of hydrogen sulphide by streptomycetes and methods for its detection. J Appl Microbiol 12:46–52

    Google Scholar 

  • Küster E, Williams ST (1964b) Selection of media for isolation of streptomycetes. Nature 202:928–929

    Article  Google Scholar 

  • Kutzner HJ (1961a) Effect of various factors on the efficiency of plating and plaque morphology of some Streptomyces phages. Pathol Microbiol 24:30–51

    CAS  Google Scholar 

  • Kutzner HJ (1961b) Specificity of actinophages within a selected group of Streptomyces. Pathol Microbiol 24:170–191

    CAS  Google Scholar 

  • Kutzner HJ (1972) Storage of Streptomyces in soft agar and by other methods. Experientia 28:1395

    Article  CAS  PubMed  Google Scholar 

  • Kutzner HJ (1981) The family Streptomycetaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation and identification of bacteria, vol II. Springer, Berlin, pp 2028–2090

    Google Scholar 

  • Kwon HC, Kauffman CA, Jensen PR, Fenical W (2006) Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”. J Am Chem Soc 128:1622–1632

    Article  CAS  PubMed  Google Scholar 

  • Kwon HC, Kauffman CA, Jensen PR, Fenical W (2009) Marinisporolides, polyene-polyol macrolides from a marine actinomycete of the new genus Marinispora. J Org Chem 74:675–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Labeda DP (1987) Transfer of the type strain of Streptomyces erythraeus (Waksman 1923) Waksman and Henrici 1948 to the genus Saccharopolyspora Lacey and Goodfellow 1975 as Saccharopolyspora erythraea sp. nov., and designation of a neotype strain for Streptomyces erythraeus. Int J Syst Bacteriol 37:19–22

    Article  Google Scholar 

  • Labeda DP (1988) Kitasatosporia mediocidica sp. nov. Int J Syst Bacteriol 38:287–290

    Article  Google Scholar 

  • Labeda DP (1993) DNA relatedness among strains of the Streptomyces lavendulae phenotypic cluster group. Int J Syst Bacteriol 43:822–825

    Article  Google Scholar 

  • Labeda DP (1996) DNA relatedness among verticil-forming Streptomyces species (formerly Streptoverticillium species). Int J Syst Bacteriol 46:699–703

    Article  Google Scholar 

  • Labeda DP (1998) DNA relatedness among the Streptomyces fulvissimus and Streptomyces griseoviridis phenotypic cluster group. Int J Syst Bacteriol 48:829–832

    Article  CAS  Google Scholar 

  • Labeda DP (2011) Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces. Int J Syst Evol Microbiol 61(10):2525–2531

    Article  PubMed  Google Scholar 

  • Labeda DP, Lyons AJ (1991a) Deoxyribonucleic-acid relatedness among species of the Streptomyces cyaneus cluster. Syst Appl Microbiol 14:158–164

    Article  Google Scholar 

  • Labeda DP, Lyons AJ (1991b) The Streptomyces violaceusniger cluster is heterogeneous in DNA relatedness among strains: emendation of the descriptions of S. violaceusniger and Streptomyces hygroscopicus. Int J Syst Bacteriol 41:398–401

    Article  Google Scholar 

  • Labeda DP, Goodfellow M, Brown R, Ward AC, Lanoot B, Vanncanneyt M, Swings J, Kim SB, Liu Z, Chun J, Tamura T, Oguchi A, Kikuchi T, Kikuchi H, Nishii T, Tsuji K, Yamaguchi Y, Tase A, Takahashi M, Sakane T, Suzuki KI, Hatano K (2012) Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101(1):73–104

    Article  CAS  PubMed  Google Scholar 

  • Lacalle RA, Tercero JA, Jimenez A (1992) Cloning of the complete biosynthetic gene cluster for an aminonucleoside antibiotic, puromycin, and its regulated expression in heterologous hosts. EMBO J 11:785–792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lacey J (1974) Allergy in mushroom workers. Lancet 1:366–366

    Article  CAS  PubMed  Google Scholar 

  • Lacey J (1988) Actinomycetes as biodeteriogens and pollutants of the environment. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic, San Diego, pp 359–432

    Chapter  Google Scholar 

  • Lacey J, Dutkiewicz J (1976a) Isolation of actinomycetes and fungi using a sedimentation chamber. J Appl Bacteriol 41:315–319

    Article  CAS  PubMed  Google Scholar 

  • Lacey J, Dutkiewicz J (1976b) Methods for examining the microflora of mouldy hay. J Appl Bacteriol 41:13–27

    Article  Google Scholar 

  • Lacey J, Lacey ME (1987) Microorganisms in the air of cotton mills. Ann Occup Hyg 31:1–19

    Article  CAS  PubMed  Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251

    Article  CAS  PubMed  Google Scholar 

  • Lambert DH, Loria H (1989a) Streptomyces scabies sp. nov., nom. rev. Int J Syst Bacteriol 39:387–392

    Article  Google Scholar 

  • Lambert DH, Loria H (1989b) Streptomyces acidiscabies sp. nov. Int J Syst Bacteriol 39:393–396

    Article  Google Scholar 

  • Lange BJ, Boyd WJR (1968) Preservation of fungal spores by drying on porcelain bead. Phytopathology 58:1711–1712

    Google Scholar 

  • Lanoot B, Vancanneyt M, Cleenwerck I, Wang L, Li W, Liu Z, Swings J (2002) The search for synonyms among streptomycetes by using SDS-PAGE of whole-cell proteins. Emendation of the species Streptomyces aurantiacus, Streptomyces cacaoi subsp. cacaoi, Streptomyces caeruleus and Streptomyces violaceus. Int J Syst Evol Microbiol 52:823–829

    Article  CAS  PubMed  Google Scholar 

  • Laskaris P, Tolba S, Calvo-Bado L, Wellington L (2010) Coevolution of antibiotic production and counter-resistance in soil bacteria. Environ Microbiol 12:783–796

    Article  CAS  PubMed  Google Scholar 

  • Laskaris P, Sekine T, Wellington EMH (2012) Diversity analysis of streptomycetes and associated phosphotranspherase genes in soil. PLoS One 7:e35756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lawlor EJ, Baylis HA, Chater KF (1987) Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev 1(10):1305–1310

    Article  CAS  PubMed  Google Scholar 

  • Leblond P, Decaris B (1994) New insights into the genetic instability of Streptomyces. FEMS Microbiol Lett 123:225–232

    Article  CAS  PubMed  Google Scholar 

  • Leblond P, Fischer G, Francou F, Berger F, Guérineau M, Decaris B (1996) The unstable region of Streptomyces ambofaciens includes 210 kb terminal inverted repeats flanking the extremities of the linear chromosomal DNA. Mol Microbiol 19:261–271

    Article  CAS  PubMed  Google Scholar 

  • Lechevalier MP (1988) Actinomycetes in agriculture and forestry. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic, San Diego, pp 327–358

    Chapter  Google Scholar 

  • Lechevalier HA, Corke CT (1953) The replica plate method for screening antibiotic producing organism. Appl Microbiol 1:110–112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lechevalier HA, Lechevalier MP (1970a) A critical evaluation of the genera of aerobic actinomycetes. In: Prauser H (ed) The actinomycetales. VEB Gustav Fischer, Jena, pp 393–405

    Google Scholar 

  • Lechevalier MP, Lechevalier HA (1970b) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1970c) Composition of whole-cell hydrolysates as a criterion in the classification of aerobic actinomycetes. In: Prauser H (ed) The actinomycetales. VEB Gustav Fischer, Jena, pp 311–316

    Google Scholar 

  • Lechevalier HA, Lechevalier MP, Gerber NN (1971) Chemical composition as a criterion in the classification of actinomycetes. Adv Appl Microbiol 14:47–72

    Article  CAS  PubMed  Google Scholar 

  • Lechevalier MP, De Bìevre C, Lechevalier H (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260

    Article  CAS  Google Scholar 

  • Lechevalier MP, Seidler RJ, Evans TM (1980) Enumeration and characterization of standard plate count bacteria in chlorinated and raw water supplies. Appl Environ Microbiol 40:922–930

    Google Scholar 

  • Lee EJ, Cho YH, Kim HS, Ahn BE, Roe JH (2004) Regulation of sigmaB by an anti- and an anti-anti-sigma factor in Streptomyces coelicolor in response to osmotic stress. J Bacteriol 186(24):8490–8498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee EJ, Karoonuthaisiri N, Kim HS, Park JH, Cha CJ, Kao CM, Roe JH (2005) A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol Microbiol 57(5):1252–1264

    Article  CAS  PubMed  Google Scholar 

  • Lezhava A, Mizukami T, Kajitani T, Kameoka D, Redenbach M, Shinkawa H, Nimi O, Kinashi H (1995) Physical map of the linear chromosome of Streptomyces griseus. J Bacteriol 177:6492–6498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin YS, Kieser HM, Hopwood DA, Chen CW (1993) The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 10:923–933

    Article  CAS  PubMed  Google Scholar 

  • Lin ZJ, Antemano RR, Hughen RW, Tianero MDB, Peraud O, Haygood MG, Concepcion GP, Olivera BM, Light A, Schmidt EW (2010) Pulicatins A-E, neuroactive thiazoline metabolites from cone snail-associated bacteria. J Nat Prod 73:1922–1926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin YB, Hao XL, Johnstone L, Miller SJ, Baltrus DA, Rensing C, Wei GH (2011a) Draft genome of Streptomyces zinciresistens K42, a novel metal-resistant species isolated from copper-zinc mine tailings. J Bacteriol 193:6408–6409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin YB, Wang XY, Li HF, Wang NN, Wang HX, Tang M, Wei GH (2011b) Streptomyces zinciresistens sp. nov., a zinc-resistant actinomycete isolated from soil from a copper and zinc mine. Int J Syst Evol Microbiol 61:616–620

    Article  CAS  PubMed  Google Scholar 

  • Lindner F, Wallhäusser KH (1955) Die Arbeitsmethoden der Forschung zur Auffindung neuer Antibiotica. Arch Mikrobiol 22:219–234

    Article  CAS  PubMed  Google Scholar 

  • Lingappa Y, Lockwood JL (1962) Chitin media for selective isolation and culture of actinomycetes. Phytopathology 52:317–323

    Google Scholar 

  • Lloyd AB (1969) Dispersal of streptomycetes in air. J Gen Microbiol 57:35–40

    Article  CAS  PubMed  Google Scholar 

  • Locci R, Schofield GM (1989) Genus Streptoverticillium Baldacci 1958, 15, emend. Mut.char. Baldacci, Farina and Locci 168AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of determinative bacteriology, vol 4. Williams & Wilkins, Baltimore, pp 2492–2504

    Google Scholar 

  • Locci R, Sharples GP (1984) Morphology. In: Goodfellow M, Mordarski M, Williams ST (eds) The biology of actinomycetes. Academic, London, pp 165–199

    Google Scholar 

  • Lombo F, Blanco G, Fernandez E, Mendez C, Salas JA (1996) Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumor antibiotic mithramycin. Gene 172:87–91

    Article  CAS  PubMed  Google Scholar 

  • Lomovskaya ND, Chater KF, Mkrtumian NM (1980) Genetics and molecular biology of Streptomyces bacteriophages. Microbiol Rev 44:206–229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lonsdale JT (1985) Aspects of the biology of acidophilic actinomycetes. PhD, University of Newcastle, Newcastle upon Tyne

    Google Scholar 

  • Loria R, Kers J, Joshi M (2006) Evolution of plant pathogenicity in Streptomyces. Annu Rev Phytopathol 44:469–487

    Article  CAS  PubMed  Google Scholar 

  • Loria R, Bignell DRD, Moll S, Huguet-Tapia JC, Joshi MV, Johnson EG, Seipke RF, Gibson DM (2008) Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie Van Leeuwenhoek 94:3–10

    Article  PubMed  Google Scholar 

  • Ludwig W, Schleifer KH (1994) Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev 15:155–173

    Article  CAS  PubMed  Google Scholar 

  • Lutkenhaus J (1997) Bacterial cytokinesis: let the light shine in. Curr Biol 7:573–575

    Article  Google Scholar 

  • MacKenzie CR, Bilous D, Johnson KG (1984) Purification and characterization of an exoglucanase from Streptomyces flavogriseus. Can J Microbiol 30:1171–1178

    Article  CAS  PubMed  Google Scholar 

  • Mahgoub ES (1985) Mycetoma. Int J Dermatol 24:230–239

    Article  Google Scholar 

  • Malpartida F, Hopwood DA (1984) Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature 309:462–464

    Article  CAS  PubMed  Google Scholar 

  • Malpartida F, Hopwood DA (1986) Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol Gen Genet 205:66–73

    Article  CAS  PubMed  Google Scholar 

  • Malpartida F, Niemi J, Navarrete R, Hopwood DA (1990) Cloning and expression in a heterologous host of the complete set of genes for biosynthesis of the Streptomyces coelicolor antibiotic undecylprodigiosin. Gene 93:91–99

    Article  CAS  PubMed  Google Scholar 

  • Manchester L, Pot B, Kersters K, Goodfellow M (1990) Classification of Streptomyces and Streptoverticillium species by numerical analysis of electrophoretic protein patterns. Syst Appl Microbiol 13:333–337

    Article  Google Scholar 

  • Mao XM, Zhou Z, Hou XP, Guan WJ, Li YQ (2009) Reciprocal regulation between SigK and differentiation programs in Streptomyces coelicolor. J Bacteriol 191(21):6473–6481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Margolin W (2003) Bacterial division: the fellowship of the ring. Curr Biol 13:16–18

    Article  Google Scholar 

  • Márialigeti K, Jáger K, Szabó IM, Pobozsny M, Dzingov A (1984) The faecal actinomycete flora of protracheoniscus amoenus (Woodlice; Isopoda). Acta Microbiol Hung 31:339–344

    PubMed  Google Scholar 

  • Marri L, Barboni E, Irdani T, Perito B, Mastromei G (1997) Restriction enzyme and DNA hybridization analysis of cellulolytic Streptomyces isolates of different origin. Can J Microbiol 43:395–399

    Article  CAS  PubMed  Google Scholar 

  • Martin JP, Filip Z, Haider K (1976) Effect of montmorillonite and humate on growth and metabolic activity of some actinomycetes. Soil Biol Biochem 8:409–413

    Article  CAS  Google Scholar 

  • Mayfield CI, Williams ST, Ruddick SM, Hatfield HL (1972) Studies of the ecology of actinomycetes in soil IV. Observation in the form and growth of Streptomycetes in soil. Soil Biol Biochem 4:79–91

    Article  Google Scholar 

  • Mazurakova V, Sevcikova B, Rezuchova B, Kormanec J (2006) Cascade of sigma factors in streptomycetes: identification of a new extracytoplasmic function sigma factor sigmaJ that is under the control of the stress-response sigma factor sigmaH in Streptomyces coelicolor A3(2). Arch Microbiol 186(6):435–446

    Article  CAS  PubMed  Google Scholar 

  • McCarthy AJ, Broda P (1984) Screening for lignin-degrading actinomycetes and characterization of their activity against [14C] lignin-labelled wheat lignocellulose. J Gen Microbiol 130:2905–2913

    CAS  Google Scholar 

  • McCarthy AJ, MacDonald MJ, Paterson A, Broda P (1984) Lignocellulose degradation by actinomycetes. J Gen Microbiol 130:1023–1030

    CAS  Google Scholar 

  • McCarthy AJ, Peace E, Broda P (1985) Studies on the extracellular xylanase activity of some thermophilic actinomycetes. Appl Microbiol Biotechnol 21:238–244

    Article  CAS  Google Scholar 

  • McCarthy AJ, Paterson A, Broda P (1986) Lignin solubilisation by Thermomonospora mesophila. Appl Microbiol Biotechnol 24:347–352

    Article  CAS  Google Scholar 

  • McCormick JR, Flärdh K (2012) Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 36(1):206–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCormick JR, Su EP, Driks A, Losick R (1994) Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol Microbiol 14(2):243–254

    Article  CAS  PubMed  Google Scholar 

  • McCue LA, Kwak J, Wang J, Kendrick KE (1996) Analysis of a gene that suppresses the morphological defect of bald mutants of Streptomyces griseus. J Bacteriol 178:2867–2875

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKillop C, Elvin P, Kenten J (1986) Cloning and expression of an extracellular-amylase gene from Streptomyces hygroscopicus in Streptomyces lividans 66. FEMS Microbiol Lett 36:3–7

    CAS  Google Scholar 

  • McNeil MM, Brown JM (1994) The medical important aerobic actinomycetes: epidemiology and microbiology. Clin Microbiol Rev 7:357–417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mehling A, Wehmeier UF, Piepersberg W (1995) Application of random amplified polymorphic DNA (RAPD) assays in identifying conserved regions of actinomycete genomes. FEMS Microbiol Lett 128:119–126

    Article  CAS  PubMed  Google Scholar 

  • Menzies JD, Dade CE (1959) A selective indicator medium for isolating Streptomyces scabies from potato tubers or soil. Phytopathology 49:457–458

    Google Scholar 

  • Merrick MJA (1976) Morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor. J Gen Microbiol 96(2):299–315

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe AC, Krsek M, Gooday GW, Prosser JI, Wellington EMH (2002) Molecular analysis of a bacterial chitinolytic community in an upland pasture. Appl Environ Microbiol 68:5042–5050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miguélez EM, Hardisson C, Manzanal MB (1999) Hyphal death during colony development in Streptomyces antibioticus: morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J Cell Biol 145:515–525

    Article  PubMed Central  PubMed  Google Scholar 

  • Mikami Y, Miyashita K, Arai T (1985) Alkalophilic actinomycetes. In: Lechevalier HA (ed) The actinomycetes, vol 19, no. 3. Rutgers University Publications Department, New Jersey, pp 176–191

    Google Scholar 

  • Mikami Y, Miyashita K, Arai T (1982) Diaminopimelic acid profiles of alkalophilic and alkaline-resistant strains of actinomycetes. J Gen Microbiol 128:1709–1712

    CAS  PubMed  Google Scholar 

  • Mikulik K, Janda I, Weiser J, Jiranova A (1982) Ribosomal proteins of Streptomyces aureofaciens producing tetracycline. Biochim Biophys Acta 699:203–210

    Article  CAS  PubMed  Google Scholar 

  • Millner PD (1982) Thermophilic and thermotolerant actinomycetes in sewage-sludge compost. Devlop Indust Microbiol 23:61–78

    Google Scholar 

  • Minambres B, Olivera ER, Jensen RA, Luengo JM (2000) A new class of glutamate dehydrogenases (GDH): biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus. J Biol Chem 275:39529–39542

    Article  CAS  PubMed  Google Scholar 

  • Miyajima K, Tanaka F, Takeuchi T, Kuninaga S (1998) Streptomyces turgidiscabies sp. nov. Int J Syst Bacteriol 48:495–502

    Article  PubMed  Google Scholar 

  • Miyashita K, Fujii T, Sawada Y (1991) Molecular cloning and characterization of chitinase genes from Streptomyces lividans 66. J Gen Microbiol 137:2065–2072

    Article  CAS  Google Scholar 

  • Molle V, Buttner MJ (2000) Different alleles of the response regulator gene bldM arrest Streptomyces coelicolor development at distinct stages. Mol Microbiol 36(6):1265–1278

    Article  CAS  PubMed  Google Scholar 

  • Molle V, Palframan WJ, Findlay KC, Buttner MJ (2000) WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3(2). J Bacteriol 182(5):1286–1295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mordarski M, Wieczorek J, Jaworska B (1970) On the condition of amylase production by actinomycetes. Arch Immunol Ther Exp 18:375–381

    CAS  Google Scholar 

  • Mordarski M, Goodfellow M, Williams ST, Sneath PHA (1986) Evaluation of species groups in the genus Streptomyces. In: Szabó G, Biró S, Goodfellow M (eds) Biological, biochemical and biomedical aspects of actinomycetes. Akadémiai Kaidó, Budapest, pp 517–525

    Google Scholar 

  • Morita RY (1985) Starvation and miniaturisation of heterotrophs, with special emphasis on maintenance of the starved viable state. In: Fletcher M, Floodgate GD (eds) Bacteria in their natural environments. Academic, London, pp 111–130

    Google Scholar 

  • Morosoli R, Ostiguy S, Dupont C (1999) Effect of carbon source, growth and temperature on the expression of the sec genes of Streptomyces lividans 1326. Can J Microbiol 45:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Motamedi H, Hutchinson CR (1987) Cloning and heterologous expression of a gene cluster for the biosynthesis of tetracenomycin C, the anthracycline antitumor antibiotic of Streptomyces glaucescens. Proc Natl Acad Sci USA 84:4445–4449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami T, Anzai S, Imai S, Satoh A, Nagaoka K, Thompson CJ (1986) The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol Gen Genet 205:42–50

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nacke H, Thurmer A, Wollherr A, Will C, Hodac L, Herold N, Schoning I, Schrumpf M, Daniel R (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6:e17000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakade DB (2012) Studies on Actinomycetes in Rankala Lake of Kolhapur City and their screening as potential antibiotic producer. J Pure Appl Microbiol 6:945–947

    Google Scholar 

  • Nakagaito Y, Yokota A, Hasegawa T (1992) Three new characspecies of the genus Streptomyces: Streptomyces cochleatus sp. nov., Streptomyces paracochleatus sp. nov., and Streptomyces azaticus sp. nov. J Gen Appl Microbiol 38:105–120

    Article  CAS  Google Scholar 

  • Nakata K, Horinouchi S, Beppu T (1989) Cloning and characterization of the carbapenem biosynthetic genes from Streptomyces fulvoviridis. FEMS Microbiol Lett 48:51–55

    Article  CAS  PubMed  Google Scholar 

  • Naumova IB, Kuznetsov VD, Kudrina KS, Bezzubenkova AP (1980) The occurrence of teichoic acids in streptomycetes. Arch Microbiol 126:71–75

    Article  CAS  PubMed  Google Scholar 

  • Nazir R, Warmink JA, Boersma H, van Elsas JD (2010) Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 71:169–185

    Article  CAS  PubMed  Google Scholar 

  • Nette IT, Pomorzeva NJ, Koslova EI (1959) Destruction of caoutchouc by microorganisms. Mikrobiologiya 28:881–886

    CAS  Google Scholar 

  • Nguyen KT, Willey JM, Nguyen LD, Nguyen LT, Viollier PH, Thompson CJ (2002) A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor. Mol Microbiol 46(5):1223–1238

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KT, Tenor J, Stettler H, Nguyen LT, Nguyen LD, Thompson CJ (2003) Colonial differentiation in Streptomyces coelicolor depends on translation of a specific codon within the adpA gene. J Bacteriol 185(24):7291–7296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nikolakopoulou T, Egan S, van Overbeek L, Guillaume G, Heuer H, Wellington EMH, van Elsas JD, Collard JM, Smalla K, Karagouni A (2005) PCR detection of oxytetracycline resistance genes otr(A) and otr(B) in tetracycline-resistant streptomycete isolates from diverse habitats. Curr Microbiol 51:211–216

    Article  CAS  PubMed  Google Scholar 

  • Nissen TV (1963) Distribution of antibiotic-producing actinomycetes in Danish soil. Experientia 19:470–471

    Article  CAS  PubMed  Google Scholar 

  • Nodwell JR, Losick R (1998) Purification of an extracellular signaling molecule involved in production of aerial mycelium by Streptomyces coelicolor. J Bacteriol 180(5):1334–1337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nodwell JR, McGovern K, Losick R (1996) An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Mol Microbiol 22:881–893

    Article  CAS  PubMed  Google Scholar 

  • Nodwell JR, Yang M, Kuo D, Losick R (1999) Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in Streptomyces coelicolor. Genetics 151:569–584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noens EE, Mersinias V, Traag BA, Smith CP, Koerten HK, van Wezel GP (2005) SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Mol Microbiol 58(4):929–944

    Article  CAS  PubMed  Google Scholar 

  • Nolan RD, Cross T (1988) Isolation and screening of actinomycetes. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic, San Diego, pp 1–32

    Chapter  Google Scholar 

  • Noval JJ, Nickerson WJ (1959) Decomposition of native keratin by Streptomyces fradiae. J Bacteriol 77:251–263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novotna J, Vohradsky J, Berndt P, Gramajo H, Langen H, Li X-M, Minas W, Orsaria L, Roeder D, Thompson CJ (2003) Proteomic studies of diauxic lag in the differentiating prokaryote Streptomyces coelicolor reveal a regulatory network of stress-induced proteins and central metabolic enzymes. Mol Microbiol 48:1289–1303

    Article  CAS  PubMed  Google Scholar 

  • Nüesch J (1965) Isolierung und Selektionierung von Actinomyceten. In: Symposium (“Anreicherungskultur und Mutantenauslese”) Göttingen, April 1964. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg, Abt 1 (Suppl 1):234–252

    Google Scholar 

  • O’Connor TJ, Kanellis P, Nodwell JR (2002) The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol Microbiol 45:45–57

    Article  PubMed  Google Scholar 

  • Obanye AIC, Hobbs G, Gardner DCJ, Oliver SG (1996) Correlation between carbon flux through the pentose phosphate pathway and production of the antibiotic methylenomycin in Streptomyces coelicolor A3(2). Microbiology 142:133–137

    Article  CAS  Google Scholar 

  • Ochi K (1989) Heterogeneity of ribosomal proteins among Streptomyces species and its application to identification. J Gen Microbiol 135:2635–2642

    CAS  PubMed  Google Scholar 

  • Ochi K (1992) Polyacrylamide gel electrophoresis analysis of ribosomal protein: a new approach for actinomycete taxonomy. Gene 115:261–265

    Article  CAS  PubMed  Google Scholar 

  • Ochi K (1995) A taxonomic study of the genus Streptomyces by analysis of ribosomal protein AT-L30. Int J Syst Bacteriol 45:507–514

    Article  CAS  PubMed  Google Scholar 

  • Ogata S (1980) Bacteriophage contamination in industrial processes. Biotechnol Bioeng 22(suppl 1):177–193

    Article  CAS  Google Scholar 

  • Ogata S, Suenaga H, Hayashida S (1985) A temperate phage from Streptomyces azureus. Appl Environ Microbiol 49:201–204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oh C, Ahn M, Kim J (1996) Use of electrophoretic enzyme patterns for streptomycete systematics. FEMS Microbiol Lett 140:9–13

    Article  CAS  Google Scholar 

  • Ohnishi Y, Kameyama S, Onaka H, Horinouchi S (1999) The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 34(1):102–111

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190(11):4050–4060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohnuki T, Imanaka T, Aiba S (1985) Self-cloning in Streptomyces griseus of an str gene cluster for streptomycin biosynthesis and streptomycin resistance. J Bacteriol 164:85–94

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohta Y, Ikeda M (1978) Deodorization of pig feces by actinomycetes. Appl Environ Microbiol 36:487–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okafor N (1966) The ecology of microorganisms on, and the decomposition of, insect wings in the soil. Plant Soil 25:211–237

    Article  Google Scholar 

  • Okami Y, Okazaki T (1972) Studies on marine microorganisms. I. Actinomycetes in Sagami Bay and their antibiotic substances. J Antibiot 25:456–460

    Article  CAS  PubMed  Google Scholar 

  • Okami Y, Okazaki T (1978) Actinomycetes in marine environments. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1(Suppl 6):145–152

    Google Scholar 

  • Okami Y, Okazaki T, Kitahara T, Umezawa H (1976) Studies on marine microorganisms. V: A new antibiotic, aplasmomycin, produced by a streptomycete isolated from shallow sea mud. J Antibiot 29:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Okami Y (1976) Studies on actinomycetes isolated from shallow sea and their antibiotic substances. In: Arai T (ed) Actinomycetes—the boundary microorganisms. Toppan, Tokyo, pp 123–161

    Google Scholar 

  • Omura S (1992) The expanded horizon for microbial metabolites–a review. Gene 115:141–149

    Article  CAS  PubMed  Google Scholar 

  • Omura S, Takahashi Y, Iwai Y (1989) Genus Kitasatosporia Ōmura et al. (1983), 672VP. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams & Wilkins, Baltimore, pp 2594–2598

    Google Scholar 

  • Ottow JCG (1972) Rose bengal as a selective aid in the isolation of fungi and actinomycetes from natural sources. Mycologia 64:304–315

    Article  CAS  PubMed  Google Scholar 

  • Pagé N, Kluepfel D, Shareck F, Morosoli R (1996) Effect of signal peptide alterations and replacement on export of xylanase A in Streptomyces lividans. Appl Environ Microbiol 62:109–114

    PubMed Central  PubMed  Google Scholar 

  • Pahl A, Gewies A, Keller U (1997) ScCypB is a novel second cytosolic cyclophilin from Streptomyces chrysomallus which is phylogenetically distant from ScCypA. Microbiology 143:117–126

    Article  CAS  PubMed  Google Scholar 

  • Pang X, Sun Y, Liu J, Zhou X, Deng Z (2002a) A linear plasmid temperature-sensitive for replication in Streptomyces hygroscopicus 10–22. FEMS Microbiol Lett 19(208):25–28

    Article  Google Scholar 

  • Pang X, Zhou X, Sun Y, Deng Z (2002b) Physical map of the linear chromosome of Streptomyces hygroscopicus 10–22 deduced by analysis of overlapping large chromosomal deletions. J Bacteriol 184:1958–1965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paradis E, Goyer C, Hodge NC, Hogue R, Stall RE, Beaulieu C (1994) Fatty acid and protein profiles of Streptomyces scabies strains isolated in eastern Canada. Int J Syst Bacteriol 44:561–564

    Article  CAS  Google Scholar 

  • Paradkar AS, Aidoo KA, Wong A, Jensen SE (1996) Molecular analysis of a β-lactam resistance gene encoded within the cephamycin gene cluster of Streptomyces clavuligerus. J Bacteriol 178:6266–6274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paradkar A, Trefzer A, Chakraburtty R, Stassi D (2003) Streptomyces genetics: a genomic perspective. Crit Rev Biotechnol 23:1–27

    Article  CAS  PubMed  Google Scholar 

  • Parashar A, Colvin KR, Bignell DR, Leskiw BK (2009) BldG and SCO3548 interact antagonistically to control key developmental processes in Streptomyces coelicolor. J Bacteriol 191(8):2541–2550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park Y-H, Yim D-G, Kim E, Kho Y-H, Mheen T-I, Lonsdale J, Goodfellow M (1991) Classification of acidophilic, neutrotolerant and neutrophilic streptomycetes by nucleotide sequencing of 5S ribosomal RNA. J Gen Microbiol 137:2265–2269

    Article  CAS  PubMed  Google Scholar 

  • Park DH, Kim JS, Kwon SW, Wilson C, Yu YM, Hur JH, Lim CK (2003) Streptomyces luridiscabiei sp. nov., Streptomyces puniciscabiei sp. nov. and Streptomyces niveiscabiei sp. nov., which cause potato common scab disease in Korea. Int J Syst Evol Microbiol 53:2049–2054

    Article  CAS  PubMed  Google Scholar 

  • Parle JN (1963a) Microorganisms in the intestines of earthworms. J Gen Microbiol 31:1–11

    Article  Google Scholar 

  • Parle JN (1963b) A microbiological study of earthworm casts. J Gen Microbiol 31:13–22

    Article  CAS  Google Scholar 

  • Peczynska-Czoch W, Mordarski M (1988) Actinomycete enzymes. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic, London, pp 219–283

    Chapter  Google Scholar 

  • Peraud O, Biggs JS, Hughen RW, Light AR, Concepcion GP, Olivera BM, Schmidt EW (2009) Microhabitats within venomous cone snails contain diverse Actinobacteria. Appl Environ Microbiol 75:6820–6826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pernodet J-L, Simonet J-M, Guérineau M (1984) Plasmids in different strains of Streptomyces ambofaciens: free and integrated form of plasmid pSAM2. Mol Gen Genet 198:35–41

    Article  CAS  PubMed  Google Scholar 

  • Phillips L (1992) The distribution of phenotypic and genotypic characters within streptomycetes and their relationship to antibiotic production. PhD thesis, University of Warwick

    Google Scholar 

  • Picardeau M, Vincent V (1998) Mycobacterial linear plasmids have an invertron-like structure related to other linear replicons in Actinomycetes. Microbiology 144:1981–1988

    Article  CAS  PubMed  Google Scholar 

  • Piret JM, Chater KF (1985) Phage-mediated cloning of bldA, a region involved in Streptomyces coelicolor morphological development, and its analysis by genetic complementation. J Bacteriol 163(3):965–972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polsinelli M, Mazza GP (1984) Use of membrane filters for selective isolation of actinomycetes from soil. FEMS Microbiol Lett 22:79–83

    Article  Google Scholar 

  • Pommer E-H, Lorenz G (1986) The behaviour of polyester and polyether polyurethanes towards microorganisms. In: Seal KJ (ed) Biodeterioration and biodegradation of plastics and polymers. Biodeterioration Society Occasional Publication 1, Kew, pp 77–86

    Google Scholar 

  • Pope MK, Green BD, Westpheling J (1996) The bld mutants of Streptomyces coelicolor are defective in the regulation of carbon utilization, morphogenesis and cell-cell signaling. Mol Microbiol 19:747–756

    Article  CAS  PubMed  Google Scholar 

  • Pope MK, Green B, Westpheling J (1998) The bldB gene encodes a small protein required for morphogenesis, antibiotic production, and catabolite control in Streptomyces coelicolor. J Bacteriol 180(6):1556–1562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porter JN, Wilhelm JJ (1961) The effect on Streptomyces populations of adding various supplements to soil samples. Devlop Indust Microbiol 2:253–259

    Google Scholar 

  • Porter JN, Wilhelm JJ, Tresner HD (1960) Method for the preferential isolation of actinomycetes from soils. Appl Microbiol 8:174–178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Potúcková L, Kelemen GH, Findlay KC, Lonetto MA, Buttner MJ, Kormanec J (1995) A new RNA polymerase sigma factor, sigma F, is required for the late stages of morphological differentiation in Streptomyces spp. Mol Microbiol 17(1):37–48

    Article  PubMed  Google Scholar 

  • Prauser H (1984) Phage host ranges in the classification and identification of gram-positive branched and related bacteria. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomedical aspects of actinomycetes. Academic, Orlando, pp 617–633

    Chapter  Google Scholar 

  • Preobrazhenskaya TP, Sveshnikova MA, Terekhova LP, Chormonova NT (1978) Selective isolation of soil actinomycetes. In: Mordarski M, Kurylowicz W, Jeljaszewicz J (eds) Nocardia and Streptomyces. Gustav Fischer, Stuttgart, pp 119–123

    Google Scholar 

  • Pridham TG, Tresner HD (1974a) Family Streptomycetaceae Waksman and Henrici. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of systematic bacteriology, 8th edn. The Williams and Wilkins, Baltimore, pp 747–748

    Google Scholar 

  • Pridham TG, Tresner HD (1974b) Genus I. Streptomyces Waksman and Henrici. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of systematic bacteriology, 8th edn. The Williams and Wilkins, Baltimore, pp 747–748

    Google Scholar 

  • Pridham TG, Hesseltine CW, Benedict RG (1958) A guide for the classification of streptomycetes according to selected groups: placement of strains in morphological sections. Appl Microbiol 6:52–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pridham TG, Lyons AJ, Phronpatima B (1973) Viability of Actinomycetales stored in soil. Appl Microbiol 26:441–442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quintana ET, Wierzbicka K, Mackiewicz P, Osman A, Fahal AH, Hamid ME, Zakrzewska-Czerwinska J, Maldonado LA, Goodfellow M (2008) Streptomyces sudanensis sp. nov., a new pathogen isolated from patients with actinomycetoma. Antonie Van Leeuwenhoek 93:305–313

    Article  CAS  PubMed  Google Scholar 

  • Ramachandra M, Crawford DL, Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54:3057–3063

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rauland U, Glocker I, Redenbach M, Cullum J (1995) DNA amplifications and deletions in Streptomyces lividans 66 and the loss of one end of the linear chromosome. Mol Gen Genet 246:37–44

    Article  CAS  PubMed  Google Scholar 

  • Ravel J, Schrempf H, Hill RT (1998) Mercury resistance is encoded by transferable giant linear plasmids in two Chesapeake Bay Streptomyces strains. Appl Environ Microbiol 64:3383–3388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Redenbach M, Flett F, Piendl W, Glocker I, Rauland U, Wafzig O, Kliem R, Leblond P, Cullum J (1993) The Streptomyces lividans 66 chromosome contains a 1 MB deletogenic region flanked by two amplifiable regions. Mol Gen Genet 241:255–262

    CAS  PubMed  Google Scholar 

  • Redenbach M, Scheel J, Cullum J, Schmidt U (1998) The chromosome of various Actinomycetes strains is linear (Abstract). In: Cohen G, Aharonowitz Y (eds) 8th international symposium on the genetics of industrial microorganisms, 28 June–2 July 1998, Jerusalem, pp 69–70

    Google Scholar 

  • Redenbach M, Kieser HM, Denapaite D, Eichner A, Cullum J, Kinashi H, Hopwood DA (1996) A set of ordered cosmids and a detailed genetic and physical map for the 8 MB Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96

    Article  CAS  PubMed  Google Scholar 

  • Ridell M, Wallerström G, Williams ST (1986) Immunodiffusion analysis of phenetically defined strains of Streptomyces, Streptoverticillium and Nocardiopsis. Syst Appl Microbiol 8:24–27

    Article  Google Scholar 

  • Roach AW, Silvey JKG (1959) The occurrence of marine actinomycetes in Texas gulf coast substrates. Am Midl Nat 62:482–499

    Article  Google Scholar 

  • Robbins PW, Albright C, Benfield B (1988) Cloning and expression of a Streptomyces plicatus chitinase (chitinase-63) in Escherichia coli. J Biol Chem 263:443–447

    CAS  PubMed  Google Scholar 

  • Rodríguez-García A, Ludovice M, Martín JF, Liras P (1997) Arginine boxes and the argR gene in Streptomyces clavuligerus: evidence for a clear regulation of the arginine pathway. Mol Microbiol 25:219–228

    Article  PubMed  Google Scholar 

  • Rong X, Huang Y (2010) Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA-DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int J Syst Evol Microbiol 60(3):696–703

    Article  CAS  PubMed  Google Scholar 

  • Rong X, Huang Y (2012) Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 35(1):7–18

    Article  CAS  PubMed  Google Scholar 

  • Rong X, Guo Y, Huang Y (2009) Proposal to reclassify the Streptomyces albidoflavus clade on the basis of multilocus sequence analysis and DNA-DNA hybridization, and taxonomic elucidation of Streptomyces griseus subsp. solvifaciens. Syst Appl Microbiol 32(5):314–322

    Article  CAS  PubMed  Google Scholar 

  • Rossi-Doria T (1891) Su di alcune specie di “Streptothrix” trovate nell’aria studate in rapporto a quelle giá note a specialmente all’ “Actinomyces”. Ann dell’Istituto d’Igiene Sper Univ Roma 1:399–438

    Google Scholar 

  • Rothrock CS, Gottlieb D (1981) Importance of antibiotic production in antagonism of selected Streptomyces species to weo soil-borne plant pathogens. J Antibiot 34:830–835

    Article  CAS  PubMed  Google Scholar 

  • Rothrock CS, Gottlieb D (1984) Roles of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can J Microbiol 30:1440–1447

    Article  Google Scholar 

  • Roussel S, Reboux G, Dalphin JC, Pernet D, Laplante JJ, Millon L, Piarroux R (2005) Farmer’s lung disease and microbiological composition of hay: a case–control study. Mycopathologia 160:273–279

    Article  PubMed  Google Scholar 

  • Ruiz-Arribas A, Zhadan GG, Kutyshenko VP, Santamaría RI, Cortijo M, Villar E, Fernandez-Abalos JM, Calvete JJ, Shnyrov VL (1998) Thermodynamic stability of two variants of xylanase (Xys1) from Streptomyces halstedii JM8. Eur J Biochem 253:462–468

    Article  CAS  PubMed  Google Scholar 

  • Ryding NJ, Kelemen GH, Whatling CA, Flärdh K, Buttner MJ, Chater KF (1998) A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in Streptomyces coelicolor A3(2). Mol Microbiol 29(1):343–357

    Article  CAS  PubMed  Google Scholar 

  • Saadoun I, Mohammad MJ, Malkawi HI, Al-Momani F, Meqdam M (1998) Diversity of soil streptomycetes in northern Jordan. Actinomycetes 9:52–60

    Google Scholar 

  • Saddler GS, Goodfellow M, Minnikin DE, O’Donnell AG (1986) Influence of the growth cycle on the fatty acid and menaquinone composition of Streptomyces cyaneus. NCIB 9616. J Appl Bacteriol 60:51–56

    Article  CAS  Google Scholar 

  • Saddler GS, O’Donnell AG, Goodfellow M, Minnikin DE (1987) SIMCA pattern recognition in the analysis of streptomycete fatty acids. J Gen Microbiol 133:1137–1147

    CAS  Google Scholar 

  • Sagova-Mareckova M, Omelka M, Cermak L, Kamenik Z, Olsovska J, Hackl E, Kopecky J, Hadacek F (2011) Microbial communities show parallels at sites with distinct litter and soil characteristics. Appl Environ Microbiol 77:7560–7567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salerno P, Larsson J, Bucca G, Laing E, Smith CP, Flärdh K (2009) One of the two genes encoding nucleoid-associated HU proteins in Streptomyces coelicolor is developmentally regulated and specifically involved in spore maturation. J Bacteriol 191(21):6489–6500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanglier JJ, Whitehead D, Saddler GS, Ferguson EV, Goodfellow M (1992) Pyrolysis mass-spectrometry as a method for the classification, identification and selection of actinomycetes. Gene 115:235–242

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Kaji A (1975) Purification and properties of pectate lyase produced by Streptomyces fradiae IFO 3439. Agric Biol Chem 39:819–824

    Article  CAS  Google Scholar 

  • Sato M, Kaji A (1977) Purification and properties of a pectate lyase produced by Streptomyces nitrosporeus. Agric Biol Chem 41:2193–2197

    Article  CAS  Google Scholar 

  • Sato M, Kaji A (1980a) Exopolygalacturonate lyase produced by Streptomyces massasporeus. Agric Biol Chem 44:717–721

    Article  CAS  Google Scholar 

  • Sato M, Kaji A (1980b) Another pectate lyase produced by Streptomyces nitrosporeus. Agric Biol Chem 44:1345–1349

    Article  CAS  Google Scholar 

  • Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H, König H (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 80:471–478

    Article  PubMed  Google Scholar 

  • Schäfer A, Ustohal P, Harms H, Stauffer F, Dracos T, Zehnder AJB (1998) Transport of bacteria in unsaturated porous media. J Contam Hydrol 33:149–169

    Article  Google Scholar 

  • Schlatter D, Fubuh A, Xiao K, Hernandez D, Hobbie S, Kinkel L (2009) Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb Ecol 57:413–420

    Article  PubMed  Google Scholar 

  • Schleifer K-H, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt A, Haferburg G, Kothe E (2007) Superoxide dismutases of heavy metal resistant streptomycetes. J Basic Microbiol 47:56–62

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Haferburg G, Lischke U, Merten D, Ghergel F, Buchel G, Kothe E (2009) Heavy metal resistance to the extreme: Streptomyces strains from a former uranium mining area. Chem Erde-Geochem 69:35–44

    Article  CAS  Google Scholar 

  • Schrempf H (2006) The family Streptomycetaceae—part II: molecular biology. In: Dworkin MM et al (eds) The prokaryotes, vol 3, Bacteria: firmicutes, actinomycetes. Springer, New York, pp 605–622

    Chapter  Google Scholar 

  • Schrempf H, Dyson P, Dittrich W, Betzler M, Habiger C, Mahro B, Brönneke V, Kessler A, Düvel H (1989) Genetic instability in Streptomyces. In: Okami Y, Beppu T, Ogawara H (eds) Biology of Actinomycetes ’88. Scientific Press, Tokyo, pp 145–150

    Google Scholar 

  • Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94:11–19

    Article  PubMed  Google Scholar 

  • Schrey SD, Erkenbrack E, Frueh E, Fengler S, Hommel K, Horlacher N, Schulz D, Ecke M, Kulik A, Fiedler H-P, Hampp R, Tarkka MT (2012) Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes. BMC Microbiol 12:164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwecke T, Aparicio JF, Molnar I, Konig A, Khaw LE, Haydock SF, Oliynyk M, Caffrey P, Cortes J, Lester JB, Bohm GA, Staunton J, Leadlay PF (1995) The biosynthesis gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci U S A 92:7839–7843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR (2008) Bacterial protection of beetle-fungus mutualism. Science 322:63–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876

    Article  CAS  PubMed  Google Scholar 

  • Sembiring L, Ward AC, Goodfellow M (2000) Selective isolation and characterisation of members of the Streptomyces violaceusniger clade associated with the roots of Paraserianthes falcataria. Antonie Van Leeuwenhoek 78:353–366

    Article  CAS  PubMed  Google Scholar 

  • Servín-González L (1993) Relationship between the replication functions of Streptomyces plasmids pJV1 and pIJ101. Plasmid 30:131–140

    Article  PubMed  Google Scholar 

  • Servín-González L, Castro C, Pérez C, Rubio M, Valdez F (1997) bldA-dependent expression of the Streptomyces exfoliatus M11 lipase gene (lipA) is mediated by the product of a contiguous gene, lipR, encoding a putative transcriptional activator. J Bacteriol 179:7816–7826

    PubMed Central  PubMed  Google Scholar 

  • Sevcikova B, Kormanec J (2003) The ssgB gene, encoding a member of the regulon of stress-response sigma factor sigmaH, is essential for aerial mycelium septation in Streptomyces coelicolor A3(2). Arch Microbiol 180(5):380–384

    Article  CAS  PubMed  Google Scholar 

  • Sevciková B, Benada O, Kofronova O, Kormanec J (2001) Stress-response sigma factor sigma(H) is essential for morphological differentiation of Streptomyces coelicolor A3(2). Arch Microbiol 177(1):98–106

    Article  PubMed  CAS  Google Scholar 

  • Sevcikova B, Rezuchova B, Homerova D, Kormanec J (2010) The anti-anti-sigma factor BldG is involved in activation of the stress response sigma factor σ(H) in Streptomyces coelicolor A3(2). J Bacteriol 192(21):5674–5681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheik CS, Beasley WH, Elshahed MS, Zhou XH, Luo YQ, Krumholz LR (2011) Effect of warming and drought on grassland microbial communities. ISME J 5:1692–1700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen Y, Yoon P, Yu TW, Floss HG, Hopwood D, Moore BS (1999) Ectopic expression of the minimal whiE polyketide synthase generates a library of aromatic polyketides of diverse sizes and shapes. Proc Natl Acad Sci USA 96:3622–3627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherman DH, Malpartida F, Bibb MJ, Kieser HM, Hopwood DA (1989) Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber TU22. EMBO J 8:2717–2725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for the characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Shirling EB, Gottlieb D (1970) Report of the International Streptomyces Project. Five years collaborative research. In: Prauser H (ed) The actinomycetales. Gustav Fischer, Jena, pp 79–90

    Google Scholar 

  • Shirling EB, Gottlieb D (1977) Retrospective evaluation of International Streptomyces Project taxonomic criteria. In: Arai T (ed) Actinomycetales: the boundary microorganisms. University Park Press, Baltimore, pp 9–41

    Google Scholar 

  • Siebert G, Schwartz W (1956) Untersuchungen über das Vorkommen von Mikroorganismen in entstehenden Sedimenten. Arch Hydrobiol 52:331–366

    Google Scholar 

  • Silvey JKG, Roach AW (1975) The taste and odor producing aquatic actinomycetes. Crit Rev Environ Control 5:233–273

    Article  Google Scholar 

  • Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421

    Article  PubMed  Google Scholar 

  • Soh BS, Loke P, Sim TS (2001) Cloning, heterologous expression and purification of an isocitrate lyase from Streptomyces clavuligerus NRRL 3585. Biochim Biophys Acta 1522:112–117

    Article  CAS  PubMed  Google Scholar 

  • Sohng JK, Oh TJ, Lee JJ, Kim CG (1997) Identification of a gene cluster of biosynthetic genes of rubradirin substructures in S. achromogenes var. rubradiris NRRL3061. Mol Cells 7:674–681

    CAS  PubMed  Google Scholar 

  • Soliveri JA, Gomez J, Bishai WR, Chater KF (2000) Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 146(2):333–343

    CAS  PubMed  Google Scholar 

  • Sommer P, Bormann C, Götz F (1997) Genetic and biochemical characterization of a new extracellular lipase from Streptomyces cinnamomeus. Appl Environ Microbiol 63:3553–3560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spicher G (1955) Untersuchungen über die Wirkung von Erdextrakt und Spurenelementen auf das Wachstum verschiedener Streptomyzeten. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 2(108):577–587

    Google Scholar 

  • Stackebrandt E, Liesack W, Webb R, Witt D (1991a) Towards a molecular identification of Streptomyces species in pure culture and in environmental samples. Actinomycetologia 5:38–44

    Article  Google Scholar 

  • Stackebrandt E, Witt D, Kemmerling C, Kroppenstedt R, Liesack W (1991b) Designation of streptomycete 16S and 23S rRNA-based target regions for oligonucleotide probes. Appl Environ Microbiol 57:1468–1477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stackebrandt E, Liesack W, Witt D (1992) Ribosomal RNA and rDNA sequence analyses. Gene 115:255–260

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden MCJ, Nesme X, Rossello-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Standing D, Killham K (2007) The soil environment. In: van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil microbiology. CRC Press, Boca Raton

    Google Scholar 

  • Stindl A, Keller U (1994) Epimerization of the d-valine portion in the biosynthesis of actinomycin D. Biochemistry 33:9358–9364

    Article  CAS  PubMed  Google Scholar 

  • Stolp H, Starr MP (1981) Principles of isolation, cultivation, and conservation of bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 135–175

    Chapter  Google Scholar 

  • Strap JL, Crawford DL (2006) Ecology of Streptomyces in soil and rhizosphere. In: Cooper JE, Rao JR (eds) Molecular approaches to soil, rhizosphere and plant microorganism analysis. Cabi Publishing, Wallingford, pp 166–182

    Chapter  Google Scholar 

  • Stuttard C (1982) Temperate phages of Streptomyces venezuelae: lysogeny and host speciÆcity shown by phages SV1 and SV2. J Gen Microbiol 128:115–121

    Google Scholar 

  • Stutzman-Engwall KJ, Hutchinson CR (1989) Multigene families for anthracycline antibiotic production in Streptomyces peucetius. Proc Natl Acad Sci U S A 86:3135–3139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sudakaran S, Salem H, Kost C, Kaltenpoth M (2012) Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol Ecol 21:6134–6151

    Article  CAS  PubMed  Google Scholar 

  • Suganuma T, Mizukami T, Moari K, Ohnishi M, Hiromi K (1980) Studies of the action pattern of an amylase from Streptomyces praecox NA-273. J Biochem 88:131–138

    CAS  PubMed  Google Scholar 

  • Sun J, Kelemen GH, Fernández-Abalos JM, Bibb MJ (1999) Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology 145(Pt 9):2221–2227

    CAS  PubMed  Google Scholar 

  • Swan DG, Rodriguez AM, Vilches C, Méndez C, Salas JA (1994) Characterisation of a Streptomyces antibioticus gene encoding a type I polyketide synthase which has an unusual coding sequence. Mol Gen Genet 242:358–362

    Article  CAS  PubMed  Google Scholar 

  • Swift S, Throup JP, Williams P, Salmond GP, Stewart GS (1996) Quorum sensing: a population-density component in the determination of bacterial phenotype. Trends Biochem Sci 21(6):214–219

    Article  CAS  PubMed  Google Scholar 

  • Szabó I, Marton M, Ferenczy L, Buti I (1967) Intestinal microflora of the larvae of St. Mark’s fly. II. Computer analysis of intestinal actinomycetes from the larvae of a bibio population. Acta Microbiol Acad Sci Hung 14:239–249

    Google Scholar 

  • Taber WA (1959) Identification of an alkaline-dependent Streptomyces as Streptomyces caeruleus Baldacci and characterization of the species under controlled conditions. Can J Microbiol 5:335–344

    Article  CAS  PubMed  Google Scholar 

  • Taber WA (1960) Evidence for the existence of acid-sensitive actinomycetes in soil. Can J Microbiol 6:503–514

    Article  Google Scholar 

  • Taguchi S, Kojima S, Miura K, Momose H (1996) Taxonomic characterisation of closely-related Streptomyces spp. based on the amino acid sequence analysis of protease inhibitor proteins. FEMS Microbiol Lett 135:169–173

    Article  CAS  PubMed  Google Scholar 

  • Taha A (1983) A serological survey of antibodies of Streptomyces somaliensis and Actinomadura madurae in Sudan using enzyme-linked immunosorbent assay (ELISA). Trans R Soc Trop Med Hyg 77:49–50

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Iwai Y, Ōmura S (1984) Two new species of the genus Kitasatosporia, Kitasatosporia phosalacinea sp. nov. and Kitasatosporia griseola sp. nov. J Gen Appl Microbiol 30:377–387

    Article  CAS  Google Scholar 

  • Takano E (2006) Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9(3):287–294

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Tao M, Long F, Bibb MJ, Wang L, Li W, Buttner MJ, Bibb MJ, Deng ZX, Chater KF (2003) A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol Microbiol 50(2):475–486

    Article  CAS  PubMed  Google Scholar 

  • Taylor CF (1936) A method for isolation of actinomycetes from scab lesions on potato tubers and beet roots. Phytopathology 26:287–288

    Google Scholar 

  • Taylor MW, Hill RT, Piel J, Thacker RW, Hentschel U (2007) Soaking it up: the complex lives of marine sponges and their microbial associates. ISME J 1:187–190

    Article  PubMed  Google Scholar 

  • Tendler MD, Burkholder PR (1961) Studies on the thermophilic actinomycetes. I. Methods of cultivation. Appl Microbiol 9:394–399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terkina IA, Drukker VV, Parfenova VV, Kostornova TY (2002) The biodiversity of actinomycetes in Lake Baikal. Microbiology (Moscow) 71:346–349

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1990) Role of antibiotics and siderophores in biocontrol of take-all disease of wheat. Plant Soil 129:93–99

    Article  CAS  Google Scholar 

  • Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    Article  CAS  PubMed  Google Scholar 

  • Tolba S, Egan S, Kallifidas D, Wellington EMH (2002) Distribution of streptomycin resistance and biosynthesis genes in streptomycetes recovered from different soil sites. FEMS Microbiol Ecol 42:269–276

    Article  CAS  PubMed  Google Scholar 

  • Traag BA, Kelemen GH, van Wezel GP (2004) Transcription of the sporulation gene ssgA is activated by the IclR-type regulator SsgR in a whi-independent manner in Streptomyces coelicolor A3(2). Mol Microbiol 53(3):985–1000

    Article  CAS  PubMed  Google Scholar 

  • Tresner HD, Hayes JA, Backus EJ (1967) Morphology of submerged growth of streptomycetes as a taxonomic aid. 1. Morphological development in Streptomyces aureofaciens in agitated liquid media. Appl Microbiol 15:1185–1191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tresner HD, Hayes JA, Backus EJ (1968) Differential tolerance of streptomycetes to sodium chloride as a taxonomic aid. Appl Microbiol 16:1134–1136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trevors JT, Van Elsas JD, Van Overbeek LS, Starodub ME (1990) Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm. Appl Environ Microbiol 56:401–408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trolldenier G (1966) Über die Eignung Erde enthaltender Nährsubstrate zur Zählung und Isolierung von Bodenmikroorganismen auf Membranfiltern. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 2(120):496–508

    Google Scholar 

  • Trujillo ME, Goodfellow M (2003) Numerical phenetic classification of clinically significant aerobic sporoactinomycetes and related organisms. Antonie Van Leeuwenhoek 84:39–68

    Article  CAS  PubMed  Google Scholar 

  • Tsao PH, Leben C, Keitt GW (1960) An enrichment method for isolating actinomycetes that produce diffusible antifungi antibiotics. Phytopathology 50:88–89

    Google Scholar 

  • Tsujibo H, Ohtsuki T, Iio T, Yamazaki I, Miyamoto K, Sugiyama M, Inamori Y (1997) Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl Environ Microbiol 63:661–664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uchida K, Aida K (1977) Acyl type of bacterial cell wall: its simple identification by colorimetric method. J Gen Appl Microbiol 23:249–260

    Article  CAS  Google Scholar 

  • Ulrich A, Wirth S (1999) Phylogenetic diversity and population densities of cultural cellulolytic soil bacteria across an agricultural encatchment. Microb Ecol 37:238–247

    Article  CAS  PubMed  Google Scholar 

  • Uridil JE, Tetrault PA (1959) Isolation of thermophilic streptomycetes. J Bacteriol 78:243–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valenzuela-Encinas C, Neria-Gonzalez I, Alcantara-Hernandez RJ, Estrada-Alvarado I, Zavala-Diaz de la Serna FJ, Dendooven L, Marsch R (2009) Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding. Extremophiles 13:609–621

    Article  PubMed  Google Scholar 

  • Van Keulen G, Jonkers HM, Claessen D, Dijkhuizen L, Wosten HA (2003) Differentiation and anaerobiosis in standing liquid cultures of Streptomyces coelicolor. J Bacteriol 185:1455–1458

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Keulen G, Alderson J, White J, Sawers RG (2005) Nitrate respiration in the actinomycete Streptomyces coelicolor. Biochem Soc Trans 33:210–212

    Article  PubMed  Google Scholar 

  • van Keulen G, Alderson J, White J, Sawers RG (2007) The obligate aerobic actinomycete Streptomyces coelicolor A3(2) survives extended periods of anaerobic stress. Environ Microbiol 9:3143–3149

    Article  PubMed  CAS  Google Scholar 

  • van Keulen G, Siebring J, Dijkhuizen L (2011) Central carbon metabolic pathways in Streptomyces. In: Dyson PJ (ed) Streptomyces: molecular biology and biotechnology. Caister Academic Press, Wymondham, pp 105–124

    Google Scholar 

  • van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311–1333

    Article  PubMed  CAS  Google Scholar 

  • van Wezel GP, Vijgenboom E (2004) Novel aspects of signaling in Streptomyces development. Adv Appl Microbiol 56:65–88

    Article  PubMed  Google Scholar 

  • van Wezel GP, Vijgenboom E, Bosch L (1991) A comparative study of the ribosomal RNA operons of Streptomyces coelicolor A3(2) and sequence analysis of rrnA. Nucleic Acids Res 25:4399–4403

    Article  Google Scholar 

  • van Wezel GP, van der Meulen J, Kawamoto S, Luiten RG, Koerten HK, Kraal B (2000) ssgA is essential for sporulation of Streptomyces coelicolor A3(2) and affects hyphal development by stimulating septum formation. J Bacteriol 182(20):5653–5662

    Article  PubMed Central  PubMed  Google Scholar 

  • Veldkamp J (1955) A study of the aerobic decomposition of chitin by microorganisms. Medelingen van de Landbouwhogeschool te Wageningen/Nederland Wageningen: H Veenman & Zonen 55:127–174

    CAS  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen F (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vetsigian K, Jajoo R, Kishony R (2011) Structure and evolution of Streptomyces interaction networks in soil and in silico. PLoS Biol 9:e1001184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vickers JC, Williams ST (1987) An assessment of plate inoculation procedures for the enumeration and isolation of streptomycetes. Microbiol Lett 36:113–117

    Google Scholar 

  • Vickers JC, Williams ST, Ross GW (1984) A taxonomic approach to selective isolation of streptomycetes from soil. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomedical aspects of Actinomycetes. Academic, Orlando, pp 553–561

    Chapter  Google Scholar 

  • Viollier PH, Kelemen GH, Dale GE, Nguyen KT, Buttner MJ, Thompson CJ (2003) Specialized osmotic stress response systems involve multiple SigB-like sigma factors in Streptomyces coelicolor. Mol Microbiol 47(3):699–714

    Article  CAS  PubMed  Google Scholar 

  • Virolle M-J, Bibb M-J (1988) Cloning, characterization and regulation of an α-amylase gene from Streptomyces limosus. Mol Microbiol 2:197–208

    Article  CAS  PubMed  Google Scholar 

  • Voelskow H (1988/89) Methoden der zielorientierten Stammisolierung. In: Präve P, Schlingmann M, Crueger W, Esser K, Thauer R, Wagner F (eds) Jahrbuch Biotechnologie, Bd. 2. Carl Hanser Verlag, München, pp 343–361

    Google Scholar 

  • Vohradsky J, Li XM, Dale G, Folcher M, Nguyen L, Viollier PH, Thompson CJ (2000) Developmental control of stress stimulons in Streptomyces coelicolor revealed by statistical analyses of global gene expression patterns. J Bacteriol 182(17):4979–4986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Volff JN, Altenbuchner J (1998) Genetic instability of the Streptomyces chromosome. Mol Microbiol 27(2):239–246

    Article  CAS  PubMed  Google Scholar 

  • Völker U, Engelmann S, Maul B, Riethdorf S, Völker A, Schmid R, Mach H, Hecker M (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140(4):741–752

    Article  PubMed  Google Scholar 

  • Vujaklija D et al (2002) A novel streptomycete lipase: cloning, sequencing and high-level expression of the Streptomyces rimosus GDS(L)-lipase gene. Arch Microbiol 178:124–130

    Article  CAS  PubMed  Google Scholar 

  • Waksman SA (1961) The Actinomycetes, vol 2, Classification, identification and descriptions of genera and species. Williams and Wilkins, Baltimore, pp 1–363

    Google Scholar 

  • Waksman SA, Curtis RE (1916) The actinomyces of the soil. Soil Sci 1:99–134

    Article  CAS  Google Scholar 

  • Waksman SA, Henrici AT (1943) The nomenclature and classification of the actinomycetes. J Bacteriol 46:337–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang ZM, Bleakley BH, Crawford DL, Hertel G, Rafii F (1990) Cloning and expression of a lignin peroxidase gene from Streptomyces viridosporus in Streptomyces lividans. J Biotechnol 13:131–144

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Huang Y, Cui Q, Xie Q, Zhang Y, Liu Z (2003) Isolation of acidophilic and acidoduric streptomycetes using a dispersion and differential centrifugation approach. Microbiology (English translation of Mikrobiologiya) 30:104–106

    Google Scholar 

  • Wang L, Huang Y, Liu Z, Goodfellow M, Rodriguez C (2006) Streptacidiphilus oryzae sp. nov., an actinomycete isolated from rice-field soil in Thailand. Int J Syst Evol Microbiol 56:1257–1261

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yu Y, He X, Zhou X, Deng Z, Chater KF, Tao M (2007) Role of an FtsK-like protein in genetic stability in Streptomyces coelicolor A3(2). J Bacteriol 189(6):2310–2318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang XJ, Yan YJ, Zhang B, An J, Wang JJ, Tian J, Jiang L, Chen YH, Huang SX, Yin M, Zhang J, Gao AL, Liu CX, Zhu ZX, Xiang WS (2010) Genome sequence of the milbemycin-producing bacterium Streptomyces bingchenggensis. J Bacteriol 192(17):4526–4527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warcup JH (1950) The soil-plate method for isolation of fungi from soil. Nature 166:117–118

    Article  CAS  PubMed  Google Scholar 

  • Ward AC, Bora N (2006) Diversity and biogeography of marine Actinobacteria. Curr Opin Microbiol 9:279–286

    Article  CAS  PubMed  Google Scholar 

  • Watson ET, Williams ST (1974) Studies of the ecology of actinomycetes in soil. VII. Actinomycetes in a coastal sand belt. Soil Biol Biochem 6:43–52

    Article  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Wellington EMH, Williams ST (1978) Preservation of actinomycete inoculum in frozen glycerol. Microbiol Lett 6:151–157

    Google Scholar 

  • Wellington EMH, Williams ST (1981a) Host ranges of phages isolated to Streptomycetes and other genera. Zentralbl Bakteriol Mikrobiol Hyg I Abt Suppl 11:93–98

    Google Scholar 

  • Wellington EMH, Williams ST (1981b) Transfer of Actinoplanes armeniacus Kalakoutskii and Kusnetsov to Streptomyces: Streptomyces armeniacus (Kalakoutskii and Kusnetsov) comb. nov. Int J Syst Bacteriol 31:77–81

    Article  Google Scholar 

  • Wellington EMH, Al-Jawadi M, Bandoni R (1987) Selective isolation of Streptomyces species-groups from soil. Devlop Indust Microbiol 28:99–104

    Google Scholar 

  • Wellington EMH, Stackebrandt E, Sanders D, Wolstrup J, Jorgensen NOG (1992) Taxonomic status of Kitasatosporia, and proposal unification with Streptomyces on the basis of phenotypic and 16S rRNA analysis and emendation of Streptomyces Waksman and Henrici 1943, 339AL. Int J Syst Bacteriol 42:156–160

    Article  CAS  PubMed  Google Scholar 

  • Welsch M, Corbaz R, Ettlinger L (1957) Phage typing of streptomycetes. Schweiz Z Allgem Path Bakteriol 20:454–458

    CAS  Google Scholar 

  • Weyland H (1981a) Distribution of actinomycetes on the sea floor. Zentralbl Bakteriol Mikrobiol Hyg I Abt Orig Suppl 11:185–193

    Google Scholar 

  • Weyland H (1981b) Characteristics of actinomycetes isolated from marine sediments. In: Schaal KP, Pulverer G (eds) Actinomycetes. Proceedings of the 4th International Symposium on Actinomycete Biology, Cologne, 1979. Gustav Fischer, Stuttgart, pp 309–314

    Google Scholar 

  • Weyland H, Helmke E (1988) Actinomycetes in the marine environment. In: Okami Y, Beppu T, Ogawara H (eds) Biology of actinomycetes '88. Proceedings of the 7th international symposium on biology of actinomycetes, Tokyo, 1988. Japan Scientific Societies Press, Tokyo, pp 294–299

    Google Scholar 

  • White J, Bibb M (1997) bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J Bacteriol 179(3):627–633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wieringa KT (1955) Der Abbau der Pektine; der erste Angriff der organischen Pflanzensubstanz. Z Pflanzenernähr 69:150–155

    Article  Google Scholar 

  • Wieringa KT (1966) Solid media with elemental sulphur for detection of sulphur-oxidizing microbes. Antonie Van Leeuwenhoek 32:183–186

    Article  CAS  PubMed  Google Scholar 

  • Wilde P (1964) Gezielte Methoden zur Isolierung antibiotisch wirksamer Boden-Actinomyceten. Z Pflanzenkrankh 71:179–182

    Google Scholar 

  • Wildermuth H (1970) Development and organization of the aerial mycelium in Streptomyces coelicolor. J Gen Microbiol 60:43–50

    Article  CAS  PubMed  Google Scholar 

  • Willey JW, Santamaria R, Guijarro R, Geislich M, Losick R (1991) Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor. Cell 65:641–650

    Article  CAS  PubMed  Google Scholar 

  • Willey J, Schwedock J, Losick R (1993) Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor. Genes Dev 75:895–903

    Article  Google Scholar 

  • Willey JM, Willems A, Kodani S, Nodwell JR (2006) Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol Microbiol 59(3):731–742

    Article  CAS  PubMed  Google Scholar 

  • Williams ST (1978) Streptomycetes in the soil ecosystem. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Suppl 6:137–144

    Google Scholar 

  • Williams ST (1982) Are antibiotics produced in soil? Pedobiologia 23:427–435

    CAS  Google Scholar 

  • Williams ST, Cross T (1971) Isolation, purification, cultivation and preservation of actinomycetes. Methods Microbiol 4:295–334

    Article  Google Scholar 

  • Williams ST, Davies FL (1965) Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. J Gen Microbiol 38:251–261

    Article  CAS  PubMed  Google Scholar 

  • Williams ST, Flowers TH (1978) The influence of pH on starch hydrolysis by neutrophilic and acidophilic streptomycetes. Microbios 20:99–106

    CAS  PubMed  Google Scholar 

  • Williams ST, Khan MR (1974) Antibiotics—a soil microbiologist’s viewpoint. Postepy Hig Med Dosw 28:395–408

    CAS  PubMed  Google Scholar 

  • Williams ST, Mayfield CI (1971) Studies on the ecology of actinomycetes in soil. III. The behaviour of neutrophilic streptomycetes in acid soil. Soil Biol Biochem 3:197–208

    Article  CAS  Google Scholar 

  • Williams ST, Robinson CS (1981) The role of streptomycetes in decomposition of chitin in acidic soils. J Gen Microbiol 127:55–63

    CAS  Google Scholar 

  • Williams ST, Wellington EMH (1980) Micromorphology and fine structure of actinomycetes. In: Goodfellow M, Board RG (eds) Microbiological classification and identification. Academic, London, pp 139–165

    Google Scholar 

  • Williams ST, Wellington EMH (1982a) Actinomycetes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, chemical and microbiological properties. American Society of Agronomy and Soil Sciences, Madison, pp 969–987

    Google Scholar 

  • Williams ST, Wellington EMH (1982b) Principles and problems of selective isolation of microbes. In: Bu’lock JD, Nisbet LJ, Winstanley DJ (eds) Bioactive microbial products: search and discovery. Academic, London, pp 9–26

    Google Scholar 

  • Williams ST, Davies FL, Hall DM (1969) A practical approach to the taxonomy of actinomycetes isolated from soil. In: Sheals JG (ed) The soil ecosystem, vol 8. The Systematics Association, London, pp 107–117

    Google Scholar 

  • Williams ST, Davies FL, Mayfield CI, Khan MR (1971) Studies on the ecology of actinomycetes. II. The pH requirements of streptomycetes from two acid soils. Soil Biol Biochem 3:187–195

    Article  CAS  Google Scholar 

  • Williams ST, Shameemullah M, Watson ET, Mayfield CI (1972) Studies on the ecology of actinomycetes in soil. VI. The influence of moisture tension on growth and survival. Soil Biol Biochem 4:215–225

    Article  Google Scholar 

  • Williams ST, Sharples GP, Bradshaw RM (1973) The fine structure of the Actinomycetales. In: Sykes G, Skinner FA (eds) Actinomycetales: characteristics and practical importance. Academic, London, pp 113–130

    Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983a) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  • Williams ST, Goodfellow M, Wellington EMH, Vickers JC, Alderson G, Sneath PHA, Sackin MJ, Mortimer AM (1983b) A probability matrix for identification of streptomycetes. J Gen Microbiol 129:1815–1830

    CAS  PubMed  Google Scholar 

  • Williams ST, Goodfellow M, Vickers JC (1984a) New microbes from old habitats? In: Kelley DP, Karr NG (eds) The microbe 1984, Part 2: prokaryotes and eukaryotes. Society for general microbiology symposium 36. Cambridge University Press, Cambridge, pp 219–256

    Google Scholar 

  • Williams ST, Lanning S, Wellington EHH (1984b) Ecology of actinomycetes. In: Goodfellow M, Mordarski M, Williams ST (eds) The biology of the actinomycetes. Academic, London, pp 481–528

    Google Scholar 

  • Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici (1943), 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams Wilkins, Baltimore, pp 2594–2598

    Google Scholar 

  • Wipat A, Wellington MH, Saunders VA (1994) Monoclonal antibodies for Streptomyces lividans and their use for immunomagnetic capture of spores from soil. Microbiology 140:2067–2076

    Article  CAS  PubMed  Google Scholar 

  • Wirth S, Ulrich A (2002) Cellulose-degrading potentials and phylogenetic classification of carboxymethyl-cellulose decomposing bacteria isolated from soil. Syst Appl Microbiol 25:584–591

    Article  CAS  PubMed  Google Scholar 

  • Witt D, Stackebrandt E (1990) Unification of the genera Streptoverticillium and Streptomyces, and amendation of Streptomyces Waksman and Henrici 1943, 339AL. Syst Appl Microbiol 13:361–371

    Article  CAS  Google Scholar 

  • Wohl DL, McArthur JV (1998) Actinomycete-flora associated with submersed freshwater macrophytes. FEMS Microbiol Ecol 26:135–140

    Article  CAS  Google Scholar 

  • Wolanski M, Donczew R, Kois-Ostrowska A, Masiewicz P, Jakimowicz D, Zakrzewska-Czerwinska J (2011) The level of AdpA directly affects expression of developmental genes in Streptomyces coelicolor. J Bacteriol 193(22):6358–6365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wood S, Williams ST, White WR (1983) Microbes as a source of earthy flavours in potable water—a review. Int Biodeterior Bull 19:83–97

    CAS  Google Scholar 

  • Xu W, Huang J, Lin R, Shi J, Cohen SN (2010) Regulation of morphological differentiation in S. coelicolor by RNase III (AbsB) cleavage of mRNA encoding the AdpA transcription factor. Mol Microbiol 75(3):781–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamazaki H, Ohnishi Y, Horinouchi S (2000) An A-factor-dependent extracytoplasmic function sigma factor (sigma(AdsA)) that is essential for morphological development in Streptomyces griseus. J Bacteriol 182(16):4596–4605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeo M, Chater K (2005) The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor. Microbiology (UK) 151:855–861

    Article  CAS  Google Scholar 

  • Yikmis M, Steinbüchel A (2012) Historical and recent achievements in the field of microbial degradation of natural and synthetic rubber. Appl Environ Microbiol 78:4543–4551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu TW, Bibb MJ, Revill WP, Hopwood DA (1994) Cloning, sequencing, and analysis of the griseusin polyketide synthase gene cluster from Streptomyces griseus. J Bacteriol 176:2627–2634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zaitlin B, Watson SB (2006) Actinomycetes in relation to taste and odour in drinking water: myths, tenets and truths. Water Res 40:1741–1753

    Article  CAS  PubMed  Google Scholar 

  • Zakrzewska-Czerwinska J, Schrempf H (1992) Characterization of an autonomously replicating region from the Streptomyces lividans chromosome. J Bacteriol 174:2688–2693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zenova GM, Kurapova AI, Lysenko AM, Zvyagintsev DG (2009) The structural-functional organization of thermotolerant complexes of actinomycetes in desert and volcanic soils. Eurasian Soil Sci 42:531–535

    Article  Google Scholar 

  • Zhang Z, Wang Y, Ruan J (1997) A proposal to revive the genus Kitasatospora (Omura, Takahashi, Iwai, and Tanaka 1982). Int J Syst Bacteriol 47:1048–1054

    Article  CAS  PubMed  Google Scholar 

  • Zotchev SB (2012) Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol 158:168–175

    Article  CAS  PubMed  Google Scholar 

  • Zucchi TD, Prado SS, Consoli FL (2012) The gastric caeca of pentatomids as a house for actinomycetes. BMC Microbiol 12:101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

The basis of the chapters on ecophysiology, isolation, and habitats has been the excellent and comprehensive treatise of H.J. Kutzner and F. Korn-Wendisch from the 2nd edition of The Prokaryotes, which is still recommended for a more deep study on classical approaches in Streptomyces biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kämpfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kämpfer, P., Glaeser, S.P., Parkes, L., van Keulen, G., Dyson, P. (2014). The Family Streptomycetaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30138-4_184

Download citation

Publish with us

Policies and ethics