Skip to main content

Genetic Fortification of Rice to Address Hidden Hunger: Progress and Prospects

  • Chapter
  • First Online:
Biofortification of Staple Crops

Abstract

Micronutrient malnutrition or hidden hunger is affecting more than 2 billion people globally. The nutrient deficiency is recognised as a major challenge in achieving the United Nation’s Sustainable Development Goals. Biofortification aims at enhancing the micronutrient status of the staple foods through genetic means. Breeding for improved varieties having nutrient enriched grains is a targeted, sustainable and cost-effective approach to alleviate the hidden hunger. Currently, rice is identified as the choice crop for biofortification as it feeds more than half of the global population. This chapter provides a comprehensive review on the progress and prospects of biofortification in rice, with specific emphasis on Fe, Zn and pro-vitamin A carotenoids. Globally, significant progress has been made in surveying the rice germplasm for the micronutrients, and identified several QTLs governing their accumulation, uptake, translocation and storage in the rice grain. However, relatively less progress have been made in molecular breeding of rice towards nutrient enrichment. Recent advancements such as genetic engineering and genome editing provide future promise in the biofortification programmes. Bio-availability rather than quantity should be considered as the determining factor for nutrient enrichment. A holistic approach is required to include stable donors for future varietal development, targeting rice biofortification and consequent alleviation of hidden hunger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19:164

    PubMed  PubMed Central  Google Scholar 

  • Al Hasan SM, Hassan M, Saha S et al (2016) Dietary phytate intake inhibits the bioavailability of iron and calcium in the diets of pregnant women in rural Bangladesh: a cross-sectional study. BMC Nutr 2:24. https://doi.org/10.1186/s40795-016-0064-8

    Article  Google Scholar 

  • Ali M, Shuja MN, Zahoor M et al (2010) Phytic acid: how far have we come? Afr J Biotechnol 9:1551–1554

    CAS  Google Scholar 

  • Ali N, Paul S, Gayen D et al (2013) RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice. Rice 6:1–12

    Google Scholar 

  • Andreini C, Banci L, Bertini I et al (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5:196–201. https://doi.org/10.1021/pr050361j

    Article  CAS  PubMed  Google Scholar 

  • Andresen E, Kupper H (2013) Cadmium toxicity in plants. In: Sigel A, Sigel H, Sigel R (eds) Cadmium: from toxicity to essentiality, Metal ions in life sciences, vol 11. Springer, Dordrecht, pp 395–413. https://doi.org/10.1007/978-94-007-5179-8_13

    Chapter  Google Scholar 

  • Anuradha K, Agarwal S, Batchu AK et al (2012) Evaluating rice germplasm for iron and zinc concentration in brown rice and seed dimensions. J Phytol 4:19

    CAS  Google Scholar 

  • Aoyama T, Kobayashi T, Takahashi M et al (2009) OsYSL18 is a rice iron (III)–deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol 70:681–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ariga T, Hazama K, Yanagisawa S et al (2014) Chemical forms of iron in xylem sap from graminaceous and non-graminaceous plants. Soil Sci Plant Nutr 60:460–469

    CAS  Google Scholar 

  • Aung MS, Masuda H, Kobayashi T et al (2013) Iron biofortification of Myanmar rice. Front Plant Sci 4:158. https://doi.org/10.3389/fpls.2013.00158

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey RL, West KP Jr, Black RE (2015) The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66:22–33. https://doi.org/10.1159/000371618

    Article  CAS  PubMed  Google Scholar 

  • Bashir K, Inoue H, Nagasaka S et al (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281:32395–32402

    CAS  PubMed  Google Scholar 

  • Bashir K, Ishimaru Y, Nishizawa NK (2012) Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil 361:189–201

    CAS  Google Scholar 

  • Black RE (2003) Zinc deficiency, infectious disease and mortality in the developing world. J Nutr 133:1485S–1489S

    CAS  PubMed  Google Scholar 

  • Bollinedi H, Prabhu KV, Singh NK et al (2017) Molecular and functional characterization of GR2-R1 event-based backcross derived lines of Golden Rice in the genetic background of a mega rice variety swarna. PLoS One 12:e0169600

    PubMed  PubMed Central  Google Scholar 

  • Bollinedi H, Dhakane-Lad J, Gopala Krishnan S et al (2019) Kinetics of β-carotene degradation under different storage conditions in transgenic Golden Rice® lines. Food Chem 278:773–779. https://doi.org/10.1016/j.foodchem.2018.11.121

    Article  CAS  PubMed  Google Scholar 

  • Bollinedi H, Vinod KK, Bisht K et al (2020a) Characterizing the diversity of grain nutritional and physico-chemical quality in Indian rice landraces by multivariate genetic analyses. Indian J Genet 80:26–38

    Google Scholar 

  • Bollinedi H, Yadav AK, Vinod KK et al (2020b) Genome-wide association study reveals novel marker-trait associations (MTAs) governing the localization of Fe and Zn in the rice grain. Front Genet 11:213. https://doi.org/10.3389/fgene.2020.00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollineni H, Krishnan S, Sundaram R et al (2014) Marker assisted biofortification of rice with pro-vitamin A using transgenic Golden Rice® lines: progress and prospects. Ind J Genet Plant Breed (The) 74:624. https://doi.org/10.5958/0975-6906.2014.00901.8

    Article  Google Scholar 

  • Boonyaves K, Wu TY, Gruissem W et al (2017) Enhanced grain iron levels in rice expressing an iron-regulated metal transporter, nicotianamine synthase, and ferritin gene cassette. Front Plant Sci 8:130. https://doi.org/10.3389/fpls.2017.00130

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58

    PubMed  PubMed Central  Google Scholar 

  • Bughio N, Yamaguchi H, Nishizawa NK et al (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53:1677–1682

    CAS  PubMed  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    CAS  PubMed  Google Scholar 

  • Calayugan MIC, Formantes AK, Amparado A et al (2020) Genetic analysis of agronomic traits and grain iron and zinc concentrations in a doubled haploid population of rice (Oryza sativa L.). Sci Rep 10:2283. https://doi.org/10.1038/s41598-020-59184-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camaschella C (2015) Iron-deficiency anemia. N Engl J Med 372(19):1832–1843

    PubMed  Google Scholar 

  • Caulfield LE, Richard SA, Rivera JA et al (2006) Stunting, wasting, and micronutrient deficiency disorders. In: Jamison DT et al (eds) Disease control priorities in developing countries, 2nd edn. Oxford University Press, New York, pp 551–568

    Google Scholar 

  • Che J, Yokosho K, Yamaji N et al (2019) A vacuolar phytosiderophore transporter alters iron and zinc accumulation in polished rice grains. Plant Physiol 181:276–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, He H, Zou Y et al (2011) Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.). Theor Appl Genet 123:869–879. https://doi.org/10.1007/s00122-011-1633-5

    Article  PubMed  Google Scholar 

  • Chen H, Xie W, He H et al (2014) A high-density SNP genotyping array for rice biology and molecular breeding. Mol Plant 7:541–553. https://doi.org/10.1093/mp/sst135

    Article  CAS  PubMed  Google Scholar 

  • Christian P, West KP Jr (1998) Interactions between zinc and vitamin A: an update. Am J Clin Nutr 68:435S–441S

    CAS  PubMed  Google Scholar 

  • Coleman JE (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61:897–946. https://doi.org/10.1146/annurev.bi.61.070192.004341

    Article  CAS  PubMed  Google Scholar 

  • Coleman JE (1998) Zinc enzymes. Curr Opin Chem Biol 2:222–234. https://doi.org/10.1016/s1367-5931(98)80064-1

    Article  CAS  PubMed  Google Scholar 

  • Connolly EL, Guerinot M (2002) Iron stress in plants. Genome Biol 3:1024.1–1024.4

    Google Scholar 

  • Crowell S, Korniliev P, Falcão A et al (2016) Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nat Commun 7:10527. https://doi.org/10.1038/ncomms10527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Benoist B, Cogswell M, Egli I et al (2008) Worldwide prevalence of anaemia 1993–2005; WHO Global Database of anaemia

    Google Scholar 

  • Descalsota GIL, Swamy BP, Zaw H et al (2018) Genome-wide association mapping in a rice MAGIC Plus population detects QTLs and genes useful for biofortification. Front Plant Sci 9:1347

    PubMed  PubMed Central  Google Scholar 

  • Descalsota-Empleo GI, Amparado A, Inabangan-Asilo MA et al (2019) Genetic mapping of QTL for agronomic traits and grain mineral elements in rice. Crop J 7:560–572. https://doi.org/10.1016/j.cj.2019.03.002

    Article  Google Scholar 

  • Disante KB, Fuentes D, Cortina J et al (2010) Response to drought of Zn-stressed Quercus suber L. seedlings. Environ Exp Bot 70:96–103

    Google Scholar 

  • Dixit S, Singh UM, Abbai R et al (2019) Identification of genomic region(s) responsible for high iron and zinc content in rice. Sci Rep 9:8136. https://doi.org/10.1038/s41598-019-43888-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong OX, Yu S, Jain R et al (2020) Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat Commun 11:1–10

    CAS  Google Scholar 

  • Du J, Zeng D, Wang B et al (2013) Environmental effects on mineral accumulation in rice grains and identification of ecological specific QTLs. Environ Geochem Health 35:161–170

    CAS  PubMed  Google Scholar 

  • Egan SK, Bolger PM, Carrington CD (2007) Update of US FDA’s total diet study food list and diets. J Expos Sci Environ Epidemiol 17:573–582

    CAS  Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2002) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351

    CAS  Google Scholar 

  • Ertop MH, Bektaş M (2018) Enhancement of bioavailable micronutrients and reduction of antinutrients in foods with some processes. Food Health 4:159–165

    Google Scholar 

  • Furrer JL, Sanders DN, Hook-Barnard IG et al (2002) Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol Microbiol 44:1225–1234

    CAS  PubMed  Google Scholar 

  • Garcia-Oliveira AL, Tan L, Fu Y et al (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51:84–92

    CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    CAS  PubMed  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N et al (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    CAS  PubMed  Google Scholar 

  • Graham R, Senadhira D, Beebe S et al (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crop Res 60:57–80. https://doi.org/10.1016/S0378-4290(98)00133-6

    Article  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H et al (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386

    Google Scholar 

  • Grillet L, Mari S, Schmidt W (2014) Iron in seeds–loading pathways and subcellular localization. Front Plant Sci 4:535

    PubMed  PubMed Central  Google Scholar 

  • Gupta RK, Gangoliya SS, Singh NK (2015) Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol 52:676–684

    CAS  PubMed  Google Scholar 

  • Haskell MJ (2012) The challenge to reach nutritional adequacy for vitamin A: β-carotene bioavailability and conversion—evidence in humans. Am J Clin Nutr 96:1193S–1203S

    CAS  PubMed  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H et al (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–480. https://doi.org/10.1104/pp.119.2.471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi K, Watanabe S, Takahashi M et al (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25:159–167

    CAS  PubMed  Google Scholar 

  • Hori T, Aoyagi T, Itoh H et al (2015) Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Front Microbiol 6:386

    PubMed  PubMed Central  Google Scholar 

  • Hu BL, Huang DR, Xiao YQ et al (2016) Mapping QTLs for mineral element contents in brown and milled rice using an Oryza sativa × O. rufipogon backcross inbred line population. Cereal Res Commun 44:57–68. https://doi.org/10.1556/0806.43.2015.044

    Article  CAS  Google Scholar 

  • Huang Y, Sun C, Min J et al (2015) Association mapping of quantitative trait loci for mineral element contents in whole grain rice (Oryza sativa L.). J Agric Food Chem 63:10885–10892

    CAS  PubMed  Google Scholar 

  • Huang S, Sasaki A, Yamaji N et al (2020) The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions. Plant Physiol 183:1224–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humayan Kabir A, Swaraz AM, Stangoulis J (2014) Zinc-deficiency resistance and biofortification in plants. J Plant Nutr Soil Sci 177:311–319

    CAS  Google Scholar 

  • Hurrell RF (1997) Preventing iron deficiency through food fortification. Nutr Rev 55:210–222

    CAS  PubMed  Google Scholar 

  • Hurrell R (2002) How to ensure adequate iron absorption from iron-fortified food. Nutr Rev 60:S7–S15

    PubMed  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M et al (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381

    CAS  PubMed  Google Scholar 

  • Inoue H, Takahashi M, Kobayashi T et al (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol 66:193–203

    CAS  PubMed  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T et al (2009) Rice OsYSL15 is an iron-regulated iron (III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479

    CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793

    Google Scholar 

  • Ishikawa S, Ishimaru Y, Igura M et al (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci 109:19166–19171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa R, Iwata M, Taniko K et al (2017) Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice. PLoS One 12:e0187224. https://doi.org/10.1371/journal.pone.0187224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T et al (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T et al (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K et al (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Bashir K, Nakanishi H et al (2011) The role of rice phenolics efflux transporter in solubilizing apoplasmic iron. Plant Signal Behav 6:1624–1626

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K et al (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    PubMed  PubMed Central  Google Scholar 

  • Islam MZ, Arifuzzaman M, Banik S et al (2020) Mapping QTLs underpin nutrition components in aromatic rice germplasm. PLoS One 15:e0234395. https://doi.org/10.1371/journal.pone.0234395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IZiNCG, Brown KH, Rivera JA, Bhutta Z, Gibson RS, King JC, Lönnerdal B, Ruel MT, Sandtröm B, Wasantwisut E, Hotz C (2004) International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25(1 Suppl 2):S99–S203

    Google Scholar 

  • Jahan G, Hassan L, Begum S et al (2013) Identification of Iron rich rice genotypes in Bangladesh using chemical analysis. J Bangladesh Agric Univ 11:73–78. https://doi.org/10.3329/jbau.v11i1.18216

    Article  Google Scholar 

  • Jeong O, Lee J, Jeong E et al (2020) Analysis of QTL responsible for grain iron and zinc content in doubled haploid lines of rice (Oryza sativa) derived from an intra x japonica cross. Plant Breed 139:344–355. https://doi.org/10.1111/pbr.12787

    Article  CAS  Google Scholar 

  • Jiang W, Struik PC, Lingna J et al (2007) Uptake and distribution of root-applied or foliar-applied 65Zn after flowering in aerobic rice. Ann Appl Biol 150:383–391

    CAS  Google Scholar 

  • Jiang M, Liu Y, Liu Y et al (2019) Mutation of inositol 1, 3, 4-trisphosphate 5/6-kinase6 impairs plant growth and phytic acid synthesis in rice. Plants 8:114

    CAS  PubMed Central  Google Scholar 

  • Johnson AA, Kyriacou B, Callahan DL et al (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron-and zinc-biofortification of rice endosperm. PLoS One 6:e24476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kampuang K, Jaksomsak P, Prom-U-Thai C (2017) Association between iron, zinc and protein concentration in the embryo and endosperm regions of rice grain. Int Food Res J 24(5):1919–1924

    CAS  Google Scholar 

  • Kim SI, Tai TH (2014) Identification of novel rice low phytic acid mutations via TILLING by sequencing. Mol Breed 34:1717–1729

    CAS  Google Scholar 

  • Kim SI, Andaya CB, Goyal SS et al (2008) The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor Appl Genet 117:769–779

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    CAS  PubMed  Google Scholar 

  • Koike S, Inoue H, Mizuno D et al (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424

    CAS  PubMed  Google Scholar 

  • Kruger J, Oelofse A, Taylor JR (2014) Effects of aqueous soaking on the phytate and mineral contents and phytate: mineral ratios of wholegrain normal sorghum and maize and low phytate sorghum. Int J Food Sci Nutr 65:539–546

    CAS  PubMed  Google Scholar 

  • Kumar J, Jain S, Jain RK (2014) Linkage mapping for grain iron and zinc content in F2 population derived from the cross between PAU201 and Palman 579 in rice (Oryza sativa L.). Cereal Res Commun 42:389–400. https://doi.org/10.1556/CRC.42.2014.3.3

    Article  CAS  Google Scholar 

  • Kumar A, Kumar A, Singh NK et al (2020) Assessment of gene action for grain micronutrient content, yield and yield contributing traits in rice (Oryza sativa L.). Curr J Appl Sci Technol 39(21):56–63

    Google Scholar 

  • Kuwano M, Mimura T, Takaiwa F et al (2009) Generation of stable ‘low phytic acid’transgenic rice through antisense repression of the 1d-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol J 7:96–105

    PubMed  Google Scholar 

  • Larson SR, Rutger JN, Young KA et al (2000) Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci 40:1397–1405

    CAS  Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416

    CAS  PubMed  Google Scholar 

  • Lee S, Kim YY, Lee Y et al (2007) Rice P 1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831–842. https://doi.org/10.1104/pp.107.102236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Chiecko JC, Kim SA (2009a) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150:786–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Jeon US, Lee SJ (2009b) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci 106:22014–22019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Ryoo N, Jeon JS et al (2012a) Activation of rice Yellow Stripe1-like 16 (OsYSL16) enhances iron efficiency. Mol Cells 33:117–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Kim YS, Jeon US et al (2012b) Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol Cell 33:269–275

    CAS  Google Scholar 

  • Lee SM, Kang JW, Lee JY et al (2020) QTL analysis for Fe and Zn concentrations in rice grains using a doubled haploid population derived from a cross between rice (Oryza sativa) Cultivar 93-11 and Milyang 352. Plant Breed Biotechnol 8:69–76. https://doi.org/10.9787/PBB.2020.8.1.69

    Article  Google Scholar 

  • Liu XS, Feng SJ, Zhang BQ et al (2019) OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol 19:283

    PubMed  PubMed Central  Google Scholar 

  • Lonnerdal B (2000) Dietary factors influencing zinc absorption. J Nutr 130:1378S–1383S

    CAS  PubMed  Google Scholar 

  • Lozoff B, Smith JB, Kaciroti N et al (2013) Functional significance of early-life iron deficiency: outcomes at 25 years. J Pediatr 163:1260–1266

    CAS  PubMed  Google Scholar 

  • Lu K, Li L, Zheng X et al (2008) Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. J Genet 87:305–310. https://doi.org/10.1007/s12041-008-0049-8

    Article  PubMed  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21:184S–190S

    CAS  PubMed  Google Scholar 

  • Maganti S, Swaminathan R, Parida A (2020) Variation in iron and zinc content in traditional rice genotypes. Agric Res 9:316–328. https://doi.org/10.1007/s40003-019-00429-3

    Article  CAS  Google Scholar 

  • Marounek M, Skřivan M, Rosero O et al (2010) Intestinal and total tract phytate digestibility and phytase activity in the digestive tract of hens fed a wheat-maize-soyabean diet. J Anim Feed Sci 19:430–439

    Google Scholar 

  • Masuda H, Suzuki M, Morikawa KC et al (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1:100–108

    Google Scholar 

  • Masuda H, Usuda K, Kobayashi T et al (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2:155–166

    Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS et al (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543

    PubMed  PubMed Central  Google Scholar 

  • Masuda H, Aung MS, Nishizawa NK (2013) Iron biofortification of rice using different transgenic approaches. Rice 6:40

    PubMed  PubMed Central  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P et al (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    CAS  PubMed  Google Scholar 

  • McCouch SR, Wright MH, Tung CW et al (2016) Open access resources for genome-wide association mapping in rice. Nat Commun 7:10532. https://doi.org/10.1038/ncomms10532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDowell LR (ed) (2003) Minerals in animal and human nutrition. Elsevier Science, Amsterdam, p 660. ISBN: 9780444513670

    Google Scholar 

  • Meenakshi JV, Johnson NL, Manyong VM et al (2010) How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev 38:64–75

    Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A et al (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199

    CAS  PubMed  Google Scholar 

  • Mroz Z, Jongbloed AW, Kemme PA (1994) Apparent digestibility and retention of nutrients bound to phytate complexes as influenced by microbial phytase and feeding regimen in pigs. J Anim Sci 72:126–132

    CAS  PubMed  Google Scholar 

  • Nachimuthu VV, Robin S, Sudhakar D et al (2014) Evaluation of rice genetic diversity and variability in a population panel by principal component analysis. Indian J Sci Technol 7:1555–1562

    Google Scholar 

  • Nakanishi H, Yamaguchi H, Sasakuma T et al (2000) Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol 44:199–207

    CAS  PubMed  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y et al (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469

    CAS  Google Scholar 

  • Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci 106:7762–7767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz Z, Kakar KU, Li XB et al (2015) Genome-wide association mapping of quantitative trait loci (QTLs) for contents of eight elements in brown rice (Oryza sativa L.). J Agric Food Chem 63:8008–8016

    CAS  PubMed  Google Scholar 

  • Nkhata SG, Ayua E, Kamau EH et al (2018) Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr 6:2446–2458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norton GJ, Deacon CM, Xiong L et al (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139–153

    CAS  Google Scholar 

  • Norton GJ, Douglas A, Lahner B et al (2014) Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLoS One 9:e89685

    PubMed  PubMed Central  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T et al (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454

    CAS  PubMed  Google Scholar 

  • Nozoye T, Otani M, Senoura T et al (2017) Overexpression of barley nicotianamine synthase 1 confers tolerance in the sweet potato to iron deficiency in calcareous soil. Plant Soil 418:75–88

    CAS  Google Scholar 

  • Ogbonna AC, Abuajah CI, Ide EO et al (2012) Effect of malting conditions on the nutritional and anti-nutritional factors of sorghum grist. Ann Univ Dunarea de Jos Galati Fascicle VI Food Technol 36:64–72

    CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S et al (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487. https://doi.org/10.1038/nbt1082

    Article  CAS  PubMed  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel A, Mamtani M, Dibley MJ et al (2010) Therapeutic value of zinc supplementation in acute and persistent diarrhea: a systematic review. PLoS One 5:e10386

    PubMed  PubMed Central  Google Scholar 

  • Paul S, Ali N, Gayen D et al (2012) Molecular breeding of Osfer2 gene to increase iron nutrition in rice grain. GM Crop Food 3:310–316

    Google Scholar 

  • Pilu R, Panzeri D, Gavazzi G et al (2003) Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Theor Appl Genet 107:980–987

    CAS  PubMed  Google Scholar 

  • Pradhan SK, Pandit E, Pawar S et al (2020) Linkage disequilibrium mapping for grain Fe and Zn enhancing QTLs useful for nutrient dense rice breeding. BMC Plant Biol 20:57. https://doi.org/10.1186/s12870-020-2262-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prom-u-thai C, Fukai S, Godwin ID et al (2007) Genotypic variation of iron partitioning in rice grain. J Sci Food Agric 87:2049–2054

    CAS  Google Scholar 

  • Qaim M, Stein AJ, Meenakshi JV (2007) Economics of biofortification: economics of biofortification. Agric Econ 37:119–133. https://doi.org/10.1111/j.1574-0862.2007.00239.x

    Article  Google Scholar 

  • Qin Y, Kim SM, Sohn JK (2008) Identification and characterization of QTLs and QTL interactions for macro-and micro-elements in rice (Oryza sativa L.) grain. J Plant Biotechnol 35:257–263

    Google Scholar 

  • Qu LQ, Yoshihara T, Ooyama A, Goto F, Takaiwa F (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225–233. https://doi.org/10.1007/s00425-005-1530-8

    Article  CAS  Google Scholar 

  • Raboy V (2003) Myo-inositol-1, 2, 3, 4, 5, 6-hexakisphosphate. Phytochemistry 64:1033–1043

    CAS  PubMed  Google Scholar 

  • Ramesh SA, Shin R, Eide DJ et al (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen SK, Hatzack F (1998) Identification of two low-phytate barley (Hordeum vulgare L.) grain mutants by TLC and genetic analysis. Hereditas 129:107–112

    CAS  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL et al (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    CAS  PubMed  Google Scholar 

  • Rodríguez-Celma J, Schmidt W (2013) Reduction-based iron uptake revisited on the role of secreted iron-binding compounds. Plant Signal Behav 8:e26116

    PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Celma J, Lin WD, Fu GM et al (2013) Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol 162:1473–1485

    PubMed  PubMed Central  Google Scholar 

  • Roy SC, Sharma BD (2014) Assessment of genetic diversity in rice (Oryza sativa L.) germplasm based on agro-morphology traits and zinc-iron content for crop improvement. Physiol Mol Biol Plants 20:209–224. https://doi.org/10.1007/s12298-014-0221-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samak NA, Shailaja H, Shashidhar N et al (2011) Exploratory studies on genetic variability and genetic control for protein and micronutrient content in F4 and F5 generation of rice (Oryza sativa L.). Asian J Plant Sci 10:376–379

    CAS  Google Scholar 

  • Sanna A, Firinu D, Zavattari P et al (2018) Zinc status and autoimmunity: a systematic review and meta-analysis. Nutrient 10:68

    Google Scholar 

  • Santi S, Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183:1072–1084

    CAS  PubMed  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K et al (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh-Nagasawa N, Mori M, Nakazawa N et al (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53:213–224

    CAS  PubMed  Google Scholar 

  • Scrimshaw N, SanGiovanni JP (1997) Synergism of nutrition, infection, and immunity: an overview. Am J Clin Nutr 66:464S–477S. https://doi.org/10.1093/ajcn/66.2.464S

    Article  CAS  PubMed  Google Scholar 

  • Senoura T, Sakashita E, Kobayashi T et al (2017) The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains. Plant Mol Biol 95:375–387. https://doi.org/10.1007/s11103-017-0656-y

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang H, Wu Y et al (2003) The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol 131:507–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Jayaswal PK, Panda K et al (2015) Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci Rep 5:11600. https://doi.org/10.1038/srep11600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SP, Gruissem W, Bhullar NK (2017) Single genetic locus improvement of iron, zinc and β-carotene content in rice grains. Sci Rep 7:1–11

    Google Scholar 

  • Stangoulis JC, Huynh BL, Welch RM et al (2007) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154:289–294

    Google Scholar 

  • Stevens GA, Finucane MM, De-Regil LM (2013) Nutrition Impact Model Study Group (Anaemia). Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995-2011: a systematic analysis of population-representative data. Lancet Glob Health 1:e16–e25

    PubMed  PubMed Central  Google Scholar 

  • Stomph TJ, Jiang W, Struik PC (2009) Zinc biofortification of cereals: rice differs from wheat and barley. Trend Plant Sci 14:123–124

    CAS  Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T et al (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    CAS  PubMed  Google Scholar 

  • Swamy BPM, Kaladhar K, Anuradha K et al (2018) QTL analysis for grain iron and zinc concentrations in two O. nivara derived backcross populations. Rice Sci 25:197–207. https://doi.org/10.1016/j.rsci.2018.06.003

    Article  Google Scholar 

  • Takahashi M, Yamaguchi H, Nakanishi H et al (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (strategy II) in Graminaceous plants. Plant Physiol 121:947–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H et al (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and cd in rice. Plant Cell Environ 35:1948–1957

    CAS  PubMed  Google Scholar 

  • Takizawa R, Nishizawa NK, Nakanishi H et al (1996) Effect of iron deficiency on S-adenosylmethionine synthetase in barley roots. J Plant Nutr 19:1189–1200

    CAS  Google Scholar 

  • Tan L, Zhu Y, Fan T et al (2019) OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem Biophys Res Commun 512:112–118. https://doi.org/10.1016/j.bbrc.2019.03.024

    Article  CAS  PubMed  Google Scholar 

  • Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212

    Google Scholar 

  • Thomson MJ, Singh N, Dwiyanti MS et al (2017) Large-scale deployment of a rice 6 K SNP array for genetics and breeding applications. Rice 10:40. https://doi.org/10.1186/s12284-017-0181-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueno D, Rombola AD, Iwashita T et al (2007) Identification of two novel phytosiderophores secreted by perennial grasses. New Phytol 174:304–310

    CAS  PubMed  Google Scholar 

  • Ueno D, Yamaji N, Kono I et al (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci 107:16500–16505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uraguchi S, Fujiwara T (2013) Rice breaks ground for cadmium-free cereals. Curr Opin Plant Biol 16:328–334

    CAS  PubMed  Google Scholar 

  • Uraguchi S, Kamiya T, Sakamoto T et al (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci 108:20959–20964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uraguchi S, Kamiya T, Clemens S et al (2014) Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa). Physiol Planta 151:339–347

    CAS  Google Scholar 

  • Vallee BL, Auld DS (1992) Active zinc binding sites of zinc metalloenzymes. Matrix Suppl 1:5–19

    CAS  PubMed  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    CAS  Google Scholar 

  • Von Wiren N, Marschner H, Römheld V (1996) Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiol 111:1119–1125

    Google Scholar 

  • Wairich A, De Oliveira BHN, Arend EB et al (2019) The combined strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa). Sci Rep 9:1–17

    CAS  Google Scholar 

  • Wang F, Itai RN, Nozoye T et al (2020) The bHLH protein OsIRO3 is critical for plant survival and iron (Fe) homeostasis in rice (Oryza sativa L.) under Fe-deficient conditions. Soil Sci Plant Nutr:1–14. https://doi.org/10.1080/00380768.2020.1783966

  • Wattoo JI, Liaqat S, Mubeen H et al (2019) Genetic mapping of grain nutritional profile in rice using basmati derived segregating population revealed by SSRs. Int J Agric Biol 21:929–935

    CAS  Google Scholar 

  • Wirth J, Poletti S, Aeschlimann B et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:631–644

    CAS  PubMed  Google Scholar 

  • Wu FYH, Wu CW (1987) Zinc in DNA replication and transcription. Annu Rev Nutr 7:251–272

    CAS  PubMed  Google Scholar 

  • Wu CY, Lu LL, Yang XE et al (2010) Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. J Agric Food Chem 58:6767–6773

    CAS  PubMed  Google Scholar 

  • Xu XH, Zhao HJ, Liu QL et al (2009) Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor Appl Genet 119:75–83

    CAS  PubMed  Google Scholar 

  • Xu Q, Zheng TQ, Hu X et al (2015) Examining two sets of introgression lines in Rice (Oryza sativa L.) reveals favorable alleles that improve grain Zn and Fe concentrations. PLoS One 10:e0131846. https://doi.org/10.1371/journal.pone.0131846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaji N, Xia J, Mitani-Ueno N et al (2013) Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol 162:927–939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki S, Sakata-Sogawa K, Hasegawa A et al (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177:637–645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Lu K, Zhao FJ et al (2018) Genome-wide association studies reveal the genetic basis of ionomic variation in rice. Plant Cell 30:2720–2740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeum KJ, Russell RM (2002) Carotenoid bioavailability and bioconversion. Annu Rev Nutr 22:483–504

    CAS  PubMed  Google Scholar 

  • Yokosho K, Yamaji N, Ueno D et al (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149:297–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2016) OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice. J Exp Bot 67:5485–5494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

  • Yu H, Xie W, Li J et al (2014) A whole-genome SNP array (RICE6K) for genomic breeding in RICE. Plant Biotechnol J 12:28–37. https://doi.org/10.1111/pbi.12113

    Article  CAS  PubMed  Google Scholar 

  • Zaharieva T, Römheld V (2000) Specific Fe2+ uptake system in strategy I plants inducible under Fe deficiency. J Plant Nutr 23:1733–1744

    CAS  Google Scholar 

  • Zaw H, Raghavan C, Pocsedio A et al (2019) Exploring genetic architecture of grain yield and quality traits in a 16-way indica by japonica rice MAGIC global population. Sci Rep 9:1–11

    CAS  Google Scholar 

  • Zhang X, Zhang G, Guo L et al (2011) Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica 180:173–179. https://doi.org/10.1007/s10681-011-0346-9

    Article  CAS  Google Scholar 

  • Zhang Y, Xu YH, Yi HY et al (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410

    CAS  PubMed  Google Scholar 

  • Zhang M, Pinson SR, Tarpley L et al (2014) Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain. Theor Appl Genet 127:137–165

    CAS  PubMed  Google Scholar 

  • Zhang GM, Zheng TQ, Chen Z et al (2018a) Joint exploration of favorable haplotypes for mineral concentrations in milled grains of rice (Oryza sativa L.). Front Plant Sci 9:447

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Shinwari K, Luo L et al (2018b) OsYSL13 is involved in iron distribution in rice. Int J Mol Sci 19:3537. https://doi.org/10.3390/ijms19113537

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao HJ, Liu QL, Fu HW et al (2008) Effect of non-lethal low phytic acid mutations on grain yield and seed viability in rice. Field Crops Res 108:206–211

    Google Scholar 

  • Zhao K, Wright M, Kimball J et al (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5:e10780. https://doi.org/10.1371/journal.pone.0010780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC et al (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467. https://doi.org/10.1038/ncomms1467

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Cheng Z, Ai C et al (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One 5:e10190

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bollinedi, H. et al. (2022). Genetic Fortification of Rice to Address Hidden Hunger: Progress and Prospects. In: Kumar, S., Dikshit, H.K., Mishra, G.P., Singh, A. (eds) Biofortification of Staple Crops. Springer, Singapore. https://doi.org/10.1007/978-981-16-3280-8_3

Download citation

Publish with us

Policies and ethics