Skip to main content

Roles and Mechanism of Long Noncoding RNAs in Bone Diseases

  • Chapter
  • First Online:
Noncoding RNAs and Bone

Abstract

Close coordination of transcriptional networks and signaling pathways is necessary for the normal function of bone tissue. In pathological bone and cartilage, a lot of these networks/pathways are dysregulated. Long noncoding RNAs (lncRNAs) belong to a kind of RNAs that lack protein-coding potential. LncRNAs are usually more than 200 nucleotides length and play multifarious roles in a wide range of biological functions. In recent decades, an enormous number of lncRNAs have been identified in multiple bone cells and bone diseases and considered to play critical roles. In this chapter, we summarize the current knowledge concerning lncRNAs in bone biology and disease, from their molecular mechanism, pathological implications, and therapeutic potential.

Graphical Abstract

Roles and mechanism of lncRNAs in bone diseases (Li et al., Endocr Metab Immune Disord Drug Targets 20(1):50–66, 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Adipogenic differentiation

AIS:

Adolescent idiopathic scoliosis

AMSC:

Adipose-derived mesenchymal stem cell

AS:

Ankylosing spondylitis

BMD:

Bone mineral density

BMP:

Bone morphogenetic protein

BMSC, BM-MSC:

Bone marrow-derived mesenchymal stem/stromal cells

CAVD:

Calcific aortic valve disease

CBF-α-1:

Core-binding factor subunit alpha-1

ceRNA:

Competitive endogenous RNA

ChIRP:

Chromatin isolation by RNA purifications

circRNA:

Circular RNA

CLASH:

Cross-linking ligation and sequencing of hybrids

CLIP:

Cross-linking immunoprecipitation

DOX:

Doxorubicin

ECM:

Extracellular matrix

EMSC:

Ectomesenchymal stem cells

EMT:

Epithelial mesenchymal transition

EPC:

Endothelial progenitor cell

EWSAT1:

Ewing sarcoma-associated transcript 1

GO:

Gene ontology

GWAS:

Genome-wide association study

hBMSC:

Human BMSC

Hh:

Hedgehog

HOTAIR:

HOX antisense intergenic RNA

HSC:

Hematopoietic stem cell

KEGG:

Kyoto Encyclopedia of Genes and Genomes

lincRNA:

Long intergenic noncoding RNA

lncRNA:

Long noncoding RNA

MafB:

v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

MEG3:

Maternally expressed gene 3

miRNA:

MicroRNA

MMP:

Matrix metallopeptidase

MNC:

Mononuclear cell

MNPC:

Mononuclear progenitor cell

MSC:

Mesenchymal stem cells

NATs:

Natural antisense transcripts

ncRNAs:

Noncoding RNAs

NFAT:

Nuclear factor of activated T cell

NFATc1:

NFAT, cytoplasmic 1

NIP45:

NFAT-interacting protein 45

OA:

Osteoarthritis

OC:

Osteoclast

OCY:

Osteocyte

OD:

Osteogenic differentiation

OGS:

Osteogenic sarcoma

OP:

Osteoporosis

OPN:

Osteopontin

ORF:

Open reading frames

OS:

Osteosarcoma

OVX:

Ovariectomy

PDLSCs:

Periodontal ligament stem cells

POP:

Postmenopausal osteoporosis

PTBP2:

Polypyrimidine tract-binding protein 2

PTK2:

Protein tyrosine kinase 2

RA:

Rheumatoid arthritis

RNA-Seq:

RNA sequencing

Runx2:

Runt-related transcription factor 2 (CBF-α-1)

SFPQ:

Splicing factor proline- and glutamine- rich

TDO:

Tricho-dento-osseous

TF:

Transcription factor

TGF-β:

Transforming growth factor beta

UCA1:

Urothelial carcinoma associated 1

UTR:

Untranslated region

VEGF:

Vascular endothelial growth factor

YAP:

Yes-associated protein

ZBED3:

Zinc finger BED-type containing 3

ZBED3-AS1:

ZBED3 antisense RNA 1

References

  1. Li DJ, Yang CF, Yin C, Zhao F, Chen ZH, Tian Y, Dang K, Jiang SF, Zhang WJ, Zhang G, Qian AR (2020) LncRNA, important player in bone development and disease. Endocr Metab Immune Disord Drug Targets 20(1):50–66. https://doi.org/10.2174/1871530319666190904161707

    Article  CAS  PubMed  Google Scholar 

  2. St Laurent G, Wahlestedt C, Kapranov P (2015) The landscape of long noncoding RNA classification. Trends Genet 31(5):239–251. https://doi.org/10.1016/j.tig.2015.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789. https://doi.org/10.1101/gr.132159.111. 22/9/1775 [pii]

  4. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641. https://doi.org/10.1016/j.cell.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  5. Hon CC, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJL, Gough J, Denisenko E, Schmeier S, Poulsen TM, Severin J, Lizio M, Kawaji H, Kasukawa T, Itoh M, Burroughs AM, Noma S, Djebali S, Alam T, Medvedeva YA, Testa AC, Lipovich L, Yip CW, Abugessaisa I, Mendez M, Hasegawa A, Tang D, Lassmann T, Heutink P, Babina M, Wells CA, Kojima S, Nakamura Y, Suzuki H, Daub CO, de Hoon MJL, Arner E, Hayashizaki Y, Carninci P, Forrest ARR (2017) An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543(7644):199–204. https://doi.org/10.1038/nature21374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mele M, Rinn JL (2016) “Cat’s cradling” the 3D genome by the act of lncRNA transcription. Mol Cell 62(5):657–664. https://doi.org/10.1016/j.molcel.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  7. Hung T, Wang YL, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Wang Y, Kong B, Langerod A, Borresen-Dale AL, Kim SK, van de Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621–U196. https://doi.org/10.1038/ng.848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo FJ, Guo LL, Li YW, Zhou QH, Li ZG (2015) MALAT1 is an oncogenic long non-coding RNA associated with tumor invasion in non-small cell lung cancer regulated by DNA methylation. Int J Clin Exp Pathol 8(12):15903–15910

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tong X, Gu PC, Xu SZ, Lin XJ (2015) Long non-coding RNA-DANCR in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. Biosci Biotechnol Biochem 79(5):732–737. https://doi.org/10.1080/09168451.2014.998617

    Article  CAS  PubMed  Google Scholar 

  10. Zuo CQ, Wang ZG, Lu HY, Dai Z, Liu XG, Cui L (2013) Expression profiling of lncRNAs in C3H10T1/2 mesenchymal stem cells undergoing early osteoblast differentiation. Mol Med Rep 8(2):463–467. https://doi.org/10.3892/mmr.2013.1540

    Article  PubMed  Google Scholar 

  11. Li CJ, Xiao Y, Yang M, Su T, Sun X, Guo Q, Huang Y, Luo XH (2018) Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J Clin Invest 128(12):5251–5266. https://doi.org/10.1172/jci99044

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang YP, Zheng YF, Jia LF, Li WR (2015) Long noncoding RNA H19 promotes osteoblast differentiation via TGF-beta 1/Smad3/HDAC signaling pathway by deriving miR-675. Stem Cells 33(12):3481–3492. https://doi.org/10.1002/stem.2225

    Article  CAS  PubMed  Google Scholar 

  13. Zhuang WZ, Ge XP, Yang SJ, Huang ML, Zhuang WY, Chen P, Zhang XH, Fu JX, Qu J, Li BZ (2015) Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells 33(6):1985–1997. https://doi.org/10.1002/stem.1989

    Article  CAS  PubMed  Google Scholar 

  14. Wang Q, Chen B, Ma F, Lin S, Cao M, Li Y, Gu N (2017) Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Res 10(2):626–642. https://doi.org/10.1007/s12274-016-1322-4

    Article  CAS  Google Scholar 

  15. Zhang L, Yang C, Chen S, Wang G, Shi B, Tao X, Zhou L, Zhao J (2017) Long noncoding RNA DANCR is a positive regulator of proliferation and chondrogenic differentiation in human synovium-derived stem cells. DNA Cell Biol 36(2):136–142. https://doi.org/10.1089/dna.2016.3544

    Article  CAS  PubMed  Google Scholar 

  16. Pachnis V, Belayew A, Tilghman SM (1984) Locus unlinked to alpha-fetoprotein under the control of the murine Raf and Rif genes. Proc Natl Acad Sci USA 81(17):5523–5527. https://doi.org/10.1073/pnas.81.17.5523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li ZH, Yan M, Yu Y, Wang YQ, Lei G, Pan Y, Li N, Gobin R, Yu JH (2019) LncRNA H19 promotes the committed differentiation of stem cells from apical papilla via miR-141/SPAG9 pathway. Cell Death Dis 10. https://doi.org/10.1038/s41419-019-1337-3

  18. Zhong JL, Tu XR, Kong YY, Guo LY, Li BS, Zhong WC, Cheng Y, Jiang YG, Jiang QZ (2020) LncRNA H19 promotes odontoblastic differentiation of human dental pulp stem cells by regulating miR-140-5p and BMP-2/FGF9. Stem Cell Res Ther 11(1). https://doi.org/10.1186/s13287-020-01698-4

  19. Li GJ, Yun XD, Ye KS, Zhao HY, An JD, Zhang XL, Han XW, Li YH, Wang SK (2020) Long non-coding RNA-H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA-149/SDF-1 axis. J Cell Mol Med 24(9):4944–4955. https://doi.org/10.1111/jcmm.15040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang WC, Fu WM, Wang YB, Sun YX, Xu LL, Wong CW, Chan KM, Li G, Waye MMY, Zhang JF (2016) H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci Rep 6. https://doi.org/10.1038/srep20121

  21. Wu JJ, Zhao J, Sun L, Pan YC, Wang H, Zhang WB (2018) Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138. Bone 108:62–70. https://doi.org/10.1016/j.bone.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  22. Hadji F, Boulanger MC, Guay SP, Gaudreault N, Amellah S, Mkannez G, Bouchareb R, Marchand JT, Nsaibia MJ, Guauque-Olarte S, Pibarot P, Bouchard L, Bosse Y, Mathieu P (2016) Altered DNA methylation of long noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1. Circulation 134(23):1848–1862. https://doi.org/10.1161/circulationaha.116.023116

    Article  CAS  PubMed  Google Scholar 

  23. He PH, Zhang ZJ, Huang GX, Wang H, Xu DL, Liao WM, Kang Y (2016) miR-141 modulates osteoblastic cell proliferation by regulating the target gene of lncRNA H19 and lncRNA H19-derived miR-675. Am J Transl Res 8(4):1780–1788

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma XJ, Bian YF, Yuan H, Chen N, Pan YC, Zhou WN, Gao SY, Du X, Hao SS, Yan ZX, Li X, Liu KY, Xu F, Wang YL, Du YF (2020) Human amnion-derived mesenchymal stem cells promote osteogenic differentiation of human bone marrow mesenchymal stem cells via H19/mik-675/APC axis. Aging-US 12(11):10527–10543. https://doi.org/10.18632/aging.103277

    Article  CAS  Google Scholar 

  25. Xing D, Liang JQ, Li Y, Lu J, Jia HB, Xu LY, Ma XL (2014) Identification of long noncoding RNA associated with osteoarthritis in humans. Orthop Surg 6(4):288–293. https://doi.org/10.1111/os.12147

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stuhlmuller B, Kunisch E, Franz J, Martinez-Gamboa L, Hernandez MM, Pruss A, Ulbrich N, Erdmann VA, Burmester GR, Kinne RW (2003) Detection of oncofetal H19 RNA in rheumatoid arthritis synovial tissue. Am J Pathol 163(3):901–911. https://doi.org/10.1016/s0002-9440(10)63450-5

    Article  PubMed  PubMed Central  Google Scholar 

  27. Steck E, Boeuf S, Gabler J, Werth N, Schnatzer P, Diederichs S, Richter W (2012) Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J Mol Med 90(10):1185–1195. https://doi.org/10.1007/s00109-012-0895-y

    Article  CAS  PubMed  Google Scholar 

  28. Miyoshi N, Wagatsuma H, Wakana S, Shiroishi T, Nomura M, Aisaka K, Kohda T, Surani MA, Kaneko-Ishino T, Ishino F (2000) Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 5(3):211–220. https://doi.org/10.1046/j.1365-2443.2000.00320.x

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 88(11):5119–5126. https://doi.org/10.1210/jc.2003-030222

    Article  CAS  PubMed  Google Scholar 

  30. Sun H, Peng GX, Wu HB, Liu M, Mao GP, Ning X, Yang H, Deng J (2020) Long non-coding RNA MEG3 is involved in osteogenic differentiation and bone diseases (Review). Biomed Rep 13(1):15–21. https://doi.org/10.3892/br.2020.1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Q, Li Y, Zhang Y, Ma L, Lin L, Meng J, Jiang L, Wang L, Zhou P, Zhang Y (2017) LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed Pharmacother 89:1178–1186. https://doi.org/10.1016/j.biopha.2017.02.090

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Liu CP, Zhang AK, Yin SC, Wang T, Wang Y, Wang MM, Liu YX, Ying QH, Sun JR, Wei FL, Liu DX, Wang CL, Ge SH (2019) Down-regulation of long non-coding RNA MEG3 suppresses osteogenic differentiation of periodontal ligament stem cells (PDLSCs) through miR-27a-3p/IGF1 axis in periodontitis. Aging-US 11(15):5334–5350. https://doi.org/10.18632/aging.102105

    Article  CAS  Google Scholar 

  33. Li Z, Jin C, Chen S, Zheng Y, Huang Y, Jia L, Ge W, Zhou Y (2017) Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Mol Cell Biochem. https://doi.org/10.1007/s11010-017-3015-z

  34. Zhao LD, Xu WC, Cui J, Liang YC, Cheng WQ, Xin BC, Song J (2020) Long non-coding RNA maternally expressed gene 3 inhibits osteogenic differentiation of human dental pulp stem cells via microRNA-543/smad ubiquitin regulatory factor 1/runt-related transcription factor 2 axis. Arch Oral Biol 118. https://doi.org/10.1016/j.archoralbio.2020.104838

  35. Liu Y, Zeng XM, Miao J, Liu CP, Wei FL, Liu DX, Zheng Z, Ting K, Wang CL, Guo J (2019) Upregulation of long noncoding RNA MEG3 inhibits the osteogenic differentiation of periodontal ligament cells. J Cell Physiol 234(4):4617–4626. https://doi.org/10.1002/jcp.27248

    Article  CAS  PubMed  Google Scholar 

  36. Jiang M, Wang YR, Xu N, Zhou LY, An Q (2019) Long noncoding RNA MEG3 play an important role in osteosarcoma development through sponging microRNAs. J Cell Biochem 120(4):5151–5159. https://doi.org/10.1002/jcb.27791

    Article  CAS  PubMed  Google Scholar 

  37. Xu J, Xu YZ (2017) The lncRNA MEG3 downregulation leads to osteoarthritis progression via miR-16/SMAD7 axis. Cell Biosci 7. https://doi.org/10.1186/s13578-017-0195-x

  38. Li XG, Liu SC, Qiao XF, Kong Y, Liu JG, Peng XM, Wang YX, Al-Mohana R (2019) LncRNA MEG3 promotes proliferation and differentiation of osteoblasts through Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci 23(11):4521–4529

    PubMed  Google Scholar 

  39. Su W, Xie W, Shang Q, Su B (2015) The long noncoding RNA MEG3 is downregulated and inversely associated with VEGF levels in osteoarthritis. Biomed Res Int. https://doi.org/10.1155/2015/356893

  40. Tian ZZ, Guo XJ, Zhao YM, Fang Y (2015) Decreased expression of long non-coding RNA MEG3 acts as a potential predictor biomarker in progression and poor prognosis of osteosarcoma. Int J Clin Exp Pathol 8(11):15138–15142

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun L, Yang C, Xu J, Feng Y, Wang L, Cui T (2016) Long noncoding RNA EWSAT1 promotes osteosarcoma cell growth and metastasis through suppression of MEG3 expression. DNA Cell Biol 35(12):812–818. https://doi.org/10.1089/dna.2016.3467

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Chen XF, Li J, He F, Li X, Guo Y (2020) LncRNA Neat1 stimulates osteoclastogenesis via sponging miR-7. J Bone Miner Res 35(9):1772–1781. https://doi.org/10.1002/jbmr.4039

    Article  CAS  PubMed  Google Scholar 

  43. Du YJ, Yu QQ, Zheng XF, Wang SP LncRNA TUG1 positively regulates osteoclast differentiation by targeting v-maf musculoaponeurotic fibrosarcoma oncogene homolog B. Autoimmunity. https://doi.org/10.1080/08916934.2020.1839891

  44. Liu C, Cao Z, Bai Y, Dou C, Gong XS, Liang MM, Dong R, Quan HY, Li JM, Dai JJ, Kang F, Zhao CR, Dong SW (2019) LncRNA AK077216 promotes RANKL-induced osteoclastogenesis and bone resorption via NFATc1 by inhibition of NIP45. J Cell Physiol 234(2):1606–1617. https://doi.org/10.1002/jcp.27031

    Article  CAS  PubMed  Google Scholar 

  45. Zhang RL, Li JH, Li GC, Jin FJ, Wang ZL, Yue R, Wang YB, Wang XG, Sun Y (2020) LncRNA Nron regulates osteoclastogenesis during orthodontic bone resorption. Int J Oral Sci 12(1). https://doi.org/10.1038/s41368-020-0077-7

  46. Chen RS, Zhang XB, Zhu XT, Wang CS (2019) LncRNA Bmncr alleviates the progression of osteoporosis by inhibiting RANML-induced osteoclast differentiation. Eur Rev Med Pharmacol Sci. 23 (21):9199-9206. doi:https://doi.org/10.26355/eurrev_201911_19411

  47. Chang YY, Yu DG, Chu WX, Liu ZQ, Li HW, Zhai ZJ (2020) LncRNA expression profiles and the negative regulation of lncRNA-NOMMUT037835.2 in osteoclastogenesis. Bone 130. https://doi.org/10.1016/j.bone.2019.115072

  48. Dou C, Cao Z, Yang B, Ding N, Hou T, Luo F, Kang F, Li J, Yang X, Jiang H, Xiang J, Quan H, Xu J, Dong S (2016) Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Sci Rep 6. https://doi.org/10.1038/srep21499

  49. Quan HY, Liang MM, Li N, Dou C, Liu C, Bai Y, Luo W, Li JM, Kang F, Cao Z, Yang XC, Jiang H, Dong SW (2018) LncRNA-AK131850 sponges miR-93-5p in newborn and mature osteoclasts to enhance the secretion of vascular endothelial growth factor a promoting vasculogenesis of endothelial progenitor cells. Cell Physiol Biochem 46(1):401–417. https://doi.org/10.1159/000488474

    Article  CAS  PubMed  Google Scholar 

  50. Song J, Kim D, Han J, Kim Y, Lee M, Jin E-J (2015) PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin Exp Med 15(1):121–126. https://doi.org/10.1007/s10238-013-0271-4

    Article  CAS  PubMed  Google Scholar 

  51. Li C, Wang S, Xing Z, Lin A, Liang K, Song J, Hu Q, Yao J, Chen Z, Park PK, Hawke DH, Zhou J, Zhou Y, Zhang S, Liang H, Hung MC, Gallick GE, Han L, Lin C, Yang L (2017) A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat Cell Biol 19(2):106–119. https://doi.org/10.1038/ncb3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Luo TB, Liu L, Cui ZQ (2018) LncRNA Linc00311 promotes the proliferation and differentiation of osteoclasts in osteoporotic rats through the Notch signaling pathway by targeting DLL3. Cell Physiol Biochem 47(6):2291–2306. https://doi.org/10.1159/000491539

    Article  CAS  PubMed  Google Scholar 

  53. Hemmatian H, Bakker AD, Klein-Nulend J, van Lenthe GH (2017) Aging, osteocytes, and mechanotransduction. CurrOsteoporos Rep 15(5):401–411. https://doi.org/10.1007/s11914-017-0402-z

    Article  Google Scholar 

  54. van Oers RFM, Wang H, Bacabac RG (2015) Osteocyte shape and mechanical loading. Curr Osteoporos Rep 13(2):61–66. https://doi.org/10.1007/s11914-015-0256-1

    Article  PubMed  PubMed Central  Google Scholar 

  55. St John HC, Bishop KA, Meyer MB, Benkusky NA, Leng N, Kendziorski C, Bonewald LF, Pike JW (2014) The osteoblast to osteocyte transition: epigenetic changes and response to the vitamin D-3 hormone. Mol Endocrinol 28(7):1150–1165. https://doi.org/10.1210/me.2014-1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fan Q, Li H, Liu Z, Zhang ZQ, Li H, Ding J, Zhang ZM (2017) Leptin inhibits AMPK alpha 2 down-regulation induced decrease in the osteocytic MLO-Y4 cell proliferation and the expression of osteogenic markers. Int J Clin Exp Pathol 10(8):8544–8552

    PubMed  PubMed Central  Google Scholar 

  57. Govey PM, Kawasawa YI, Donahue HJ (2015) Mapping the osteocytic cell response to fluid flow using RNA-Seq. J Biomech 48(16):4327–4332. https://doi.org/10.1016/j.jbiomech.2015.10.045

    Article  PubMed  Google Scholar 

  58. Wang L, Li ZY, Li ZQ, Yu B, Wang YP (2015) Long noncoding RNAs expression signatures in chondrogenic differentiation of human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 456(1):459–464. https://doi.org/10.1016/j.bbrc.2014.11.106

    Article  CAS  PubMed  Google Scholar 

  59. Ou FR, Su K, Sun JD, Liao WT, Yao Y, Zheng YH, Zhang ZG (2017) The LncRNA ZBED3-AS1 induces chondrogenesis of human synovial fluid mesenchymal stem cells. Biochem Biophys Res Commun 487(2):457–463. https://doi.org/10.1016/j.bbrc.2017.04.090

    Article  CAS  PubMed  Google Scholar 

  60. Zhang L, Chen S, Bao NR, Yang C, Ti YF, Zhou LW, Zhao JM (2015) Sox4 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cell via activation of long noncoding RNA DANCR. J Mol Histol 46(6):467–473. https://doi.org/10.1007/s10735-015-9638-z

    Article  CAS  PubMed  Google Scholar 

  61. Carlson HL, Quinn JJ, Yang YW, Thornburg CK, Chang HY, Stadler HS (2015) LncRNA-HIT functions as an epigenetic regulator of chondrogenesis through Its recruitment of p100/CBP complexes. PLoS Genet 11(12). https://doi.org/10.1371/journal.pgen.1005680

  62. Dai GM, Xiao HZ, Zhao C, Chen H, Liao JY, Huang W (2020) LncRNA H19 regulates BMP2-Induced hypertrophic differentiation of mesenchymal stem cells by promoting Runx2 phosphorylation. Front Cell Dev Biol 8. https://doi.org/10.3389/fcell.2020.00580

  63. Wang CL, Zuo B, Li D, Zhu JF, Xiao F, Zhang XL, Chen XD (2020) The long noncoding RNA H19 attenuates force-driven cartilage degeneration via miR-483-5p/Dusp5. Biochem Biophys Res Commun 529(2):210–217. https://doi.org/10.1016/j.bbrc.2020.05.180

    Article  CAS  PubMed  Google Scholar 

  64. Zhang C, Wang P, Jiang P, Lv Y, Dong C, Dai X, Tan L, Wang Z (2016) Upregulation of lncRNA HOTAIR contributes to IL-1 beta-induced MMP overexpression and chondrocytes apoptosis in temporomandibular joint osteoarthritis. Gene 586(2):248–253. https://doi.org/10.1016/j.gene.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  65. Pearson MJ, Philp AM, Heward JA, Roux BT, Walsh DA, Davis ET, Lindsay MA, Jones SW (2016) Long intergenic noncoding RNAs mediate the human chondrocyte inflammatory response and are differentially expressed in osteoarthritis cartilage. Arthritis Rheum 68(4):845–856. https://doi.org/10.1002/art.39520

    Article  CAS  Google Scholar 

  66. Dou PC, Wu R, Zhu WH, Tang Q, Li D, Li H, Wang WC (2017) Long non-coding RNA HOTAIR promotes expression of ADAMTS-5 in human osteoarthritic articular chondrocytes. Pharmazie 72(2):113–117. https://doi.org/10.1691/ph.2017.6649

    Article  CAS  PubMed  Google Scholar 

  67. Liu Q, Zhang X, Dai L, Hu X, Zhu J, Li L, Zhou C, Ao Y (2014) Long noncoding RNA related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis. Arthritis Rheum 66(4):969–978. https://doi.org/10.1002/art.38309

    Article  CAS  Google Scholar 

  68. Shui XL, Zhou CW, Lin W, Yu Y, Feng YZ, Kong JZ (2017) Long non-coding RNA BCAR4 promotes chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway. Exp Biol Med 242(10):1044–1050. https://doi.org/10.1177/1535370217700735

    Article  CAS  Google Scholar 

  69. Zhang G, Wu YD, Xu D, Yan XF (2016) Long noncoding RNA UFC1 promotes proliferation of chondrocyte in osteoarthritis by acting as a sponge for miR-34a. DNA Cell Biol 35(11):691–695. https://doi.org/10.1089/dna.2016.3397

    Article  CAS  PubMed  Google Scholar 

  70. Li YF, Li SH, Luo YT, Liu Y, Yu NH (2017) LncRNA PVT1 regulates chondrocyte apoptosis in osteoarthritis by acting as a sponge for miR-488-3p. DNA Cell Biol 36(7):571–580. https://doi.org/10.1089/dna.2017.3678

    Article  CAS  PubMed  Google Scholar 

  71. Liu Q, Hu XQ, Zhang X, Dai LH, Duan XN, Zhou CY, Ao YF (2016) The TMSB4 pseudogene lncRNA functions as a competing endogenous RNA to promote cartilage degradation in human osteoarthritis. Mol Ther 24(10):1726–1733. https://doi.org/10.1038/mt.2016.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bao X, Ren T, Huang Y, Sun K, Wang S, Liu K, Zheng B, Guo W (2017) Knockdown of long non-coding RNA HOTAIR increases miR-454-3p by targeting Stat3 and Atg12 to inhibit chondrosarcoma growth. Cell Death Dis 8(2):e2605. https://doi.org/10.1038/cddis.2017.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhu KP, Zhang CL, Shen GQ, Zhu ZS (2015) Long noncoding RNA expression profiles of the doxorubicin-resistant human osteosarcoma cell line MG63/DXR and its parental cell line MG63 as ascertained by microarray analysis. Int J Clin Exp Pathol 8(8):8754–8773

    PubMed  PubMed Central  Google Scholar 

  74. Wang Z, Liu Z, Wu S (2017) Long non-coding RNA CTA sensitizes osteosarcoma cells to doxorubicin through inhibition of autophagy. Oncotarget. https://doi.org/10.18632/oncotarget.16356

  75. Che W, Dong Y, Quan HB (2015) RANKL inhibits cell proliferation by regulating MALAT1 expression in a human osteoblastic cell line hFOB 1.19. Cell Mol Biol 61(1):7–14

    CAS  PubMed  Google Scholar 

  76. Xiao X, Zhou T, Guo S, Guo C, Zhang Q, Dong N, Wang Y (2017) LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4. Int J Cardiol. https://doi.org/10.1016/j.ijcard.2017.05.037

  77. Chan LH, Wang W, Yeung W, Deng Y, Yuan P, Mak KK (2014) Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression. Oncogene 33(40):4857–4866. https://doi.org/10.1038/onc.2013.433

    Article  CAS  PubMed  Google Scholar 

  78. Li M, Chen H, Zhao Y, Gao S, Cheng C (2016) H19 functions as a ceRNA in promoting metastasis through decreasing miR-200s activity in Osteosarcoma. DNA Cell Biol 35(5):235–240. https://doi.org/10.1089/dna.2015.3171

    Article  CAS  PubMed  Google Scholar 

  79. Ulaner GA, Vul TH, Li T, Hu JF, Yao XM, Yang YW, Gorlick R, Meyers P, Healey J, Ladanyi M, Hoffman AR (2003) Loss of imprinting of IGF2 and H19 in osteosarcoma is accompanied by reciprocal methylation changes of a CTCF-binding site. Hum Mol Genet 12(5):535–549. https://doi.org/10.1093/hmg/ddg034

    Article  CAS  PubMed  Google Scholar 

  80. Wang B, Su Y, Yang Q, Lv D, Zhang W, Tang K, Wang H, Zhang R, Liu Y (2015) Overexpression of long non-coding RNA HOTAIR promotes tumor growth and metastasis in human osteosarcoma. Mol Cell 38(5):432–440. https://doi.org/10.14348/molcells.2015.2327

    Article  CAS  Google Scholar 

  81. Ruan W, Wang P, Feng S, Xue Y, Li Y (2016) Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells. Tumour Biol 37(3):4065–4073. https://doi.org/10.1007/s13277-015-4256-7

    Article  CAS  PubMed  Google Scholar 

  82. Flockhart RJ, Webster DE, Qu K, Mascarenhas N, Kovalski J, Kretz M, Khavari PA (2012) BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res 22(6):1006–1014. https://doi.org/10.1101/gr.140061.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen R, Wang G, Zheng Y, Hua Y, Cai Z (2017) Long non-coding RNAs in osteosarcoma. Oncotarget 8(12):20462–20475. https://doi.org/10.18632/oncotarget.14726

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li W, Xie P, Ruan WH (2016) Overexpression of lncRNA UCA1 promotes osteosarcoma progression and correlates with poor prognosis. J Bone Oncol 5(2):80–85. https://doi.org/10.1016/j.jbo.2016.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wen JJ, Ma YD, Yang GS, Wang GM (2017) Analysis of circulating long non-coding RNA UCA1 as potential biomarkers for diagnosis and prognosis of osteosarcoma. Eur Rev Med Pharmacol Sci 21(3):498–503

    PubMed  Google Scholar 

  86. O'Leary VB, Maugg D, Smida J, Baumhoer D, Nathrath M, Ovsepian SV, Atkinson MJ (2017) The long non-coding RNA PARTICLE is associated with WWOX and the absence of FRA16D breakage in osteosarcoma patients. Oncotarget 8(50):87431–87441. https://doi.org/10.18632/oncotarget.21086

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hao LY, Fu JY, Tian YW, Wu JH (2017) Systematic analysis of lncRNAs, miRNAs and mRNAs for the identification of biomarkers for osteoporosis in the mandible of ovariectomized mice. Int J Mol Med 40(3):689–702. https://doi.org/10.3892/ijmm.2017.3062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen X, Yang L, Ge DW, Wang WW, Yin ZW, Yan JW, Cao XJ, Jiang CZ, Zheng SN, Liang B (2019) Long non-coding RNA XIST promotes osteoporosis through inhibiting bone marrow mesenchymal stem cell differentiation. Exp Ther Med 17(1):803–811. https://doi.org/10.3892/etm.2018.7033

    Article  CAS  PubMed  Google Scholar 

  89. Yang L, Li Y, Gong R, Gao MQ, Feng C, Liu TY, Sun Y, Jin MY, Wang DW, Yuan Y, Yan GG, He MY, Idiiatullina E, Ma WY, Han ZB, Zhang L, Huang Q, Ding FZ, Cai BZ, Yang F (2019) The long non-coding RNA-ORLNC1 regulates bone mass by directing mesenchymal stem cell fate. Mol Ther 27(2):394–410. https://doi.org/10.1016/j.ymthe.2018.11.019

    Article  CAS  PubMed  Google Scholar 

  90. Zhang RF, Liu JW, Yu SP, Sun D, Wang XH, Fu JS, Xie Z (2019) LncRNA UCA1 affects osteoblast proliferation and differentiation by regulating BMP-2 expression. Eur Rev Med Pharmacol Sci 23(16):6774–6782. https://doi.org/10.26355/eurrev_201908_18715

  91. Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12(7):412–420. https://doi.org/10.1038/nrrheum.2016.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pereira D, Ramos E, Branco J (2015) Osteoarthritis. Acta Medica Port 28(1):99–106

    Article  Google Scholar 

  93. Palazzo C, Nguyen C, Lefevre-Colau M-M, Rannou F, Poiraudeau S (2016) Risk factors and burden of osteoarthritis. Ann Phys Rehab Med 59(3):134–138. https://doi.org/10.1016/j.rehab.2016.01.006

    Article  Google Scholar 

  94. Liu Q, Zhang X, Hu X, Dai L, Fu X, Zhang J, Ao Y (2016) Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a miR-136 ‘sponge’ in human cartilage degradation. Sci Rep 6:22572. https://doi.org/10.1038/srep22572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu S, Yang H, Hu B, Zhang M (2017) Sirt1 regulates apoptosis and extracellular matrix degradation in resveratrol-treated osteoarthritis chondrocytes via the Wnt/beta-catenin signaling pathways. Exp Ther Med 14(5):5057–5062. https://doi.org/10.3892/etm.2017.5165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zeng G, Cui X, Liu Z, Zhao H, Zheng X, Zhang B, Xia C (2014) Disruption of phosphoinositide-specific phospholipases Cgamma1 contributes to extracellular matrix synthesis of human osteoarthritis chondrocytes. Int J Mol Sci 15(8):13236–13246. https://doi.org/10.3390/ijms150813236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hwang HS, Kim HA (2015) Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci 16(11):26035–26054. https://doi.org/10.3390/ijms161125943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li YS, Zhang FJ, Zeng C, Luo W, Xiao WF, Gao SG, Lei GH (2016) Autophagy in osteoarthritis. Joint Bone Spine 83(2):143–148. https://doi.org/10.1016/j.jbspin.2015.06.009

    Article  PubMed  Google Scholar 

  99. Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, Sokolove J (2016) Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12(10):580–592. https://doi.org/10.1038/nrrheum.2016.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rahmati M, Mobasheri A, Mozafari M (2016) Inflammatory mediators in osteoarthritis: a critical review of the state-of-the-art, current prospects, and future challenges. Bone 85:81–90. https://doi.org/10.1016/j.bone.2016.01.019

    Article  CAS  PubMed  Google Scholar 

  101. Ramos YF, Meulenbelt I (2017) The role of epigenetics in osteoarthritis: current perspective. Curr Opin Rheumatol 29(1):119–129. https://doi.org/10.1097/bor.0000000000000355

    Article  CAS  PubMed  Google Scholar 

  102. Zhang M, Wang J (2015) Epigenetics and osteoarthritis. Genes Dis 2(1):69–75. https://doi.org/10.1016/j.gendis.2014.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fu M, Huang G, Zhang Z, Liu J, Zhang Z, Huang Z, Yu B, Meng F (2015) Expression profile of long noncoding RNAs in cartilage from knee osteoarthritis patients. Osteoarthr Cartil 23(3):423–432. https://doi.org/10.1016/j.joca.2014.12.001

    Article  CAS  Google Scholar 

  104. Shen HJ, Wang Y, Shi WD, Sun GX, Hong LJ, Zhang Y (2018) LncRNA SNHG5/miR-26a/SOX2 signal axis enhances proliferation of chondrocyte in osteoarthritis. Acta Biochim Biophys Sin 50(2):191–198. https://doi.org/10.1093/abbs/gmx141

    Article  CAS  PubMed  Google Scholar 

  105. Kim D, Song J, Han J, Kim Y, Chun C-H, Jin E-J (2013) Two non-coding RNAs, MicroRNA-101 and HOTTIP contribute cartilage integrity by epigenetic and homeotic regulation of integrin-α1. Cell Signal 25(12):2878–2887. https://doi.org/10.1016/j.cellsig.2013.08.034

    Article  CAS  PubMed  Google Scholar 

  106. Xie Z, Li J, Wang P, Li Y, Wu X, Wang S, Su H, Deng W, Liu Z, Cen S, Ouyang Y, Wu Y, Shen H (2016) Differential expression profiles of long noncoding RNA and mRNA of osteogenically differentiated mesenchymal stem cells in ankylosing spondylitis. J Rheumatol 43(8):1523–1531. https://doi.org/10.3899/jrheum.151181

    Article  CAS  PubMed  Google Scholar 

  107. Zhao N, Zeng L, Liu Y, Han D, Liu HC, Xu J, Jiang YX, Li CY, Cai T, Feng HL, Wang YX (2017) DLX3 promotes bone marrow mesenchymal stem cell proliferation through H19/miR-675 axis. Clin Sci 131(22):2721–2735. https://doi.org/10.1042/cs20171231

    Article  CAS  Google Scholar 

  108. Huang Y, Zheng Y, Jin C, Li X, Jia L, Li W (2016) Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Sci Rep 6. https://doi.org/10.1038/srep28897

  109. Wang Y, Liang T, Wang Y, Huang Y, Li Y (2017) Long non-coding RNA AK093407 promotes proliferation and inhibits apoptosis of human osteosarcoma cells via STAT3 activation. Am J Cancer Res 7(4):892–902

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Li BZ, Chen P, Qu J, Shi L, Zhuang WY, Fu JX, Li J, Zhang XH, Sun Y, Zhuang WZ (2014) Activation of LTBP3 gene by a long noncoding RNA (lncRNA) MALAT1 transcript in mesenchymal stem cells from multiple myeloma. J Biol Chem 289(42):29365–29375. https://doi.org/10.1074/jbc.M114.572693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jin CY, Jia LF, Huang YP, Zheng YF, Du N, Liu YS, Zhou YS (2016) Inhibition of lncRNA MIR31HG promotes osteogenic differentiation of human adipose-derived stem cells. Stem Cells 34(11):2707–2720. https://doi.org/10.1002/stem.2439

    Article  CAS  PubMed  Google Scholar 

  112. Liu C, Lin J (2016) Long noncoding RNA ZEB1-AS1 acts as an oncogene in osteosarcoma by epigenetically activating ZEB1. Am J Transl Res 8(10):4095–4105

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu G, Wang L, Han H, Li Y, Lu S, Li T, Cheng C (2017) LncRNA ZFAS1 promotes growth and metastasis by regulating BMI1 and ZEB2 in osteosarcoma. Am J Cancer Res 7(7):1450–1462

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Giovarelli M, Bucci G, Ramos A, Bordo D, Wilusz CJ, Chen CY, Puppo M, Briata P, Gherzi R (2014) H19 long noncoding RNA controls the mRNA decay promoting function of KSRP. Proc Natl Acad Sci USA 111(47):E5023–E5028. https://doi.org/10.1073/pnas.1415098111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang DD, Ni N, Wang YY, Tang ZM, Gao HQ, Ju YH, Sun N, He XY, Gu P, Fan XN (2020) CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin alpha 5 expression. Cell Death Differ. https://doi.org/10.1038/s41418-020-0600-6

  116. Xiao XX, Zhou TW, Guo SC, Guoa C, Zhang Q, Dong NG, Wang YJ (2017) LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4. Int J Cardiol 243:404–412. https://doi.org/10.1016/j.ijcard.2017.05.037

    Article  PubMed  Google Scholar 

  117. Fang D, Yang H, Lin J, Teng Y, Jiang Y, Chen J, Li Y (2015) 17 beta-Estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner. Biochem Biophys Res Commun 457(4):500–506. https://doi.org/10.1016/j.bbrc.2014.12.114

    Article  CAS  PubMed  Google Scholar 

  118. Zhou X, Ye F, Yin C, Zhuang Y, Yue G, Zhang G (2015) The interaction between miR-141 and lncRNA-H19 in regulating cell proliferation and migration in gastric cancer. Cell Physiol Biochem 36(4):1440–1452. https://doi.org/10.1159/000430309

    Article  CAS  PubMed  Google Scholar 

  119. Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17(5):272–283. https://doi.org/10.1038/nrg.2016.20

    Article  CAS  PubMed  Google Scholar 

  120. Sun X, Luo LH, Li JR LncRNA MALAT1 facilitates BM-MSCs differentiation into endothelial cells via targeting miR-206/VEGFA axis. Cell Cycle. https://doi.org/10.1080/15384101.2020.1829799

  121. Bao MR, Liu GX, Song J, Gao YD (2020) Long non-coding RNA MALAT1 promotes odontogenic differentiation of human dental pulp stem cells by impairing microRNA-140-5p-dependent downregulation of GIT2. Cell Tissue Res 382(3):487–498. https://doi.org/10.1007/s00441-020-03246-1

    Article  CAS  PubMed  Google Scholar 

  122. Li HX, Xie SJ, Li HZ, Zhang R, Zhang HJ (2020) LncRNA MALAT1 mediates proliferation of LPS treated -articular chondrocytes by targeting the miR-146a-PI3K/Akt/mTOR axis. Life Sci 254. https://doi.org/10.1016/j.lfs.2019.116801

  123. Huang XZ, Huang J, Li WZ, Wang JJ, Song DY, Ni JD (2020) LncRNA-MALAT1 promotes osteogenic differentiation through regulating ATF4 by sponging miR-214: Implication of steroid-induced avascular necrosis of the femoral head. Steroids 154. https://doi.org/10.1016/j.steroids.2019.108533

  124. Yang XC, Yang JX, Lei PF, Wen T (2019) LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging-US 11(20):8777–8791. doi:https://doi.org/10.18632/aging.102264

  125. Yu C, Li LF, Xie F, Guo SC, Liu FY, Dong NG, Wang YJ (2018) LncRNATUG1 spongesmiR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification. Cardiovasc Res 114(1):168–179. https://doi.org/10.1093/cvr/cvx180

    Article  CAS  PubMed  Google Scholar 

  126. Lu YF, Liu Y, Fu WM, Xu J, Wang B, Sun YX, Wu TY, Xu LL, Chan KM, Zhang JF, Li G (2017) Long noncoding RNA H19 accelerates tenogenic differentiation and promotes tendon healing through targeting miR-29b-3p and activating TGF-beta 1 signaling. FASEB J 31(3):954–964. https://doi.org/10.1096/fj.201600722R

    Article  CAS  PubMed  Google Scholar 

  127. Weng J, Peng W, Zhu S, Chen S (2017) Long noncoding RNA sponges miR-454 to promote osteogenic differentiation in maxillary sinus membrane stem cells. Implant Dent 26(2):178–186. https://doi.org/10.1097/id.0000000000000569

    Article  PubMed  Google Scholar 

  128. Liang J, Xu L, Zhou F, Liu AM, Ge HX, Chen YY, Tu M (2018) MALAT1/miR-127-5p regulates osteopontin (OPN)-mediated proliferation of human chondrocytes through PI3K/Akt pathway. J Cell Biochem 119(1):431–439. https://doi.org/10.1002/jcb.26200

    Article  CAS  PubMed  Google Scholar 

  129. Tan FJ, Wang DB, Yuan ZK (2020) The fibroblast-like synoviocyte derived exosomal long non-coding RNA H19 alleviates osteoarthritis progression through the miR-106b-5p/TIMP2 Axis. Inflammation 43(4):1498–1509. https://doi.org/10.1007/s10753-020-01227-8

    Article  CAS  PubMed  Google Scholar 

  130. Zhu ZW, Huang F, Xia WP, Zeng HM, Gao M, Li YC, Zeng F, He C, Chen JB, Chen ZY, Li Y, Cui Y, Chen HQ (2021) Osteogenic Differentiation of Renal Interstitial Fibroblasts Promoted by lncRNA MALAT1 May Partially Contribute to Randall's Plaque Formation. Front Cell Dev Biol 8. https://doi.org/10.3389/fcell.2020.596363

  131. Zhang J, Piao CD, Ding J, Li ZW (2020) LncRNA MALAT1 facilitates lung metastasis of osteosarcomas through miR-202 sponging. Sci Rep 10(1). https://doi.org/10.1038/s41598-020-69574-y

  132. Xie C, Chen B, Wu B, Guo J, Cao Y (2018) LncRNA TUG1 promotes cell proliferation and suppresses apoptosis in osteosarcoma by regulating miR-212-3p/FOXA1 axis. Biomed Pharmacother 97:1645–1653. https://doi.org/10.1016/j.biopha.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  133. Xie CH, Cao YM, Huang Y, Shi QW, Guo JH, Fan ZW, Li JG, Chen BW, Wu BY (2016) Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression. Tumor Biol 37(11):15031–15041. https://doi.org/10.1007/s13277-016-5391-5

    Article  CAS  Google Scholar 

  134. Li G, Liu KY, Du XH (2018) Long non-coding RNA TUG1 promotes proliferation and inhibits apoptosis of osteosarcoma cells by sponging miR-132-3p and upregulating SOX4 expression. Yonsei Med J 59(2):226–235. https://doi.org/10.3349/ymj.2018.59.2.226

    Article  CAS  PubMed  Google Scholar 

  135. Yu X, Hu L, Li SY, Shen J, Wang DL, Xu RJ, Yang HL (2019) Long non-coding RNA Taurine upregulated gene 1 promotes osteosarcoma cell metastasis by mediating HIF-1 alpha via miR-143-5p. Cell Death Dis. 10. https://doi.org/10.1038/s41419-019-1509-1

  136. Wang Y, Yang T, Zhang Z, Lu M, Zhao W, Zeng X, Zhang W (2017) Long non-coding RNA TUG1 promotes migration and invasion by acting as a ceRNA of miR-335-5p in osteosarcoma cells. Cancer Sci. https://doi.org/10.1111/cas.13201

  137. Cao BR, Dai X Platelet lysate induces chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells by regulating the lncRNA H19/miR-29b-3p/SOX9 axis. FEBS Open Bio. https://doi.org/10.1002/2211-5463.13002

  138. Yan LT, Liu GJ, Wu X (2021) The umbilical cord mesenchymal stem cell-derived exosomal lncRNA H19 improves osteochondral activity through miR-29b-3p/FoxO3 axis. Clin Transl Med 11(1). https://doi.org/10.1002/ctm2.255

  139. Wang YZ, Li Y, Liang SK, Ding LB, Li F, Guan J, Wang HJ LncPVT1 promotes cartilage degradation in diabetic OA mice by downregulating miR-146a and activating TGF-beta/SMAD4 signaling. J Bone Miner Metab. https://doi.org/10.1007/s00774-020-01199-7

  140. Zhou Q, Chen F, Zhao J, Li B, Liang Y, Pan W, Zhang S, Wang X, Zheng D (2016) Long non-coding RNA PVT1 promotes osteosarcoma development by acting as a molecular sponge to regulate miR-195. Oncotarget 7(50):82620–82633. https://doi.org/10.18632/oncotarget.13012

  141. Li J, Wu QM, Wang XQ, Zhang CQ (2017) Long noncoding RNA miR210HG sponges miR-503 to facilitate osteosarcoma cell invasion and metastasis. DNA Cell Biol 36(12):1117–1125. https://doi.org/10.1089/dna.2017.3888

    Article  CAS  PubMed  Google Scholar 

  142. Chen SJ, Li YZ, Zhi S, Ding ZY, Huang Y, Wang WG, Zheng RP, Yu HY, Wang JL, Hu MH, Miao JL, Li JS (2020) lncRNA xist regulates osteoblast differentiation by sponging miR-19a-3p in aging-induced osteoporosis. Aging Dis 11(5):1058–1068. https://doi.org/10.14336/ad.2019.0724

  143. Zhang R, Xia T (2017) Long non-coding RNA XIST regulates PDCD4 expression by interacting with miR-21-5p and inhibits osteosarcoma cell growth and metastasis. Int J Oncol 51(5):1460–1470. https://doi.org/10.3892/ijo.2017.4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liu C, Pan C, Cai Y, Wang H (2017) Interplay between long noncoding RNA ZEB1-AS1 and miR-200s regulates osteosarcoma cell proliferation and migration. J Cell Biochem. https://doi.org/10.1002/jcb.25879

  145. Liu K, Hou Y, Liu YK, Zheng J (2017) LncRNA SNHG15 contributes to proliferation, invasion and autophagy in osteosarcoma cells by sponging miR-141. J Biomed Sci 24. https://doi.org/10.1186/s12929-017-0353-9

  146. Asila A, Yang XJ, Kaisaer Y, Ma L SNHG16/miR-485-5p/BMP7 axis modulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Gene Med. https://doi.org/10.1002/jgm.3296

  147. Li YF, Li SH, Liu Y, Luo YT (2017) Long noncoding RNA CIR promotes chondrocyte extracellular matrix degradation in osteoarthritis by acting as a sponge for miR-27b. Cell Physiol Biochem 43(2):602–610. https://doi.org/10.1159/000480532

    Article  CAS  PubMed  Google Scholar 

  148. Liu YS, Liu H, Titus L, Boden SD (2012) Natural antisense transcripts enhance bone formation by increasing sense IFITM5 transcription. Bone 51(5):933–938. https://doi.org/10.1016/j.bone.2012.07.024

    Article  CAS  PubMed  Google Scholar 

  149. Lavorgna G, Dahary D, Lehner B, Sorek R, Sanderson CM, Casari G (2004) In search of antisense. Trends Biochem Sci 29(2):88–94. https://doi.org/10.1016/j.tibs.2003.12.002

    Article  CAS  PubMed  Google Scholar 

  150. Berdal A, Lezot F, Pibouin L, Hotton D, Ghoul-Mazgar S, Teillaud C, Robert B, MacDougall M, Blin C (2002) Msx1 homeogene antisense mRNA in mouse dental and bone cells. Connect Tissue Res 43(2–3):148–152

    Article  CAS  PubMed  Google Scholar 

  151. Babajko S, Petit S, Fernandes I, Meary F, LeBihan J, Pibouin L, Berdal A (2009) Msx1 expression regulation by its own antisense RNA: consequence on tooth development and bone regeneration. Cells Tissues Organs 189(1–4):115–121. https://doi.org/10.1159/000151748

    Article  CAS  PubMed  Google Scholar 

  152. Sun JB, Wang XM, Fu CJ, Wang XY, Zou JL, Hua HB, Bi ZG (2016) Long noncoding RNA FGFR3-AS1 promotes osteosarcoma growth through regulating its natural antisense transcript FGFR3. Mol Biol Rep 43(5):427–436. https://doi.org/10.1007/s11033-016-3975-1

    Article  CAS  PubMed  Google Scholar 

  153. Zhu ZZ, Tang NLS, Xu LL, Qin XD, Mao SH, Song YM, Liu LM, Li FC, Liu P, Yi L, Chang J, Jiang L, Ng BKW, Shi BL, Zhang W, Qiao J, Sun X, Qiu XS, Wang Z, Wang F, Xie DD, Chen L, Chen ZH, Jin MR, Han X, Hu ZS, Zhang Z, Liu Z, Zhu F, Qian BP, Yu Y, Wang B, Lee KM, Lee WYW, Lam TP, Qiu Y, Cheng JCY (2015) Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls. Nat Commun 6. https://doi.org/10.1038/ncomms9355

  154. Kraus P, Sivakamasundari V, Lim SL, Xing X, Lipovich L, Lufkin T (2013) Making sense of Dlx1 antisense RNA. Dev Biol 376(2):224–235. https://doi.org/10.1016/j.ydbio.2013.01.035

    Article  CAS  PubMed  Google Scholar 

  155. Zhu XX, Yan YW, Chen D, Ai CZ, Lu X, Xu SS, Jiang S, Zhong GS, Chen DB, Jiang YZ (2016) Long non-coding RNA HoxA-AS3 interacts with EZH2 to regulate lineage commitment of mesenchymal stem cells. Oncotarget 7(39):63561–63570. https://doi.org/10.18632/oncotarget.11538

  156. Rossignol F, Vache C, Clottes E (2002) Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Gene 299(1-2):135–140. https://doi.org/10.1016/s0378-1119(02)01049-1

    Article  CAS  PubMed  Google Scholar 

  157. Thrash-Bingham CA, Tartof KD (1999) aHIF: A natural antisense transcript overexpressed in human renal cancer and during hypoxia. J Natl Cancer I 91(2):143–151

    Article  CAS  Google Scholar 

  158. Xu Y, Wang S, Tang C, Chen W (2015) Upregulation of long non-coding RNA HIF 1 alpha-anti-sense 1 induced by transforming growth factor-beta-mediated targeting of sirtuin 1 promotes osteoblastic differentiation of human bone marrow stromal cells. Mol Med Rep 12(5):7233–7238. https://doi.org/10.3892/mmr.2015.4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen DR, Wu LP, Liu L, Gong QM, Zheng JX, Peng CX, Deng JQ (2017) Comparison of HIF1A-AS1 and HIF1A-AS2 in regulating HIF-1 alpha and the osteogenic differentiation of PDLCs under hypoxia. Int J Mol Med 40(5):1529–1536. https://doi.org/10.3892/ijmm.2017.3138

    Article  CAS  PubMed  Google Scholar 

  160. Liu S-H, Zhu J-W, Xu H-H, Zhang G-Q, Wang Y, Liu Y-M, Liang J-B, Wang Y-X, Wu Y, Guo Q-F (2017) A novel antisense long non-coding RNA SATB2-AS1 overexpresses in osteosarcoma and increases cell proliferation and growth. Mol Cell Biochem. https://doi.org/10.1007/s11010-017-2953-9

  161. Chun-Lin Z, Kun-Peng Z, Xiao-Long M (2017) Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett. https://doi.org/10.1016/j.canlet.2017.03.018

  162. Yuan JM, Li XD, Liu ZY, Hou GQ, Kang JH, Huang DY, Du SX (2011) Cisplatin induce apotosis via upregulating Wrap53 in osteosarcoma cells U-2OS. Asian Pac J Cancer Prev 12(12):3465–3469

    PubMed  Google Scholar 

  163. Gong YY, Peng MY, Yin DQ, Yang YF (2018) Long non-coding RNA H19 promotes the osteogenic differentiation of rat ectomesenchymal stem cells via Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci 22(24):8805–8813

    PubMed  Google Scholar 

  164. Jia Q, Jiang WK, Ni LX (2015) Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells. Arch Oral Biol 60(2):234–241. https://doi.org/10.1016/j.archoralbio.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  165. Wang CG, Hu YH, Su SL, Zhong D (2020) LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/beta-catenin signaling pathway. Exp Mol Med 52(8):1310–1325. https://doi.org/10.1038/s12276-020-0475-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chen LL, Song Z, Huang SH, Wang RF, Qin W, Guo J, Lin ZM (2016) lncRNA DANCR suppresses odontoblast-like differentiation of human dental pulp cells by inhibiting wnt/beta-catenin pathway. Cell Tissue Res 364(2):309–318. https://doi.org/10.1007/s00441-015-2333-2

    Article  CAS  PubMed  Google Scholar 

  167. Jin X, Zhang ZL, Lu Y, Fan ZH (2018) Suppression of long non-coding RNA LET potentiates bone marrow-derived mesenchymal stem cells (BMSCs) proliferation by up-regulating TGF-beta 1. J Cell Biochem 119(3):2843–2850. https://doi.org/10.1002/jcb.26459

    Article  CAS  PubMed  Google Scholar 

  168. Jiang Z, Jiang CS, Fang J (2018) Up-regulated lnc-SNHG1 contributes to osteosarcoma progression through sequestration of miR-577 and activation of WNT2B/Wnt/beta-catenin pathway. Biochem Biophys Res Commun 495(1):238–245. https://doi.org/10.1016/j.bbrc.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  169. Tian ZB, Yang G, Jiang P, Zhang LB, Wang J, Sun S (2017) Long non-coding RNA Sox4 promotes proliferation and migration by activating Wnt/beta-catenin signaling pathway in osteosarcoma. Pharmazie 72(9):537–542. https://doi.org/10.1691/ph.2017.7548

    Article  CAS  PubMed  Google Scholar 

  170. Zhao HX, Zhao YL, Tao JG, Ma C, Zhang J, Xu HB, Dong YZ (2016) Up-regulated expression of lncRNA NEAT1 promotes progression of osteosarcoma by regulating the activity of Wnt/beta-catenin pathway. Int J Clin Exp Pathol 9(11):11466–11472. https://doi.org/10.1691/ph.2017.7548

    Article  CAS  Google Scholar 

  171. Zhao H, Hou W, Tao J, Zhao Y, Wan G, Ma C, Xu H (2016) Upregulation of lncRNA HNF1A-AS1 promotes cell proliferation and metastasis in osteosarcoma through activation of the Wnt/beta-catenin signaling pathway. Am J Transl Res 8(8):3503–3512

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Yang GH, Zhang C, Wang N, Chen JW (2019) miR-425-5p decreases LncRNA MALAT1 and TUG1 expressions and suppresses tumorigenesis in osteosarcoma via Wnt/beta-catenin signaling pathway. Int J Biochem Cell Biol 111:42–51. https://doi.org/10.1016/j.biocel.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  173. Wang Y, Kong DL (2018) Knockdown of lncRNA MEG3 inhibits viability, migration, and invasion and promotes apoptosis by sponging miR-127 in osteosarcoma cell. J Cell Biochem 119(1):669–679. https://doi.org/10.1002/jcb.26230

    Article  CAS  PubMed  Google Scholar 

  174. Chen HW, Qi J, Bi Q, Zhang SM (2017) Expression profile of long noncoding RNA (HOTAIR) and its predicted target miR-17-3p in LPS-induced inflammatory injury in human articular chondrocyte C28/I2 cells. Int J Clin Exp Pathol 10(9):9146–9157

    PubMed  PubMed Central  Google Scholar 

  175. Zhang JL, Tao ZW, Wang YL (2018) Long non-coding RNA DANCR regulates the proliferation and osteogenic differentiation of human bone-derived marrow mesenchymal stem cells via the p38 MAPK pathway. Int J Mol Med 41(1):213–219. https://doi.org/10.3892/ijmm.2017.3215

    Article  CAS  PubMed  Google Scholar 

  176. Zhang SZ, Cai L, Li B (2017) MEG3 long non-coding RNA prevents cell growth and metastasis of osteosarcoma. Bratisl Med J 118(10):632–636. https://doi.org/10.4149/bll_2017_121

    Article  CAS  Google Scholar 

  177. Liao JY, Yu XY, Hu X, Fan JM, Wang J, Zhang ZC, Zhao C, Zeng ZY, Shu Y, Zhang RY, Yan SJ, Li YS, Zhang WW, Cui J, Ma C, Li L, Yu YC, Wu TT, Wu XY, Lei JY, Wang J, Yang C, Wu K, Wu Y, Tang J, He BC, Deng ZL, Luu HH, Haydon RC, Reid RR, Lee MJ, Wolf JM, Huang W, He TC (2017) lncRNA H19 mediates BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling. Oncotarget 8(32):53581–53601. https://doi.org/10.18632/oncotarget.18655

  178. Zhou S, Yu L, Xiong M, Dai G (2018) LncRNA SNHG12 promotes tumorigenesis and metastasis in osteosarcoma by upregulating Notch2 by sponging miR-195-5p. Biochem Biophys Res Commun 495(2):1822–1832. https://doi.org/10.1016/j.bbrc.2017.12.047

    Article  CAS  PubMed  Google Scholar 

  179. Cao B, Liu N, Wang W (2016) High glucose prevents osteogenic differentiation of mesenchymal stem cells via lncRNA AK028326/CXCL13 pathway. Biomed Pharmacother 84:544–551. https://doi.org/10.1016/j.biopha.2016.09.058

    Article  CAS  PubMed  Google Scholar 

  180. Li GQ, Liu Y, Meng FR, Xia ZB, Wu X, Fang YX, Zhang CW, Zhang Y, Liu D (2019) LncRNA MEG3 inhibits rheumatoid arthritis through miR-141 and inactivation of AKT/mTOR signalling pathway. J Cell Mol Med 23(10):7116–7120. https://doi.org/10.1111/jcmm.14591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Dong YQ, Liang GJ, Yuan B, Yang CQ, Gao R, Zhou XH (2015) MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumor Biol 36(3):1477–1486. https://doi.org/10.1007/s13277-014-2631-4

    Article  CAS  Google Scholar 

  182. Zhang WY, Dong R, Diao S, Du J, Fan ZP, Wang F (2017) Differential long noncoding RNA/mRNA expression profiling and functional network analysis during osteogenic differentiation of human bone marrow mesenchymal stem cells. Stem Cell Res Ther 8. https://doi.org/10.1186/s13287-017-0485-6

  183. Song WQ, Gu WQ, Qian YB, Ma X, Mao YJ, Liu WJ (2015) Identification of long non-coding RNA involved in osteogenic differentiation from mesenchymal stem cells using RNA-Seq data. Genet Mol Res 14(4):18268–18279. https://doi.org/10.4238/2015.December.23.14

    Article  CAS  PubMed  Google Scholar 

  184. Hartmann C (2006) A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 16(3):151–158. https://doi.org/10.1016/j.tcb.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  185. Burgers TA, Williams BO (2013) Regulation of Wnt/beta-catenin signaling within and from osteocytes. Bone 54(2):244–249. https://doi.org/10.1016/j.bone.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sassi N, Laadhar L, Allouche M, Achek A, Kallel-Sellami M, Makni S, Sellami S (2014) WNT signaling and chondrocytes: from cell fate determination to osteoarthritis physiopathology. J Recept Signal Transduct 34(2):73–80. https://doi.org/10.3109/10799893.2013.863919

    Article  CAS  Google Scholar 

  187. Li B, Liu J, Zhao J, Ma JX, Jia HB, Zhang Y, Xing GS, Ma XL (2017) LncRNA-H19 Modulates Wnt/beta-catenin Signaling by Targeting Dkk4 in Hindlimb Unloaded Rat. Orthop Surg 9(3):319–327. https://doi.org/10.1111/os.12321

    Article  PubMed  PubMed Central  Google Scholar 

  188. Tian J, He HB, Lei GH (2014) Wnt/beta-catenin pathway in bone cancers. Tumor Biol 35(10):9439–9445. https://doi.org/10.1007/s13277-014-2433-8

    Article  CAS  Google Scholar 

  189. Chen FY, Mo JD, Zhang L (2016) Long noncoding RNA BCAR4 promotes osteosarcoma progression through activating GLI2-dependent gene transcription. Tumor Biol 37(10):13403–13412. https://doi.org/10.1007/s13277-016-5256-y

    Article  CAS  Google Scholar 

  190. Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37(4):376–386. https://doi.org/10.1016/j.ymeth.2005.07.018

    Article  CAS  PubMed  Google Scholar 

  191. Ule J, Hwang HW, Darnell RB (2018) The future of cross-linking and immunoprecipitation (CLIP). CSH Perspect Biol 10(8). https://doi.org/10.1101/cshperspect.a032243

  192. Sethuraman S, Thomas M, Gay LA, Renne R (2018) Computational analysis of ribonomics datasets identifies long non-coding RNA targets of gamma-herpesviral miRNAs. Nucleic Acids Res 46(16):8574–8589. https://doi.org/10.1093/nar/gky459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Helwak A, Tollervey D (2014) Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). Nat Protoc 9(3):711–728. https://doi.org/10.1038/nprot.2014.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Quinn JJ, Ilik IA, Qu K, Georgiev P, Chu C, Alchtar A, Chang HY (2014) Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat Biotechnol 32(9):933–940. https://doi.org/10.1038/nbt.2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Machyna M, Simon MD (2018) Catching RNAs on chromatin using hybridization capture methods. Brief Funct Genomics 17(2):96–103. https://doi.org/10.1093/bfgp/elx038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This chapter was modified from the paper published by our group in Endocrine Metabolic & Immune Disorders-Drug Targets (Li DJ, et.al., 2020, 20 (1), 50–66). The authors would like to thank Ge Zhang and Jin Liu at the Hong Kong Baptist University for their generous indispensable support and constructive suggestions. This work was supported by the Natural Science Foundation of China (82072106, 81801871, and 81772017), the China Postdoctoral Science Foundation (2020M683573 and 2018T111099), the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX201821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, D., Yang, C., Tian, Y., Chen, Z., Qian, A., Yin, C. (2021). Roles and Mechanism of Long Noncoding RNAs in Bone Diseases. In: Qian, A., Tian, Y. (eds) Noncoding RNAs and Bone. Springer, Singapore. https://doi.org/10.1007/978-981-16-2402-5_5

Download citation

Publish with us

Policies and ethics