Skip to main content

Mechanochemistry: Synthesis that Uses Force

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Part of the book series: Indian Institute of Metals Series ((IIMS))

  • 2282 Accesses

Abstract

Grinding is a basic physical process, and the grinding tools “mortar and pestle” have been in use since times immemorial. It has been practiced in almost all spheres of human life from kitchen to laboratories as well as in large industrial processes. Chemical synthesis by applying force or the “mechanochemistry” has been employed as a synthetic procedure for a long time but now the need to adopt “greener”, cost-effective and less harmful methods of synthesis has brought back the mechanochemistry to forefront in last decade. It has emerged as the one of the most efficient, advantageous and environmentally benign alternatives to traditional synthesis routes for the preparation of nanomaterials for advanced applications. The features such as ease of operation, simplicity of equipment, high reproducibility, relatively mild reaction conditions and the solvent-free condition (in case of dry milling) have made it the synthesis technique of choice for the synthetic chemist. It is used for synthesizing a wide variety of both single-phasic and composite materials varying from inorganic solids (oxides and non oxides), organic compounds, polymers, metal complexes, metal–organic frameworks. Materials with applications in varied areas such as hydrogen storage materials, energy applications, pharmaceuticals, as well as advanced nanocatalysts have been synthesized using this method. In recent times, the dry grinding or milling has been further modified by addition of a small amount of solvent or polymer, also called liquid-assisted grinding or polymer-assisted grinding that yields different products, speeds up the reaction and also ensures better usage of reactants. The fact that mechanical force or shear is the driving force for the reaction, and it also presents a novel way to obtain hitherto unknown (and interesting) products. The chapter discusses the basics of mechanochemical synthesis along with the above-mentioned points in the details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lancaster M (2002) Green chemistry: an introductory text. The Royal Society of Chemistry, Cambridge UK

    Google Scholar 

  2. Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694

    Article  CAS  Google Scholar 

  3. Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963

    Article  CAS  Google Scholar 

  4. Gilman JJ (1996) Mechanochemistry. Science 274:65

    Article  CAS  Google Scholar 

  5. Hammerer F, Loots LA-O, Do JL, Therien JPD, Nickels CW, Friščić TA-O, Auclair KA-O (2018) Solvent-free enzyme activity: quick, high-yielding mechanoenzymatic hydrolysis of cellulose into glucose. Angew Chem 130:2651–2654

    Article  Google Scholar 

  6. Mack J, Fulmer D, Stofel S, Santos N (2007) The first solvent-free method for the reduction of esters. Green Chem 9:1041–1043

    Article  CAS  Google Scholar 

  7. Burmeister CF, Kwade A (2013) Process engineering with planetary ball mills. Chem Soc Rev 42:7660–7667

    Article  CAS  Google Scholar 

  8. (a) Jonoobi M, Harun J, Mathew AP, Oksman K (2015) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747. (b) Lu Y, Guan S, Hao L, Yoshida H (2015) Review on the photocatalyst coatings of TiO2: fabrication by mechanical coating technique and its application. Coatings 5(3):425–464

    Google Scholar 

  9. Crawford DE, Miskimmin CKG, Albadarin AB, Walker G, James SL (2017) Organic synthesis by Twin Screw Extrusion (TSE): continuous, scalable and solvent-free. Green Chem 19:1507–1518

    Article  CAS  Google Scholar 

  10. Lynch AJ, Rowland CA (2005) The history of grinding, society for mining, metallurgy, and exploration 209

    Google Scholar 

  11. Takacs L (2013) The historical development of mechanochemistry. Chem Soc Rev 42:7649–7659

    Article  CAS  Google Scholar 

  12. Takacs L (2000) Quicksilver from cinnabar: the first documented mechanochemical reaction? JOM 52:12–13

    Article  CAS  Google Scholar 

  13. Faraday M (1820) Q Jl Sci Lit Arts 8:374–376

    Google Scholar 

  14. Takacs L (2007) The mechanochemical reduction of AgCl with metals. J Therm Anal Calorim 90:81–84

    Article  CAS  Google Scholar 

  15. Johnston J, Adams LH (1913) Effect of high pressure on the physical and chemical behavior of solids. Am J Sci 35:205–253

    Article  CAS  Google Scholar 

  16. Spring W (1883) Formation de Quelques Sulfures par l’Actionde la Pression. Considérations qui en Découlent Touchantles Propriétés des États Allotropiques du Phosphore et du Carbone. Bull Soc Chim Fr 40:641–647

    Google Scholar 

  17. Lea MC (1893) On endothermic reactions effected by mechanical force. Am J Sci 46:241–244

    Article  Google Scholar 

  18. Ostwald W (1919) Handbook of general chemistry, chemical literature and the organization of science. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  19. Ling AR, Baker JL (1893) XCVI—halogen derivatives of quinone. Part III. Derivatives of quinhydrone. J Chem Soc Trans 63:1314–1327

    Google Scholar 

  20. Baláž P (2008) Mechanochemistry in minerals engineering. In: Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin, Heidelberg

    Google Scholar 

  21. James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KDM, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447

    Article  CAS  Google Scholar 

  22. Petruschke M, Tribochemistry von G. HEINICKE. Berlin: Akademie-Verlag 1984. Bestellnummer: 7631993(6746). 495 S., 329 Bilder, 106 Tabellen, 98,– M, Acta Polym., 36 (1985) 400–401

    Google Scholar 

  23. Patil AO, Curtin DY, Paul IC (1984) Solid-state formation of quinhydrones from their components. Use of solid-solid reactions to prepare compounds not accessible from solution. J Am Chem Soc 106:348–353

    Google Scholar 

  24. Toda F, Tanaka K, Sekikawa A (1987) Host–guest complex formation by a solid–solid reaction. J Chem Soc Chem Commun 279–280

    Google Scholar 

  25. Etter MC, Urbanczyk-Lipkowska Z, Zia-Ebrahimi M, Panunto TW (1990) Hydrogen bond-directed cocrystallization and molecular recognition properties of diarylureas. J Am Chem Soc 112:8415–8426

    Article  CAS  Google Scholar 

  26. Pedireddi VR, Jones W, Chorlton AP, Docherty R (1996) Creation of crystalline supramolecular arrays: a comparison of co-crystal formation from solution and by solid-state grinding. Chem Commun 987–988

    Google Scholar 

  27. Garay AL, Pichon A, James SL (2007) Solvent-free synthesis of metal complexes. Chem Soc Rev 36:846–855

    Article  CAS  Google Scholar 

  28. Valiev R (2004) Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater 3:511–516

    Article  CAS  Google Scholar 

  29. Giri PK, Bhattacharyya S, Singh DK, Kesavamoorthy R, Panigrahi BK, Nair KGM (2007) Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. J Appl Phys 102:

    Article  Google Scholar 

  30. Buyanov RA, Molchanov VV, Boldyrev VV (2009) Mechanochemical activation as a tool of increasing catalytic activity. Catal Today 144:212–218

    Article  CAS  Google Scholar 

  31. Mateti S, Mathesh M, Liu Z, Tao T, Ramireddy T, Glushenkov AM, Yang W, Chen YI (2021) Mechanochemistry: a force in disguise and conditional effects towards chemical reactions. Chem Commun 57:1080–1092

    Article  CAS  Google Scholar 

  32. Volkov VA, El’kin IA, Zagainov AV, Protasov AV, Elsukov EP (2014) Dynamic equilibria of phases in the processes of the mechanosynthesis of an alloy with composition Fe72.6C24.5O1.1N1.8. Phys Met Metallogr 115:557–565

    Google Scholar 

  33. Michel D, Faudot F, Gaffet E, Mazerolles L (1993) Oxydes céramiques élaborés par voie mécanochimique. Rev Met Paris 90:219–226

    Article  CAS  Google Scholar 

  34. Begin-Colin S, Le Caër G, Zandona M, Bouzy E, Malaman B (1995) Influence of the nature of milling media on phase transformations induced by grinding in some oxides. J. Alloys Compd 227:157–166

    Article  CAS  Google Scholar 

  35. Gajović A, Tomašić N, Djerdj I, Su DS, Furić K (2008) Influence of mechanochemical processing to luminescence properties in Y2O3 powder. J. Alloys Compd. 456:313–319

    Article  Google Scholar 

  36. Gateshki M, Petkov V, Williams G, Pradhan SK, Ren Y (2005) Atomic-scale structure of nanocrystalline ZrO2 prepared by high-energy ball milling. Phys. Rev. B 71:

    Article  Google Scholar 

  37. Štefanić G, Musić S, Gajović A (2006) Structural and microstructural changes in monoclinic ZrO2 during the ball-milling with stainless steel assembly. Mater Res Bull 41:764–777

    Article  Google Scholar 

  38. Gajović A, Furić K, Štefanić G, Musić S (2005) In situ high temperature study of ZrO2 ball-milled to nanometer sizes. J Mol Struct 744–747:127–133

    Article  Google Scholar 

  39. Michel D, Gaffet E, Berthet P (1995) Structure of nanosized refractory oxde powders. Nanostruct Mater 6:667–670

    Article  Google Scholar 

  40. Michel D, Mazerolles L, Berthet P, Gaffet E (1995) Nanocrystalline and amorphous oxide powders prepared by high-energy baIl milling. Eur J Solid State Inorg Chem 32:673–682

    CAS  Google Scholar 

  41. Michel D, Mazerolles L, Gaffet E (1993) Nanocrystallline oxide powders prepared by ball-milling. Third Euro-Ceramics, Iberica 1:255–260

    CAS  Google Scholar 

  42. Katagiri S, Ishizawa N, Marumo F (2013) A new high temperature modification of face-centered cubic Y2O3. Powder Diffr 8:60

    Article  Google Scholar 

  43. Lacroix B, Paumier F, Gaboriaud RJ (2011) Crystal defects and related stress in Y2O3 thin films: origin, modeling, and consequence on the stability of the C-type structure. Phys Rev B 84:

    Article  Google Scholar 

  44. Li YB, Wei BQ, Liang J, Yu Q, Wu DH (1999) Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon 37:493–497

    Article  CAS  Google Scholar 

  45. Chen Y, Fitz Gerald J, Williams JS, Bulcock S (1999) Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chem Phys Lett 299:260–264

    Google Scholar 

  46. Fitz Gerald JD, Chen Y, Conway MJ (2003) Nanotube growth during annealing of mechanically milled Boron. Appl Phys A 76:107–110

    Google Scholar 

  47. Chen Y, Li CP, Chen H, Chen Y (2006) One-dimensional nanomaterials synthesized using high-energy ball milling and annealing process. Sci Technol Adv Mater 7:839–846

    Article  CAS  Google Scholar 

  48. Chen Y, Fitz Gerald J, Chadderton L, Chaffron L (1999) Investigation of nanoporous carbon powders produced by high energy ball milling and formation of carbon nanotubes during subsequent annealing. Mater Sci Forum 312:375–380

    Google Scholar 

  49. Chadwick AV, Pooley MJ, Rammutla KE, Savin SL, Rougier A (2003) A comparison of the extended x-ray absorption fine structure of nanocrystalline ZrO2 prepared by high-energy ball milling and other methods. J Phys Condens Matter 15:431

    Google Scholar 

  50. Scholz G, Stösser R, Klein J, Silly G, Buzaré J, Laligant Y, Ziemer B (2002) Local structural orders in nanostructured Al2O3 prepared by high-energy ball milling. J Phys Condens Matter 14:2101

    Google Scholar 

  51. Indris S, Bork D, Heitjans P (2000) Nanocrystalline oxide ceramics prepared by high-energy ball milling. J Mater Synth Process 8:245–250

    Article  CAS  Google Scholar 

  52. Tkáčová K, Šepelák V, Števulová N, Boldyrev VV (1996) Structure-reactivity study of mechanically activated zinc ferrite. J Solid State Chem 123:100–108

    Article  Google Scholar 

  53. Shen TD, Koch CC, McCormick TL, Nemanich RJ, Huang JY, Huang JG (2011) The structure and property characteristics of amorphous/nanocrystalline silicon produced by ball milling. J Mater Res 10:139–148

    Article  Google Scholar 

  54. Arbain R, Othman M, Palaniandy S (2011) Preparation of iron oxide nanoparticles by mechanical milling. Miner Eng 24:1–9

    Article  CAS  Google Scholar 

  55. Taufiq-Yap YH, Goh CK, Hutchings GJ, Dummer N, Bartley JK (2011) Influence of milling media on the physicochemicals and catalytic properties of mechanochemical treated vanadium phosphate catalysts. Catal Lett 141:400–407

    Article  CAS  Google Scholar 

  56. Friščić T, Jones W (2009) Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst Growth Des 9:1621–1637

    Article  Google Scholar 

  57. IUPAC (1997) Compendium of chemical terminology, 2nd ed (the “Gold Book”). Blackwell Scientific Publications, Oxford

    Google Scholar 

  58. Friscić T, Reid Dg Fau – Halasz I, Halasz I Fau – Stein RS, Stein Rs Fau – Dinnebier RE, Dinnebier Re Fau – Duer MJ, Duer MJ (2010) Ion- and liquid-assisted grinding: improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. Angew Chem Int Ed 49:712–715

    Google Scholar 

  59. Beldon PJ, Fábián L, Stein RS, Thirumurugan A, Cheetham AK, Friščić T (2010) Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew Chem Int Ed 49:9640–9643

    Article  CAS  Google Scholar 

  60. André V, Hardeman A Fau – Halasz I, Halasz I Fau – Stein RS, Stein Rs Fau – Jackson GJ, Jackson Gj Fau – Reid DG, Reid Dg Fau – Duer MJ, Duer Mj Fau – Curfs C, Curfs C Fau – Duarte MT, Duarte Mt Fau – Friščić T, Friščić T (2011) Mechanosynthesis of the metallodrug bismuth subsalicylate from Bi2O3 and structure of bismuth salicylate without auxiliary organic ligands. Angew Chem Int Ed 50:7858–7861

    Google Scholar 

  61. Hasa D, Schneider Rauber G, Voinovich D, Jones W (2015) Cocrystal formation through mechanochemistry: from neat and liquid-assisted grinding to polymer-assisted grinding. Angew Chem Int Ed 54:7371–7375

    Google Scholar 

  62. Konnert L, Dimassi M, Gonnet L, Lamaty F, Martinez J, Colacino E (2016) Poly(ethylene) glycols and mechanochemistry for the preparation of bioactive 3,5-disubstituted hydantoins. RSC Adv 6:36978–36986

    Article  CAS  Google Scholar 

  63. Scaramuzza D, Schneider Rauber G, Voinovich D, Hasa D (2018) Dehydration without heating: use of polymer-assisted grinding for understanding the stability of hydrates in the presence of polymeric excipients. Cryst Growth Des 18:5245–5253

    Google Scholar 

  64. Germann LS, Emmerling ST, Wilke M, Dinnebier RE, Moneghini M, Hasa D (2020) Monitoring polymer-assisted mechanochemical cocrystallisation through in situ X-ray powder diffraction. Chem Commun 56:8743–8746

    Article  CAS  Google Scholar 

  65. Friščić T, Mottillo C, Titi HM (2020) Mechanochemistry for synthesis. Angew Chem Int Ed 59:1018–1029

    Article  Google Scholar 

  66. Jones W, Eddleston MD (2014) Introductory lecture: mechanochemistry, a versatile synthesis strategy for new materials. Faraday Discuss 170:9–34

    Article  CAS  Google Scholar 

  67. Szczęśniak B, Borysiuk S, Choma J, Jaroniec M (2020) Mechanochemical synthesis of highly porous materials. Mater Horiz 7:1457–1473

    Article  Google Scholar 

  68. Tan D, García F (2019) Main group mechanochemistry: from curiosity to established protocols. Chem Soc Rev 48:2274–2292

    Article  CAS  Google Scholar 

  69. Do J-L, Friščić T (2017) Mechanochemistry: a force of synthesis. ACS Cent Sci 3:13–19

    Article  CAS  Google Scholar 

  70. Šepelák V, Bégin-Colin S, Le Caër G (2012) Transformations in oxides induced by high-energy ball-milling. Dalton Trans 41:11927–11948

    Article  Google Scholar 

  71. Bodaghi M, Mirhabibi AR, Zolfonun H, Tahriri M, Karimi M (2008) Investigation of phase transition of γ-alumina to α-alumina via mechanical milling method. Phase Transitions 81:571–580

    Article  CAS  Google Scholar 

  72. Sekiya T, Ohta S, Kamei S, Hanakawa M, Kurita S (2001) Raman spectroscopy and phase transition of anatase TiO2 under high pressure. J Phys Chem Solids 62:717–721

    Article  CAS  Google Scholar 

  73. Tsuzuki T, McCormick PG (2004) Mechanochemical synthesis of nanoparticles. J Mater Sci 39:5143–5146

    Article  CAS  Google Scholar 

  74. Ao W, Li J, Yang H, Zeng X, Ma X (2006) Mechanochemical synthesis of zinc oxide nanocrystalline. Powder Technol 168:148–151

    Article  CAS  Google Scholar 

  75. Yang H, Hu Y, Zhang X, Qiu G (2004) Mechanochemical synthesis of cobalt oxide nanoparticles. Mater Lett 58:387–389

    Article  CAS  Google Scholar 

  76. Stojanovic BD, Simoes AZ, Paiva-Santos CO, Jovalekic C, Mitic VV, Varela JA (2005) Mechanochemical synthesis of barium titanate. J Eur Ceram Soc 25:1985–1989

    Article  CAS  Google Scholar 

  77. Hu R, Ouyang Y, Liang T, Wang H, Liu J, Chen J, Yang C, Yang L, Zhu M (2017) Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv Mater 29:1605006

    Article  Google Scholar 

  78. Xiao W, Yang S, Zhang P, Li P, Wu P, Li M, Chen N, Jie K, Huang C, Zhang N, Dai S (2018) Facile synthesis of highly porous metal oxides by mechanochemical nanocasting. Chem Mater 30:2924–2929

    Article  CAS  Google Scholar 

  79. Baláž P, Baláž M, Achimovičová M, Bujňáková Z, Dutková E (2017) Chalcogenide mechanochemistry in materials science: insight into synthesis and applications (a review). J Mater Sci 52:11851–11890

    Article  Google Scholar 

  80. Baláž P, Boldižárová E, Godočı X, Ková E, Briančin J (2003) Mechanochemical route for sulphide nanoparticles preparation. Mater Lett 57:1585–1589

    Google Scholar 

  81. Dutková E, Daneu N, Lukáčová Bujňáková Z, Baláž M, Kováč J, Kováč J Jr, Baláž P (2019) Mechanochemical synthesis and characterization of CuInS2/ZnS nanocrystals. Molecules 24:1031

    Google Scholar 

  82. Bujňáková Z, Dutková E, Kello M, Mojžiš J, Baláž M, Baláž P, Shpotyuk O (2017) Mechanochemistry of chitosan-coated zinc sulfide (ZnS) nanocrystals for bio-imaging applications. Nanoscale Res Lett 12:328

    Article  Google Scholar 

  83. Dutková E, Sayagués MJ, Briančin J, Zorkovská A, Bujňáková Z, Kováč J, Kováč J, Baláž P, Ficeriová J (2016) Synthesis and characterization of CuInS2 nanocrystalline semiconductor prepared by high-energy milling. J Mater Sci 51:1978–1984

    Article  Google Scholar 

  84. Baláž P, Baláž M, Dutková E, Zorkovská A, Kováč J, Hronec P, Kováč J, Čaplovičová M, Mojžiš J, Mojžišová G, Eliyas A, Kostova NG (2016) CdS/ZnS nanocomposites: from mechanochemical synthesis to cytotoxicity issues. Mater Sci Eng C 58:1016–1023

    Google Scholar 

  85. Baláž P, Sayagués MJ, Baláž M, Zorkovská A, Hronec P, Kováč J, Kováč J, Dutková E, Mojžišová G, Mojžiš J (2014) CdSe@ZnS nanocomposites prepared by a mechanochemical route: no release of Cd2+ ions and negligible in vitro cytotoxicity. Mater Res Bull 49:302–309

    Article  Google Scholar 

  86. Bujňáková Z, Baláž M, Dutková E, Baláž P, Kello M, Mojžišová G, Mojžiš J, Vilková M, Imrich J, Psotka M (2017) Mechanochemical approach for the capping of mixed core CdS/ZnS nanocrystals: elimination of cadmium toxicity. J Colloid Interface Sci 486:97–111

    Article  Google Scholar 

  87. Bujňáková Z, Dutková E, Zorkovská A, Baláž M, Kováč J, Kello M, Mojžiš J, Briančin J, Baláž P (2017) Mechanochemical synthesis and in vitro studies of chitosan-coated InAs/ZnS mixed nanocrystals. J Mater Sci 52:721–735

    Article  Google Scholar 

  88. Dutková EA-O, Bujňáková ZL, Sphotyuk OA-O, Jakubíková J, Cholujová D, Šišková V, Daneu NA-O, Baláž MA-O, Kováč J, Kováč J Jr, Briančin J, Demchenko P (2021) SDS-stabilized CuInSe2/ZnS multinanocomposites prepared by mechanochemical synthesis for advanced biomedical application. Nanomaterials 11:69

    Article  Google Scholar 

  89. Toda F (1995) Solid state organic chemistry: efficient reactions, remarkable yields, and stereoselectivity. Acc Chem Res 28:480–486

    Article  CAS  Google Scholar 

  90. Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100:1025–1074

    Article  CAS  Google Scholar 

  91. Toda F, Tanaka K, Iwata S (1989) Oxidative coupling reactions of phenols with iron(III) chloride in the solid state. J Org Chem 54:3007–3009

    Article  CAS  Google Scholar 

  92. Margetić D, Štrukil V (2016) Mechanochemical organic synthesis. Elsevier

    Google Scholar 

  93. Machuca E, Juaristi E (2015) Organocatalytic activity of α,α-dipeptide derivatives of (S)-proline in the asymmetric aldol reaction in absence of solvent. Evidence for non-covalent π–π interactions in the transition state. Tetrahedron Lett 56:1144–1148

    Google Scholar 

  94. Zhang Z, Dong Y-W, Wang G-W, Komatsu K (2004) Mechanochemical michael reactions of chalcones and azachalcones with ethyl acetoacetate catalyzed by K2CO3 under solvent-free conditions. Chem Lett 33:168–169

    Article  CAS  Google Scholar 

  95. Balema VP, Wiench JW, Pruski M, Pecharsky VK (2002) Mechanically induced solid-state generation of phosphorus ylides and the solvent-free wittig reaction. J Am Chem Soc 124:6244–6245

    Article  CAS  Google Scholar 

  96. Nielsen SF, Peters D, Axelsson O (2000) The suzuki reaction under solvent-free conditions. Synth Commun 30:3501–3509

    Article  CAS  Google Scholar 

  97. Ladziata U, Zhdankin VV (2006) Hypervalent iodine(V) reagents in organic synthesis, ARKIVOC ix:26–58

    Google Scholar 

  98. Achar TK, Maiti S, Mal P (2014) IBX works efficiently under solvent free conditions in ball milling. RSC Adv 4:12834–12839

    Article  CAS  Google Scholar 

  99. Katritzky AR, Khashab NM, Bobrov S, Yoshioka M (2006) Synthesis of mono- and symmetrical Di-N-hydroxy- and N-Aminoguanidines. J Org Chem 71:6753–6758

    Article  CAS  Google Scholar 

  100. Štrukil V, Gracin D, Magdysyuk OV, Dinnebier RE, Friščić T (2015) Trapping reactive intermediates by mechanochemistry: elusive aryl N-thiocarbamoylbenzotriazoles as bench-stable reagents. Angew Chem Int Ed 54:8440–8443

    Google Scholar 

  101. Hermann GN, Becker P, Bolm C (2015) Mechanochemical rhodium(III)-catalyzed C–H bond functionalization of acetanilides under solventless conditions in a ball mill. Angew Chem Int Ed 54:7414–7417

    Google Scholar 

  102. Ravnsbæk JB, Swager TM (2014) Mechanochemical synthesis of poly(phenylene vinylenes). ACS Macro Lett. 3:305–309

    Article  Google Scholar 

  103. Grätz S, Borchardt L (2016) Mechanochemical polymerization—controlling a polycondensation reaction between a diamine and a dialdehyde in a ball mill. RSC Adv 6:64799–64802

    Article  Google Scholar 

  104. Ohn N, Shin J, Kim SS, Kim JG (2017) Mechanochemical ring-opening polymerization of lactide: liquid-assisted grinding for the green synthesis of poly(lactic acid) with high molecular weight. Chemsuschem 10:3529–3533

    Article  CAS  Google Scholar 

  105. Di Nardo T, Hadad C, Nguyen Van Nhien A, Moores A (2019) Synthesis of high molecular weight chitosan from chitin by mechanochemistry and aging. Green Chem 21:3276–3285

    Article  Google Scholar 

  106. Lee J-SM, Kurihara T, Horike S (2020) Five-Minute mechanosynthesis of hypercrosslinked microporous polymers. Chem Mater 32:7694–7702

    Article  CAS  Google Scholar 

  107. Tiruye GA, Muñoz-Torrero D, Berthold T, Palma J, Antonietti M, Fechler N, Marcilla R (2017) Functional porous carbon nanospheres from sustainable precursors for high performance supercapacitors. J Mater Chem A 5:16263–16272

    Article  CAS  Google Scholar 

  108. Rajendiran R, Nallal M, Park KH, Li OL, Kim H-J, Prabakar K (2019) Mechanochemical assisted synthesis of heteroatoms inherited highly porous carbon from biomass for electrochemical capacitor and oxygen reduction reaction electrocatalysis. Electrochim Acta 317:1–9

    Article  CAS  Google Scholar 

  109. Lin X, Liang Y, Lu Z, Lou H, Zhang X, Liu S, Zheng B, Liu R, Fu R, Wu D (2017) Mechanochemistry: a green, activation-free and top-down strategy to high-surface-area carbon materials. ACS Sustainable Chem Eng 5:8535–8540

    Article  CAS  Google Scholar 

  110. Casco ME, Kirchhoff S, Leistenschneider D, Rauche M, Brunner E, Borchardt L (2019) Mechanochemical synthesis of N-doped porous carbon at room temperature. Nanoscale 11:4712–4718

    Article  CAS  Google Scholar 

  111. Schneidermann C, Jäckel N, Oswald S, Giebeler L, Presser V, Borchardt L (2017) Solvent-free mechanochemical synthesis of nitrogen-doped nanoporous carbon for electrochemical energy storage. Chemsuschem 10:2416–2424

    Article  CAS  Google Scholar 

  112. Balahmar N, Mitchell AC, Mokaya R (2015) Generalized mechanochemical synthesis of biomass-derived sustainable carbons for high performance CO2 storage. Adv Energy Mater 5:1500867

    Article  Google Scholar 

  113. Zhang E, Hao G-P, Casco ME, Bon V, Grätz S, Borchardt L (2018) Nanocasting in ball mills—combining ultra-hydrophilicity and ordered mesoporosity in carbon materials. J Mater Chem A 6:859–865

    Article  CAS  Google Scholar 

  114. Zhao J, Shan W, Zhang P, Dai S (2020) Solvent-free and mechanochemical synthesis of N-doped mesoporous carbon from tannin and related gas sorption property. Chem Eng J 381:

    Article  CAS  Google Scholar 

  115. Pichon A, Lazuen-Garay A, James SL (2006) Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8:211–214

    Article  CAS  Google Scholar 

  116. Yuan W, Garay AL, Pichon A, Clowes R, Wood CD, Cooper AI, James SL (2010) Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate). CrystEngComm 12:4063–4065

    Article  CAS  Google Scholar 

  117. Prochowicz D, Sokołowski K, Justyniak I, Kornowicz A, Fairen-Jimenez D, Friščić T, Lewiński J (2015) A mechanochemical strategy for IRMOF assembly based on pre-designed oxo-zinc precursors. Chem Commun 51:4032–4035

    Article  CAS  Google Scholar 

  118. Tanaka S, Kida K, Nagaoka T, Ota T, Miyake Y (2013) Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework. Chem Commun 49:7884–7886

    Article  CAS  Google Scholar 

  119. Julien PA, Užarević K, Katsenis AD, Kimber SAJ, Wang T, Farha OK, Zhang Y, Casaban J, Germann LS, Etter M, Dinnebier RE, James SL, Halasz I, Friščić T (2016) In situ monitoring and mechanism of the mechanochemical formation of a microporous MOF-74 framework. J Am Chem Soc 138:2929–2932

    Article  CAS  Google Scholar 

  120. Xu C, De S, Balu AM, Ojeda M, Luque R (2015) Mechanochemical synthesis of advanced nanomaterials for catalytic applications. Chem Commun 51:6698–6713

    Article  CAS  Google Scholar 

  121. Lin Y, Watson KA, Fallbach MJ, Ghose S, Smith JG, Delozier DM, Cao W, Crooks RE, Connell JW (2009) Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes. ACS Nano 3:871–884

    Article  CAS  Google Scholar 

  122. Li S, Wang Y, Lai C, Qiu J, Ling M, Martens W, Zhao H, Zhang S (2014) Directional synthesis of tin oxide@graphene nanocomposites via a one-step up-scalable wet-mechanochemical route for lithium ion batteries. J Mater Chem A 2:10211–10217

    Article  CAS  Google Scholar 

  123. Wang M, Wu Z, Dai L (2015) Graphitic carbon nitrides supported by nitrogen-doped graphene as efficient metal-free electrocatalysts for oxygen reduction. J Electroanal Chem 753:16–20

    Article  CAS  Google Scholar 

  124. Mashkouri S, Arsalani N, Mostafavi H (2017) Wet mechanochemical approach assistance to the green synthesis of graphene sheet at room temperature and in situ anchored with MnO2 in a green method. J Alloys Compd 715:486–493

    Article  CAS  Google Scholar 

  125. Bowmaker GA (2013) Solvent-assisted mechanochemistry. Chem Commun 49:334–348

    Article  CAS  Google Scholar 

  126. Friščić T, Halasz I, Beldon PJ, Belenguer AM, Adams F, Kimber SAJ, Honkimäki V, Dinnebier RE (2013) Real-time and in situ monitoring of mechanochemical milling reactions. Nat Chem 5:66–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Grover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, D.D., Grover, V. (2021). Mechanochemistry: Synthesis that Uses Force. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1807-9_20

Download citation

Publish with us

Policies and ethics