Skip to main content

Advertisement

Log in

Synthesis and characterization of CuInS2 nanocrystalline semiconductor prepared by high-energy milling

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocrystalline CuInS2 particles have been synthesized from copper, indium, and sulfur powders by high-energy milling in a planetary mill in an argon atmosphere. Structural characterization of the prepared nanoparticles, including phase identification, Raman spectroscopy, specific surface area measurement, and particle size analysis were performed. The optical properties were studied using UV–Vis absorption and photoluminescence (PL) spectroscopy. The production of CuInS2 (JCPDS 027-0159) particles with a crystallite size of about 17.5–23.5 nm was confirmed by X-ray diffraction. The crystal structure has a tetragonal body-centered symmetry belonging to the I-42d space group. The Raman spectra also proved the formation of pure CuInS2 nanoparticles. TEM and HRTEM measurements revealed the presence of nanoparticles of different dimensions (10–20 nm) and their tendency to form agglomerates. The nanoparticles tend to agglomerate due to their large specific surface area. The average size of the synthesized particles was determined by photon cross-correlation spectroscopy to be in the range of 330–530 nm (bimodal size distribution). The band gap of the CuInS2 particles is 2 eV which is wider than that in bulk materials. The decrease in size leads to the blue-shift of the PL spectra. Therefore, CuInS2 nanoparticles are promising candidates for optical applications, and they have high potential in solar energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Green MA, Emery K, King DL, Igari S, Warta W (2002) Solar cell efficiency tables (version 20). Prog Photovolt 10(5):355–360. doi:10.1002/Pip.453

    Article  Google Scholar 

  2. Pinjari DV, Pandit AB (2010) Cavitation milling of natural cellulose to nanofibrils. Ultrason Sonochem 17(5):845–852. doi:10.1016/j.ultsonch.2010.03.005

    Article  Google Scholar 

  3. Klenk R, Klaer J, Scheer R, Lux-Steiner MC, Luck I, Meyer N, Ruhle U (2005) Solar cells based on CuInS2—an overview. Thin Solid Films 480:509–514. doi:10.1016/j.tsf.2004.11.042

    Article  Google Scholar 

  4. Kazmerski L, Ramanathan K (2005) The 14th international conference on ternary and multinary compounds. J Phys Chem Solids 66(11):1853. doi:10.1016/j.jpcs.2005.10.171

    Article  Google Scholar 

  5. Xiao JP, Xie Y, Tang R, Qian YT (2001) Synthesis and characterization of ternary CuInS2 nanorods via a hydrothermal route. J Solid State Chem 161(2):179–183. doi:10.1006/jssc.2001.9247

    Article  Google Scholar 

  6. Zhou JC, Li SW, Gong XL, Yang YL, Guo Y (2011) Preparation of CuInS2 microspheres via a facile solution-chemical method. Mater Lett 65(12):2001–2003. doi:10.1016/j.matlet.2011.03.089

    Article  Google Scholar 

  7. Kim KH, Lee JK, Alphonse A, Erkan ME, Shin DC, Lim DG, Park BO, Jin MHC (2013) Preparation of precursor particles by cryogenic mechanical milling for the deposition of CuInS2 thin films. Mater Sci Semicond Process 16(1):226–230. doi:10.1016/j.mssp.2012.08.012

    Article  Google Scholar 

  8. Amiri O, Salavati-Niasari M, Sabet M, Ghanbari D (2013) Synthesis and characterization of CuInS2 microsphere under controlled reaction conditions and its application in low-cost solar cells. Mater Sci Semicond Process 16(6):1485–1494. doi:10.1016/j.mssp.2013.04.026

    Article  Google Scholar 

  9. Li DS, Zou Y, Yang DR (2012) Controlled synthesis of luminescent CuInS2 nanocrystals and their optical properties. J Lumin 132(2):313–317. doi:10.1016/j.jlumin.2011.08.030

    Article  Google Scholar 

  10. Scheer R, Klenk R, Klaer J, Luck I (2004) CuInS2 based thin film photovoltaics. Sol Energy 77(6):777–784. doi:10.1016/j.solener.2004.08.004

    Article  Google Scholar 

  11. Long F, Wang WM, Tao HC, Jia TK, Li XM, Zou ZG, Fu ZY (2010) Solvothermal synthesis, nanocrystal print and photoelectrochemical properties of CuInS2 thin film. Mater Lett 64(2):195–198. doi:10.1016/j.matlet.2009.10.044

    Article  Google Scholar 

  12. Han SK, Kong MG, Guo Y, Wang MT (2009) Synthesis of copper indium sulfide nanoparticles by solvothermal method. Mater Lett 63(13–14):1192–1194. doi:10.1016/j.matlet.2009.02.032

    Article  Google Scholar 

  13. Lee DY, Kim J (2010) Characterization of sprayed CuInS2 films by XRD and Raman spectroscopy measurements. Thin Solid Films 518(22):6537–6541. doi:10.1016/j.tsf.2010.03.062

    Article  Google Scholar 

  14. Zhang JJ, Li Q, Chen J (2014) Synthesis and characterization of chalcopyrite CuInS2 nanorods by an organic molten salt method. Mater Lett 120:182–184. doi:10.1016/j.matlet.2014.01.079

    Article  Google Scholar 

  15. Hu HM, Yang BJ, Liu XY, Zhang R, Qian YT (2004) Large-scale growth of porous CuInS2 microspheres. Inorg Chem Commun 7(4):563–565. doi:10.1016/j.inoche.2004.02.019

    Article  Google Scholar 

  16. Jiang Y, Qu Y, Yuan SW, Xie B, Zhang SY, Qian YT (2001) Preparation and characterization of CuInS2 nanorods and nanotubes from an elemental solvothermal reaction. J Mater Res 16(10):2805–2809. doi:10.1557/Jmr.2001.0386

    Article  Google Scholar 

  17. Shen GZCD, Tang KB, Fang Z, Sheng J, Qian YT (2003) Polyol-mediated synthesis of porous nanocrystalline CuInS2 foam. J Cryst Growth 254:75

    Article  Google Scholar 

  18. Shi L, Yin PQ, Wang LB, Qian YT (2012) Fabrication of single-crystalline CuInS2 nanowires array via a diethylenetriamine-thermal route. CrystEngComm 14(21):7217–7221. doi:10.1039/C2ce25368b

    Article  Google Scholar 

  19. Baláž P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Heidelberg

    Google Scholar 

  20. Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado JM, Delogu F, Dutková E, Gaffet E, Gotor FJ, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42(18):7571–7637. doi:10.1039/C3cs35468g

    Article  Google Scholar 

  21. Gorai S, Bhattacharya S, Liarokapis E, Lampakis D, Chaudhuri S (2005) Morphology controlled solvothermal synthesis of copper indium sulphide powder and its characterization. Mater Lett 59(28):3535–3538. doi:10.1016/j.matlet.2005.06.023

    Article  Google Scholar 

  22. Nadica D, Abazovič DJJ, Stoiljkovič Milovan M, Mitrič Miodrag N, Ahrenkiel Scott P, Nedeljkovič Jovan M, Čomor Mirjana I (2012) Colloidal chemistry-based synthesis of quantized CuInS2/Se2 nanoparticles. J Serb Chem Soc 77(6):789–797

    Article  Google Scholar 

  23. He JJ, Zhou WH, Li M, Hou ZL, Du YF, Wu SX (2012) One-pot route for preparation of monodisperse CuInS2 nanocrystals. Mater Lett 66(1):96–98. doi:10.1016/j.matlet.2011.08.013

    Article  Google Scholar 

  24. Katsuhiro Nose NF, Omata Takahisa, Otsuka-Yao-Matsuo Shinya, Wataru Kato MU, Nakamura Hiroyuki, Maeda Hideaki, Hayato Kamioka AHH (2009) Photoluminescence of CuInS2-based semiconductor quantum dots; Its origin and the effect of ZnS coating. J Phys 165:012028

    Google Scholar 

  25. Landsberg PT (1991) Recombination in semiconductors. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The support through the Slovak Grant Agency VEGA (projects 2/0027/14, 1/0439/13, 2/0051/14) and APVV 14-0103 is gratefully acknowledged. The authors also acknowledge the support of the European Union through the CT-2011-1-REGPOT285895 AL-NANOFUN project (Advanced Laboratory for the Nano-Analysis of novel Functional materials), for the microscopy facilities sited at the Institute of Materials Science in Seville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Dutková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutková, E., Sayagués, M.J., Briančin, J. et al. Synthesis and characterization of CuInS2 nanocrystalline semiconductor prepared by high-energy milling. J Mater Sci 51, 1978–1984 (2016). https://doi.org/10.1007/s10853-015-9507-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9507-x

Keywords

Navigation