Skip to main content

Advanced Bioremediation Strategies for Mitigation of Chromium and Organics Pollution in Tannery

  • Chapter
  • First Online:
Rhizobiont in Bioremediation of Hazardous Waste

Abstract

Recent past has witnessed to increase in environmental pollution because of rapid urbanization and industrialization. Various organic and inorganic toxicants are present in tannery effluents such as metals and other xenobiotic compounds which cause imbalance to the ecosystem having carcinogenic effects threaten plants, human, and animals’ health. Chromium is one of the major pollutants discharged from tanneries, is highly toxic, mutagenic, and carcinogenic in nature. There are several remedial measures for the removal of such toxicants. Physicochemical approaches remove the pollutants but they are not cost-effective and eco-friendly. Microorganisms based treatment of toxic chemicals either in liquid or solid system is one of the most economic, effective, environment friendly, robust, and sustainable remediation strategy. Several microbes of different physicochemical orientation and plants may selectively be employed for such remedial measure of any type of toxic chemicals of industrial effluent. This chapter discusses the recent advances and challenges in bioremediation methods of tannery wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asatiani NV, Abuladze MK, Kartvelishvili TM, Bakradze NG, Sapojnikova NA, Tsibakhashvili NY, Tabatadze LV, Lejava LV, Asanishvili LL, Holman H (2004) Effect of Cr (VI) action on Arthrobacter oxydans. Curr Microbiol 49:321–326

    Article  CAS  PubMed  Google Scholar 

  • Ashraf CM, Ahmad S, Malik MT (1997) Supported liquid membrane technique applicability for removal of chromium from tannery wastes. Waste Manag 17:211–218

    Google Scholar 

  • Ates E, Orhon D, Tunay O (1997) Characterization of tannery wastewaters for pretreatment selected case studies. Water Sci Technol 36:217–223

    Article  CAS  Google Scholar 

  • Avudainayagam S, Meghara A, Owens G, Kookana RS, Chittleborough D, Naidu R (2003) Chemistry of chromium in soils with emphasis, on tannery waste sites. Rev Environ Contam Toxicol 178:53–91

    CAS  PubMed  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  PubMed Central  CAS  Google Scholar 

  • Beiyuan J, Awad YM, Beckers F, Tsang DC, Ok YS, Rinklebe J (2017) Mobility and phytoavailability of as and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere 178:110–118

    Article  CAS  PubMed  Google Scholar 

  • Benazir JF, Suganthi R, Rajvel D, Pooja MP, Mathithumilan B (2010) Bioremediation of chromium in tannery effluent by microbial consortia. Afr J Biotechnol 9(21):3140–3143

    Google Scholar 

  • Bhide JV, Dhakephalkar PK, Paknikar KM (1996) Microbiological process for the removal of Cr (VI) from chromate-bearing cooling tower effluent. Biotechnol Lett 18:667–672

    Article  CAS  Google Scholar 

  • Cassano A, Molinari R, Romano M, Drioli E (2001) Treatment of aqueous effluent of the leather industry by membrane processes. A review. J Membr Sci 181:111–126

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Kapley A, Purohit HJ (2011) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant (CETP) during the degradation and detoxification of tannery wastewater. Bioresour Technol 102:2333–2341

    Article  CAS  PubMed  Google Scholar 

  • Chirwa EMN, Wang YT (2000) Simultaneous chromium (VI) reduction and phenol degradation in an anaerobic consortium of bacteria. Water Res 33:2376–2384

    Article  Google Scholar 

  • Chirwa EMN, Wang YT (2005) Modeling hexavalent chromium reduction and phenol degradation in a coculture biofilm reactor. ASCE J Environ Eng 131(11):1495–1506

    Article  CAS  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    Article  CAS  PubMed  Google Scholar 

  • Davis TA, Volesky B, Vieira RHSF (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278

    Article  CAS  Google Scholar 

  • De Gisi S, Galasso M, De Feo G (2009) Treatment of tannery wastewater through the combination of a conventional activated sludge process and reverse osmosis with a plane membrane. Desalination 249:337–342

    Article  CAS  Google Scholar 

  • De Nicola E, Meriç S, Gallo M, Iaccarino M, Della Rocca C, Lofrano G et al (2007) Vegetable and synthetic tannins induce hormesis/toxicity in sea urchin early development and in algal growth. Environ Pollut 146:46–54

    Article  PubMed  CAS  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  Google Scholar 

  • El-Sheikh Mahmoud A, Hazem I, Saleh J, Flora R, Mahmoud R, El-Ghany A (2011) Biological tannery wastewater treatment using two stage UASB reactors. Desalination 276:253–259

    Article  CAS  Google Scholar 

  • Farabegoli G, Carucci A, Majone M, Rolle E (2004) Biological treatment of tannery wastewater in the presence of chromium. J Environ Manage 71:345–349

    Article  CAS  PubMed  Google Scholar 

  • Farag S, Zaki S (2010) Identification of bacterial strains from tannery effluent and reduction of hexavalent chromium. J Environ Biol 31(5):877–882

    CAS  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  PubMed  Google Scholar 

  • Ganesh R, Balaji G, Ramanujam RA (2006) Biodegradation of tannery wastewater using sequencing batch reactor—respirometric assessment. Bioresour Technol 97:1815–1821

    Article  CAS  PubMed  Google Scholar 

  • Garg SK, Tripathi M (2011) Strategies for decolorization and detoxification of pulp and paper mill effluent. Rev Environ Contam Toxicol 212:113–136

    CAS  PubMed  Google Scholar 

  • Garg SK, Tripathi M, Srinath T (2012) Strategies for chromium bioremediation of tannery effluent. Rev Environ Contam Toxicol 217:75–140

    CAS  PubMed  Google Scholar 

  • Garg SK, Tripathi M, Singh SK, Singh A (2013) Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups. Environ Sci Pollut Res Int 20(4):2288–2304

    Article  CAS  PubMed  Google Scholar 

  • Garg SK, Singh K, Tripathi M (2016) Optimization of process variables for hexavalent chromium biosorption by psychrotrophic Pseudomonas putida SKG-1 isolate. Desal Water Treat 57:19865–19876

    Article  CAS  Google Scholar 

  • Garg SK, Garg S, Tripathi M, Singh K (2018) Microbial treatment of tannery effluent by augmenting psychrotrophic Pseudomonas putida isolate. Environ Poll Prot 3:23–39

    Google Scholar 

  • Gaur R, Singh A, Tripathi A, Singh R (2017) Bioreactor. In: Singh RL (ed) Principles and applications of environmental biotechnology for a sustainable future. Springer, Singapore

    Google Scholar 

  • Gaur R, Tiwari S (2015) Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15:19

    Google Scholar 

  • Holmes AL, Wise SS, Wise JP Sr (2008) Carcinogenicity of hexavalent chromium. Indian J Med Res 128:353–372

    CAS  PubMed  Google Scholar 

  • Ilias M, Rafiqullah IM, Debnath BC, Mannan KSB, Hoq MM (2011) Isolation and characterization of chromium (VI)-reducing bacteria from tannery effluents. Indian J Microbiol 51(1):76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabdasli I, Tunay O, Orhon D (1999) Wastewater control and management in a leather tanning district. Water Sci Technol 40:261–267

    Article  CAS  Google Scholar 

  • Khan P, Pujara K, Murugavelh S, Mohanty K (2020) Bioremediation of chromium using a laboratory-scale sand bed reactor. In: Shah M, Banerjee A (eds) Combined application of physico-chemical & microbiological processes for industrial effluent treatment plant. Springer, Singapore. https://doi.org/10.1007/978-981-15-0497-6_13

    Chapter  Google Scholar 

  • Kumar S, Srivastava S, Gaur R (2013) Increasing antibiotic resistance in microbial consortium and human health hazards by heavy metals exposure. Int J Biomed Health Sci 3(1):45–50

    Google Scholar 

  • Kumar M, Kumar V, Varma A, Prasad R, Sharma A, Pal A, Arshi A, Singh J (2016) An efficient approach towards the bioremediation of copper, cobalt and nickel contaminated field samples. J Soil Sediment 17(4):2118. https://doi.org/10.1007/s11368-016-1398-1

    Article  CAS  Google Scholar 

  • Kumar V, Kumar M, Sharma S, Prasad R (2017) Probiotics in agroecosystem. Springer, Singapore

    Book  Google Scholar 

  • Lefebvre O, Vasudevan N, Torrijosa M, Thanasekaran K, Moletta R (2006) Anaerobic digestion of tannery soak liquor with an aerobic post-treatment. Water Res 40:1492–1500

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Li B (2011) Study on fungi-bacteria consortium bioremediation of petroleum contaminated mangrove sediments amended with mixed biosurfactants. In: Advanced materials research. Trans Tech Publications, Zurich, pp 1163–1167

    Google Scholar 

  • Liu YG, Pan C, Xia WB, Zeng GM, Zhou M, Liu YY, Ke J, Huang C (2008) Simultaneous removal of Cr (VI) and phenol in consortium culture of Bacillus anthracis and Pseudomonas putida Migula (CCTCC AB92019). Trans Nonf Met Soc China 18:1014–1020

    Article  CAS  Google Scholar 

  • Lofrano G, Belgiorno V, Gallo M, Raimo A, Meriç S (2006) Toxicity reduction in leather tanning wastewater by improved coagulation flocculation process. Global NEST J 8:151–158

    Google Scholar 

  • Lofrano G, Meric S, Belgiorno V, Napoli RMA (2007) Fenton’s oxidation of various based synthetic tannins (syntans). Desalination 211:10–21

    Article  CAS  Google Scholar 

  • Lofrano G, Aydin E, Russo F, Guida M, Belgiorno V, Meric S (2008) Characterization, fluxes and toxicity of leather tanning bath chemicals in a large tanning district area (IT). Water Air Soil Pollut 8:529–542

    Article  CAS  Google Scholar 

  • Lofrano G, Meric S, Zengin GE, Orhon D (2013) Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Sci Total Environ 461:265–281

    Article  PubMed  CAS  Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT (1994) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 36:91–121

    Article  Google Scholar 

  • Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  Google Scholar 

  • Maria MV, Bertha AR, Carlos GSJ (1999) Health deterioration by chromium in workers of a tannery unit. Tata McGraw-Hill, New Delhi, pp 725–730

    Google Scholar 

  • Munz G, De Angelis D, Gori R, Mori G, Casarci M, Lubello C (2009) The role of tannins in conventional angogated membrane treatment of tannery wastewater. J Hazard Mater 164:733–739

    Article  CAS  PubMed  Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148. https://doi.org/10.3389/fpubh.2016.00148

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 2012:375843. https://doi.org/10.1155/2012/375843

    Article  CAS  Google Scholar 

  • Pal A, Dutta S, Paul AK (2005) Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr Microbiol 66:327–330

    Article  CAS  Google Scholar 

  • Palmer CD, Wittbrodt PR (1991) Processes affecting the remediation of chromium-contaminated sites. Environ Health Perspect 92:25–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parameswari E, Lakshmanan A, Thilagavathi T (2009) Biosorption of chromium (VI) and nickel (II) by bacterial isolates from an aqueous solution. Electronic J Environ Agri Food Chem 8(3):150–156

    CAS  Google Scholar 

  • Park D, Yun Y-S, Park JM (2005) Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochem 40:2559–2565

    Article  CAS  Google Scholar 

  • Perpetuo EA, Souza CB, Nascimento CAO (2011) Engineering bacteria for bioremediation. In: Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. IntechOpen, London

    Google Scholar 

  • Purakayastha TJ, Chhonkar PK (2010) Phytoremediation of heavy metal contaminated soils. In: Soil heavy metals. Springer, Berlin, Heidelberg, pp 389–429

    Chapter  Google Scholar 

  • Quintelas C, Sousa E, Silva F, Neto S, Tavares T (2006) Competitive biosorption of ortho-cresol, phenol, chlorophenol and chromium (VI) from aqueous solution by a bacterial biofilm supported on granular activated carbon. Process Biochem 41:2087–2091

    Article  CAS  Google Scholar 

  • Ray Arora S, Ray MK (2009) Bioremediation of heavy metal toxicity-with special reference to chromium. Al Ameen J Med Sci 2(2):57–63

    Google Scholar 

  • Rehman A, Shakoori FR, Shakoori AR (2007) Heavy metal resistant Distigma proteus (Euglenophyta) isolated from industrial effluents and its possible role in bioremediation of contaminated wastewaters. World J Microbiol Biotechnol 23:753–758

    Article  CAS  Google Scholar 

  • Schrank SG, José HJ, Moreira RFPM, Schroder HF (2004) Elucidation of the behaviour of tannery wastewater under advanced oxidation conditions. Chemosphere 56:411–423

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Wang YT (1995) Modeling simultaneous hexavalent chromium reduction and phenol degradation by a defined coculture of bacteria. Biotechnol Bioeng 48:606–616

    Article  CAS  PubMed  Google Scholar 

  • Shumate SE, Strandberg GW (1985) Accumulation of metals by microbial cells. In: Moo-Young M, Robinson CW, Howell JA (eds) Comprehensive biotechnology. Pergamon Press, New York, pp 235–247

    Google Scholar 

  • Song Z, Williams CJ, Edyvean RGJ (2004) Treatment of tannery wastewater by chemical coagulation. Desalination 164:249–259

    Article  CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  CAS  PubMed  Google Scholar 

  • Srinath T, Garg SK, Ramteke PW (2003) Biosorption and elution of chromium from immobilized Bacillus coagulans biomass. Indian J Exp Biol 41:986–990

    CAS  PubMed  Google Scholar 

  • Srivastava S, Dwivedi AK (2015) Biological wastes the tool for biosorption of arsenic. J Bioremed Biodegr 7:1–3

    Google Scholar 

  • Srivastava S, Thakur IS (2007) Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18:637–646

    Article  CAS  PubMed  Google Scholar 

  • Stasinakis AS, Mamais D, Thomaidis NS, Lekkas TD (2002) Effect of chromium (VI) on bacterial kinetics of heterotrophic biomass of activated sludge. Water Res 36:3342–3350

    Article  Google Scholar 

  • Sultan S, Hasnain S (2007) Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresour Technol 98(2):340–344

    Article  CAS  PubMed  Google Scholar 

  • Szulczewski MD, Helmke PA, Bleam WF (1997) Comparison of XANES analysis and extractions to determine chromium speciation in contaminated soils. Environ Sci Technol 31:2954–2959

    Article  CAS  Google Scholar 

  • Thakur IS, Verma P, Upadhyaya KC (2001) Involvement of plasmid in degradation of pentachlorophenol by Pseudomonas sp. from a chemostat. Biochem Biophys Res Commun 286:109–113

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Rai P, Yadav SK, Gaur R (2012) A novel thermotolerant Pediococcus acidilactici B-25 strain for color, COD, and BOD reduction of distillery effluent for end use. Environ Sci Pollut Res 20:4046–4058

    Article  CAS  Google Scholar 

  • Tripathi M, Garg SK (2010) Studies on selection of efficient bacterial strain simultaneously tolerant to hexavalent chromium and pentachlorophenol isolated from treated tannery effluent. Research J Microbiol 5(8):707–716

    Article  CAS  Google Scholar 

  • Tripathi M, Garg SK (2013) Co-remediation of pentachlorophenol and Cr6+ by free and immobilized cells of native Bacillus cereus isolate: spectrometric characterization of PCP dechlorination products, bioreactor trial and chromate reductase activity. Process Biochem 48:496–509

    Article  CAS  Google Scholar 

  • Tripathi M, Garg SK (2014a) Dechlorination of chloroorganics, decolorization and simultaneous bioremediation of Cr6+ from real tannery effluent employing indigenous Bacillus cereus isolate. Environ Sci Pollut Res Int 21(7):5227–5241

    Article  CAS  PubMed  Google Scholar 

  • Tripathi M, Garg SK (2014b) Response surface modeling for co-remediation of Cr6+ and pentachlorophenol by Bacillus cereus RMLAU1: bioreactor trial and structural and functional characterization by SEM-EDS and FT-IR analyses. Biorem J 18:328–344

    Article  CAS  Google Scholar 

  • Tripathi M, Vikram S, Jain RK, Garg SK (2011a) Isolation and growth characteristics of chromium (VI) and pentachlorophenol tolerant bacterial isolate from treated tannery effluent for its possible use in simultaneous bioremediation. Indian J Microbio 51(1):61–69

    Article  CAS  Google Scholar 

  • Tripathi M, Mishra SS, Tripathi VR, Garg SK (2011b) Predictive approach for simultaneous biosorption of hexavalent chromium and pentachlorophenol degradation by Bacillus cereus RMLAU1. Afr J Biotechnol 10(32):6052–6061

    CAS  Google Scholar 

  • Tripathi M, Upadhyay SK, Kaur M, Kaur K (2018) Toxicity concerns of hexavalent chromium from tannery waste. J Biotechnol Bioeng 2:40–44

    Google Scholar 

  • Tripathi M, Kumar S, Yadav SK, Pandey R, Tripathi P (2019) Modern biological methods for treatment of tannery effluent. In: Tripathi M (ed) Microbial treatment strategies for waste management. OMICS International, London

    Google Scholar 

  • Turick CE, Apel WA, Carmiol NS (1996) Isolation of hexavalent chromium reducing anaerobes from hexavalent chromium contaminated and non-contaminated environments. Appl Microbiol Biotechnol 44:683–688

    Article  CAS  PubMed  Google Scholar 

  • U.S. EPA (1979) Economics of wastewater treatment alternatives for the electroplating industry. In: U.S. EPA technology transfer report, Environment Protection Agency 625/5-79-016, June, U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Upadhyay N, Vishwakarma K, Singh J, Mishra M, Kumar V, Rani R, Mishra RK, Chauhan DK, Tripathi DK, Sharma S (2017) Tolerance and reduction of chromium (VI) by Bacillus sp. MNU16 isolated from contaminated coal mining soil. Front Plant Sci 8:778–791. https://doi.org/10.3389/fpls.2017.00778

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption and biosorbents. In: Volesky B (ed) Biosorption of heavy metals. CRC, Boca Raton

    Google Scholar 

  • Yadav A, Mishra S, Kaithwas G, Raj A, Bharagava RN (2016) Organic pollutants and pathogenic bacteria in tannery wastewater and their removal strategies. Micr Environ Man 5:101–127

    Google Scholar 

  • Yadav KK, Gupta N, Kumar V, Singh JK (2017) Bioremediation of heavy metals from contaminated sites using potential species: a review. Indian J Environ Prot 37(1):65

    CAS  Google Scholar 

  • Zhang W, Lin Z, Pang S, Bhatt P, Chen S (2020) Insights into the biodegradation of lindane (γ-hexachlorocyclohexane) using a microbial system. Front Microbiol 11:522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zupancic GD, Jemec A (2010) Anaerobic digestion of tannery waste: semi-continuous and anaerobic sequencing batch reactor processes. Bioresour Technol 101:26–33

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, M., Singh, D.N., Prasad, N., Gaur, R. (2021). Advanced Bioremediation Strategies for Mitigation of Chromium and Organics Pollution in Tannery. In: Kumar, V., Prasad, R., Kumar, M. (eds) Rhizobiont in Bioremediation of Hazardous Waste. Springer, Singapore. https://doi.org/10.1007/978-981-16-0602-1_10

Download citation

Publish with us

Policies and ethics