Skip to main content
Log in

Heavy metal resistant Distigma proteus (Euglenophyta) isolated from industrial effluents and its possible role in bioremediation of contaminated wastewaters

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

The alga, Distigma proteus, isolated from industrial wastewater showed tolerance against Cd2+ (8.0 μg/ml), Cr6+ (12 μg/ml), Pb2+ (15 μg/ml) and Cu2+ (10 μg/ml). The metal ions slowed down the growth of the organism after 4–5 days of exposure. The reduction in cell population was 90% for Cu2+, 84% for Cd2+, 71% for Cr6+, and 63% for Pb2+ after 8 days of metal stress. The order of resistance to heavy metal, in terms of reduction in the cellular population, was Cu2+ > Cd2+ > Cr6+ > Pb2+. Chromium- and cadmium-processing capabilities of the alga were worked out for its potential use as a bioremediator of wastewater. The reduction in the amount of Cr6+ after 2, 4, 6 and 8 days of algal culture containing 5.0 μg Cr6+ ml−1 of culture medium was 77, 85, 92 and 97%, respectively. Distigma could also remove 48% Cd2+after 2 days, 68% after 4 days, 80% after 6 days and 90% after 8 days from the medium. The heavy metal uptake ability of Distigma can be exploited for metal detoxification and environmental clean-up operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • APHA (1989) Standard methods for the examination of water and wastewater. American Water Works Association and Water Pollution Control Federation, 18th edn, Washington, DC. ISBN 0-419-21590-5

  • Albergoni V, Piccinni E (1983) Biological response to trace metals and their biochemical effects. In: Leppard GG (ed) Trace element speciation in surface waters and its ecological implications. Plenum Press, New York, pp 159-174. ISBN 0-306-41269-1

  • Andrews S, Sutherland RA (2004) Cu, Pb and Zn contamination in Nuuanu watershed, Oahu, Hawaii. Sci Total Environ 324:173–182

    Article  PubMed  CAS  Google Scholar 

  • Beveridge TJ, Hughes MN, Lee H (1997) Metal microbe interactions: contemporary approaches. Adv Microbiol Physiol 38:177–244

    Article  CAS  Google Scholar 

  • Blowes D (2002) Tracking hexavalent chromium in groundwater. Science 295:2024–2025

    Article  PubMed  ADS  CAS  Google Scholar 

  • Brierley CL (1990) Bioremediation of metal contaminated surface and ground water. Geomicrobiol J 8:201–233

    CAS  Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  PubMed  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Gorecka H (2004) Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy 73:147–153

    Article  CAS  Google Scholar 

  • Ciba J, Kolewicz T, Turek M (1999) The occurrence of metals in composted municipal wastes and their removal. Water Air Soil Pollut 111:159–170

    Article  CAS  Google Scholar 

  • Company R, Serafim A, Bebianno MJ, Cosson R, Shillito B, Fiala-Medioni A (2004) Effect of cadmium, copper and mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus. Mar Environ Res 58:377–381

    Article  PubMed  CAS  Google Scholar 

  • Dabeka RW, McKenzie AD (1992) Total diet study of lead and cadmium in food composites: Preliminary investigations. J AOAC Int 75:386–394

    CAS  Google Scholar 

  • De Filippis LF, Pallaghy CK (1994) Heavy metals: source and biological effects. In: Rai LC, Gaur JP, Soeder CJ (eds) Advances in limnology series: algae and water pollution. Eschweizerbartsche Press, Stuttgart, pp 31–77. ISBN 3-510-47043-5

  • Devars S, Hernandez R, Moreno-Sanchez R (1998) Enhanced heavy metal tolerance in two strains of photosynthetic Euglena gracilis by pre-exposure to mercury or cadmium. Arch Environ Contam Toxicol 34:128–135

    Article  PubMed  CAS  Google Scholar 

  • Eccles H (1995) Removal of heavy metals from effluents streams—why select a biological process? Int Biodeterior Biodegradation 35:5–16

    Article  CAS  Google Scholar 

  • Edmondson WT (1966) Fresh water biology. Wiley, New York, pp 124–125. ISBN 0-471-04249-8

  • Feng D, Aldrich C (2004) Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy 73:1–10

    Article  CAS  Google Scholar 

  • Gekeler W, Grill E, Winnacker EL, Zenk MH (1988) Algae sequester heavy metals via phytochelatin complexes. Arch Microbiol 150:197–202

    Article  CAS  Google Scholar 

  • Gharieb MM, Gadd GM (1998) Evidence for the involvement of vacuolar activity in metal(loid) tolerance: vacuolar-lacking and defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite. Biometals 11:101–106

    Article  PubMed  CAS  Google Scholar 

  • Gin KY, Tang YZ, Aziz MA (2002) Derivation and application of a new model for heavy metal biosorption by algae. Water Res 36:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Goyer RA (1993) Lead toxicity: current concerns. Environ Health Perspect 100:177–187

    Article  PubMed  CAS  Google Scholar 

  • Haq RU, Shakoori AR (1998) Microbiological treatment of industrial wastes containing toxic chromium involving successive use of bacteria, yeast and algae. World J Microbiol Biotechnol 14:583–585

    Article  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1985) Cadmium resistance in Pseudomonas putida: growth and uptake of cadmium. J Gen Microbiol 131:2539–2544

    CAS  Google Scholar 

  • Howe G, Merchant S (1992) Heavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii. Plant Physiol 98:127–136

    Article  PubMed  CAS  Google Scholar 

  • Kalcher K, Kern W, Pietsch R (1993) Cd and Pb in the smoke of a filter cigarette. Sci Total Environ 128:21–35

    Article  PubMed  CAS  Google Scholar 

  • Kumar H (1994) Studies in biofiltration efficiency of Cyanobacteria Oscillatoria anne Van Goor, towards industrial and sewage water treatment. Presonus Environ Bull 3:195–200

    CAS  Google Scholar 

  • Lebrun M, Audurier A, Cossart P (1994) Plasmid-borne Cd-resistance genes in Listeria monocytogenes are present on Tn5422, a novel transposon closely related to Tn 917. J Bacteriol 176:3049–3061

    PubMed  CAS  Google Scholar 

  • Nishikawa K, Tominaga N (2001) Isolation, growth, ultrastructure, and metal tolerance of the green alga, Chlamydomonas acidophila (Chlorophyta). Biosci Biotechnol Biochem 65:2650–2656

    Article  PubMed  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  PubMed  ADS  CAS  Google Scholar 

  • Parsek MR, Mefall SM, Chakrabarty AM (1995) Microbial degradation of toxic environmental pollutants, ecological and evolutionary considerations. Int Biodeterior Biodegradation 35:175–188

    Article  CAS  Google Scholar 

  • Pas M, Milacic R, Draslar K, Pollak N, Raspor P (2004) Uptake of chromium (III) and chromium (VI) compounds in the yeast cell structure. Biometals 17:25–33

    Article  PubMed  CAS  Google Scholar 

  • Pena-Castro JM, Martinez-Jeronimo F, Esparza-Garcia F, Canizares-Villanueva RO (2004) Heavy metals removal by the microalga Scenedesmus incrassatulus in continuous cultures. Bioresour Technol 94:219–222

    Article  PubMed  CAS  Google Scholar 

  • Perez-Rama M, Alonso JA, Lopez CH, Vaamonde ET (2002) Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresour Technol 84:265–270

    Article  PubMed  CAS  Google Scholar 

  • Piccinni E (1989) Response to heavy metals of uni- and multicellular organisms: homologies and analogies. Bull Zool 56:265–271

    Google Scholar 

  • Rangsayatorn N, Upatham ES, Kruatrachue M, Pokethitiyook P, Lanza GR (2002) Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ Pollut 119:45–53

    Article  CAS  Google Scholar 

  • Raspor P, Batic M, Jamnik P (1999) Measurement of yeast viability/mortality in the presence of chromium (VI). Food Technol Biotechnol 37:81–86

    CAS  Google Scholar 

  • Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–68

    Article  PubMed  CAS  Google Scholar 

  • Reed RH, Gadd GM (1990) Metal tolerance in eukaryotic and prokaryotic algae. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, FL, pp 105–118. ISBN 0-8493-6852-9

  • Rehman A, Shakoori AR (2001) Heavy metal resistant Chlorella spp., isolated from tannery effluents, and their role in remediation of hexavalent chromium in industrial wastewater. Bull Environ Contam Toxicol 66:542–547

    Article  PubMed  CAS  Google Scholar 

  • Rehman A, Shakoori AR (2003) Isolation, growth, metal tolerance and metal uptake of the green alga, Chlamydomonas (Chlorophyta) and its role in bioremediation of heavy metals. Pak J Zool 35:337–341

    CAS  Google Scholar 

  • Rocchetta I, Ruiz LB, Magaz G, Conforti VTD (2003) Effects of hexavalent chromium in two strains of Euglena gracilis. Bull Environ Contam Toxicol 70:1045–1051

    Article  PubMed  CAS  Google Scholar 

  • Sandau E, SAndau P, Pulz O, Zimmermann M (1996) Heavy metal sorption by marine algae and algae byeproducts. Acta Biotechnol 16:103–119

    Article  CAS  Google Scholar 

  • Sanders CL (1986) Toxicological aspects of energy production. MacMillan, New York, pp 158–162. ISBN 002948960-1

  • Shakoori AR, Muneer B (2002) Copper resistant bacteria from industrial effluents and their role in remediation of heavy metals in wastewater. Folia Microbiol 47:43–50

    CAS  Google Scholar 

  • Shi X, Chiu A, Chen CT, Halliwell B, Castranova V, Vallyathan V (1999) Reduction of chromium (VI) and its relationship to carcinogenesis. J Toxicol Environ Health 2:87–104

    Article  CAS  Google Scholar 

  • Shuttleworth KL, Unz RF (1988) Growth of filamentous bacteria in the presence of heavy metals. In: Jenkins D, Olson BH (eds) Water and wastewater microbiology, vol 20, pp 485–487. Pergamon, Oxford. ISBN 0-08037367-4

  • Shuttleworth KL, Unz RF (1993) Sorption of heavy metals to the filamentous bacterium thiothrix strain A1. Appl Environ Microbiol 59:1274–1282

    PubMed  CAS  Google Scholar 

  • Simmons P, Tobin JM, Singleton I (1995) Consideration of the use of commercially available yeast biomass for the treatment of metal containing effluents. J Ind Microbiol 14:240–246

    Article  CAS  Google Scholar 

  • Verma SK, Singh SP (1995) Multiple metal resistance in Cyanobacteria Nostoc muscorum. Bull Environ Contam Toxicol 54:614–619

    Article  PubMed  CAS  Google Scholar 

  • Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    Article  PubMed  CAS  Google Scholar 

  • Wong PK, So CM (1993) Copper accumulation by a strain of Pseudomonas putida. Microbios 73:113–121

    PubMed  CAS  Google Scholar 

  • Yilmaz EI (2003) Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res Microbiol 154:409–415

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Shakoori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehman, A., Shakoori, F.R. & Shakoori, A.R. Heavy metal resistant Distigma proteus (Euglenophyta) isolated from industrial effluents and its possible role in bioremediation of contaminated wastewaters. World J Microbiol Biotechnol 23, 753–758 (2007). https://doi.org/10.1007/s11274-006-9291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-006-9291-5

Keywords

Navigation