Skip to main content

Redox Regulation of Estrogen Signaling in Human Breast Cancer

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Estrogen and oxidative stress are interconnected in a very delicate fashion, leading to redox regulation of estrogen and its regulatory molecules. On the other hand, estrogen regulates the environmental oxidative stress via its intermediate metabolites. Transcription factors such as Nrf2 and nuclear factors such as NFκB intertwined with estrogen and oxidative stress. The current study shapes a possible associative pathway involving NFκB, Nrf2, SULT1E1, estrogen, and oxidative stress to hypothesize possible stimulators and inhibitors and the concerned targets, which may either prevent cancer initiation or be possible therapeutics for late-stage cancer. Cancer cells possess stem cell property, which helps in disease recurrence and tumor resistance. G6PD and HIF-1α were upregulated in MCF-7 and MDA-MB-231 cells by Nrf2 overexpression. HIF-1α coordinates the metabolic adaptation in hypoxic cancer cells. Nrf2 may upregulate GCLC and GSH, which decreases intracellular ROS, leading to a strong reducing environment, which may upregulate nuclear FoxO3a and its binding to the Bmi-1 promoter. Nuclear FoxO3a-mediated transcription is responsible for the self-renewal activity of breast cancer stemlike cells. Our earlier study conferred that estrogen partially regulates MMP and metastasis along with simultaneous regulations of NFκβ, SULT1E1, and Nrf2 via oxidative stress under the influence of estradiol. Overall, these activities of estrogen under redox regulation may contribute to the severity of human breast carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aka JA, Zerradi M, Houle F, Huot J, Lin S-X (2012) 17beta-hydroxysteroid dehydrogenase type 1 modulates breast cancer protein profile and impacts cell migration. Breast Cancer Res 14(3):R92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antunes F, Brito PM (2017) Quantitative biology of hydrogen peroxide signaling. Redox Biol 13:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrera G (2012) Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol 2012:137289

    PubMed  PubMed Central  Google Scholar 

  • Biswas DK, Shi Q, Baily S, Strickland I, Ghosh S, Pardee AB, Iglehart JD (2004) NF-kB activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci U S A 101(27):10137–10142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown NS, Bicknell R (2001) Hypoxia and oxidative stress in breast cancer: oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res 3(5):323–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzdar A (2000) An overview of the use of non-steroidal aromatase inhibitors in the treatment of breast cancer. New aromatase inhibitors and pure oestrogen antagonists in gynaecological and breast cancer. Eur J Cancer 36:S81–S91

    Article  Google Scholar 

  • Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H (2007) NF-kappa B represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26:711–724

    Article  CAS  PubMed  Google Scholar 

  • De Bont R, van Larebeke N (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19(3):169–185

    Article  PubMed  Google Scholar 

  • Dejardin E, Bonizzi G, Bellahcene A, Castronovo V, Merville MP, Bours V (1995) Highly-expressed P 100/P52 (Nfkb2) sequesters other Nf-Kappa-B-related proteins in the cytoplasm of human breast-cancer cells. Oncogene 11(9):1835–1841

    CAS  PubMed  Google Scholar 

  • Duffel MW (2010) Biotransformation. In: Comprehensive toxicology. Elsevier

    Google Scholar 

  • Farooq A (2015) Structural and functional diversity of estrogen receptor ligands. Curr Top Med Chem 15(14):1372–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felty Q, Xiong W-C, Sun D, Sarkar S, Singh KP, Parkash J, Roy D (2005) Estrogen-induced mitochondrial reactive oxygen species as signal-transducing messengers. Biochemistry 44(18):6900–6909

    Article  CAS  PubMed  Google Scholar 

  • George BP, Abrahamse H (2019) Increased oxidative stress induced by rubus bioactive compounds induce apoptotic cell death in human breast cancer cells. Oxid Med Cell Longev 2019:6797921

    Article  PubMed  PubMed Central  Google Scholar 

  • Gschwantler-Kaulich D, Fink-Retter A, Czerwenka K, Hudelist G, Kaulich A, Kubista E, Singer CF (2011) Differential expression pattern of estrogen receptors, aromatase, and sulfotransferase in breast cancer tissue and corresponding lymph node metastases. Tumour Biol 32(3):501–508

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, McMahon M (2009) NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34(4):176–188

    Article  CAS  PubMed  Google Scholar 

  • Hudelist G, Wülfing P, Kersting C, Burger H, Mattsson B, Czerwenka K, Kubista E, Gschwantler-Kaulich D, Fink-Retter A, Singer CF (2008) Expression of aromatase and estrogen sulfotransferase in preinvasive and invasive breast cancer. J Cancer Res Clin Oncol 134(1):67–73

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13(1):76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jerome F, Strauss III, Modi B, McAllister JM (2014) Defects in ovarian steroid hormone biosynthesis. In: Cellular endocrinology in health and disease. Elsevier, pp 285–309

    Google Scholar 

  • Ji XW, Zhou TY, Lu Y, Wei MJ, Lu W, Cho WC (2015a) Breast cancer treatment and sulfotransferase. Expert Opin Ther Targets 19(6):821–834

    Article  CAS  PubMed  Google Scholar 

  • Ji X-W, Chen G-P, Song Y, Hua M, Wang L-J, Liang L, Yuan Y, Wang S-y, Zhou T-y, Lu W (2015b) Intratumoral estrogen sulfotransferase induction contributes to the anti-breast cancer effects of the dithiocarbamate derivative TM208. Acta Pharmacol Sin 36(10):1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Zhou L, Yan T, Shen Z, Shao Z, Lu J (2010) Association of sulfotransferase SULT1A1 with breast cancer risk: a meta-analysis of case-control studies with subgroups of ethnic and menopausal statue. J Exp Clin Cancer Res 29:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakuta Y, Pedersen LG, Carter CW, Negishi M, Pedersen LC (1997) Crystal structure of estrogen sulphotransferase. Nat Struct Biol 4:904–908

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Lin A (2002) NF-kappa B at the crossroads of life and death. Nat Immunol 3:221–227

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Sawatsubashi S, Yokoyama A, Nakamura T, Kouzmenko A (2020) Mechanisms of osteoprotective actions of estrogens. In: Encyclopedia of bone biology. United States Academic Press, pp 503–523

    Chapter  Google Scholar 

  • Kim D-H, Jang J-H, Kwon O-S, Cha H-J, Youn H-J, Chun K-S, Surh Y-J (2020) Nuclear factor Erythroid-derived 2-like 2-induced reductive stress favors self-renewal of breast cancer stem-like cells via the FoxO3a-Bmi-1 axis. Antioxid Redox Signal 32(18):1313–1329

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi A, Kang MI, Watai Y, Tong KI, Shibata T, Uchida K, Yamamoto M (2006) Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol 26(1):221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakhani SR, Khanna KK, Chenevix-Trench G (2010) Are estrogen receptor-positive breast cancers in BRCA1 mutation carriers sporadic? Breast Cancer Res 12(2):104

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee S, Hallis SP, Jung KA, Ryu D, Kwak MK (2019) Impairment of HIF-1α-mediated metabolic adaption by NRF2-silencing in breast cancer cells. Redox Biol 24:101210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liehr JG, Roy D (1990) Free radical generation by redox cycling of estrogens. Free Radic Biol Med 8(4):415

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, Lin L, Yao H, Su F, Li D, Zeng M, Song EA (2015) Cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27(3):370–381

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Nazmeen A (2019) Impaired redox regulation of estrogen metabolizing proteins is important determinant of human breast cancers. Cancer Cell Int 19:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Maiti S, Zhang J, Chen G (2007) Redox regulation of human estrogen sulfotransferase (hSULT1E1). Biochem Pharmacol 73(9):1474–1481

    Article  CAS  PubMed  Google Scholar 

  • Maleki J, Nourbakhsh M, Shabani M, Korani M, Nourazarian SM, Dahaghi MRO, Moghadasi MH (2015) 17β-estradiol stimulates generation of reactive species oxygen and nitric oxide in ovarian adenocarcinoma cells (OVCAR 3). Iran J Cancer Prev 8(3):e2332

    Article  PubMed  PubMed Central  Google Scholar 

  • Marino M, Galluzzo P, Ascenzi P (2006) Estrogen signaling multiple pathways to impact gene transcription. Curr Genomics 7(8):497–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mobley JA, Brueggemeier RW (2004) Estrogen receptor-mediated regulation of oxidative stress and DNA damage in breast cancer. Carcinogenesis 25(1):3–9

    Article  CAS  PubMed  Google Scholar 

  • Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA (2015) The regulation of steroid action by sulfation and desulfation. Endocr Rev 36(5):526–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musarrat J, Rezina-Wilson J, Wani AA (1996) Prognostic and aetiological relevance of 8-hydroxyguanosine in human breast carcinogenesis. Eur J Cancer 32:1209

    Article  Google Scholar 

  • Nazmeen A, Maiti S (2018a) Oxidant stress induction and signalling in xenografted (human breast cancer-tissues) plus estradiol treated or N-ethyl-N-nitrosourea treated female rats via altered estrogen sulfotransferase (rSULT1E1) expressions and SOD1/catalase regulations. Mol Biol Rep 45(6):2571–2584

    Article  CAS  PubMed  Google Scholar 

  • Nazmeen A, Maiti S (2018b) Synergism between brca1 mutation and impaired estrogen signaling in oxidative stress modulation makes estrogen responsive tissues (breast) more susceptible to develop cancer. J Cell Sci Ther 9(286):2

    Google Scholar 

  • Nazmeen A, Chen G, Ghosh TK, Maiti S (2020a) Breast cancer pathogenesis is linked to the intra-tumoral estrogen sulfotransferase (hSULT1E1) expressions regulated by cellular redox dependent Nrf-2/NFκβ interplay. Cancer Cell Int 20:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Nazmeen A, Chen G, Maiti S (2020b) Dependence between estrogen sulfotransferase (SULT1E1) and nuclear transcription factor Nrf-2 regulations via oxidative stress in breast cancer. Mol Biol Rep 47(6):4691–4698

    Article  CAS  PubMed  Google Scholar 

  • Nioi P, Hayes JD (2004) Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the aryl hydrocarbon receptor basic helix-loop-helix transcription factors. Mutat Res 555(1–2):149–171

    Article  CAS  PubMed  Google Scholar 

  • Osburn WO, Kensler TW (2008) Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 659(1–2):31–39

    Article  CAS  PubMed  Google Scholar 

  • Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F (2014) Estrogen receptors Alpha (ERα) and Beta (ERβ): subtype-selective ligands and clinical potential. Steroids 13–29

    Google Scholar 

  • Pedersen LC, Petrotchenko E, Shevtsov S, Negishi M (2002) Crystal structure of the human estrogen sulfotransferase-PAPS complex: evidence for catalytic role of Ser 137 in the sulfuryl transfer reaction. J Biol Chem 277:17928–17932

    Article  CAS  PubMed  Google Scholar 

  • Poisson Paré D, Song D, Luu-The V, Han B, Li S, Liu G, Labrie F, Pelletier G (2009) Expression of estrogen sulfotransferase 1e1 and steroid sulfatase in breast cancer: a immunohistochemical study. Breast Cancer (Auckl) 3:9–21

    Google Scholar 

  • Sabbah M, Courilleau D, Mester J, Redeuilh G (1999) Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. Proc Natl Acad Sci U S A 96:11217–11222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasano H, Nagasaki S, Miki Y, Suzuki T (2009) New developments in intracrinology of human breast cancer: estrogen sulfatase and sulfotransferase. Ann N Y Acad Sci 1155:76–79

    Article  CAS  PubMed  Google Scholar 

  • Shostak K, Chariot A (2011) NF-κB, stem cells and breast cancer: the links get stronger. Breast Cancer Res 13(4):214

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Lyu YL, Cai L (2014) NF-κB affects proliferation and invasiveness of breast cancer cells by regulating CD44 expression. PLoS One 9(9):e106966

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun SX, Bostanci Z, Kass RB, Mancino AT, Rosenbloom AL, Klimberg VS, Bland KI (2018) Normal and abnormal development and function. In: The breast. Breast physiology: comprehensive management of benign and malignant diseases, 5th edn. Elsevier, pp 37–56.e6

    Google Scholar 

  • Syu JP, Chi JT, Kung HN (2016) Nrf2 is the key to chemotherapy resistance in MCF7 breast cancer cells under hypoxia. Oncotarget 7(12):14659–14672

    Article  PubMed  PubMed Central  Google Scholar 

  • Wade CB, Dorsa DM (2003) Estrogen activation of cyclic adenosine 5′-monophosphate response element-mediated transcription requires the extracellularly regulated kinase/mitogen-activated protein kinase pathway. Endocrinology 144(3):832–838

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Nag SA, Zhang R (2015) Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr Med Chem 22(2):264–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu T, Harder BG, Wong PK, Lang JE, Zhang DD (2015) Oxidative stress, mammospheres and Nrf2-new implication for breast cancer therapy? Mol Carcinog 54(11):1494–1502

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Liu X, Guo F, Ning Y, Zhi X, Wang X, Chen S, Yin L, Li X (2012) Effect of estrogen sulfation by SULT1E1 and PAPSS on the development of estrogen-dependent cancers. Cancer Sci 103(6):1000–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Liu Q, Xie Y, Shi X, Li Y, Peng M, Guo H, Sun R, Li J, Hong Y, Liu X, Xu G (2018a) Breast cancer susceptibility protein 1 (BRCA1) rescues neurons from cerebral ischemia/reperfusion injury through NRF2-mediated antioxidant pathway. Redox Biol 18:158–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Lin X, Xu J, Jing H, Qin Y, Li Y (2018b) SULT1E1 inhibits cell proliferation and invasion by activating PPARγ in breast cancer. J Cancer 9(6):1078–1087

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto T, Hosokawa K, Tamura T, Kanno H, Urabe M, Honjo H (1996) Urinary 8- hydroxy-2′-deoxyguanosine (8-OHdG) levels in women with or without gynecologic cancer. J Obstet Gynaecol Res 22:359

    Article  CAS  PubMed  Google Scholar 

  • Yao-Borengasser A, Rogers LJ, Edavana VK, Penney RB, Yu X, Dhakal IB, Williams S, Kadlubar SA (2014a) Sulfotransferase 1A1 (SULT1A1) gene expression is regulated by members of the NFI transcription factors in human breast cancer cells. BMC Clin Pathol 14(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao-Borengasser A, Rogers LJ, Edavana VK, Penney RB, Yu X, Dhakal IB, Williams S, Kadlubar SA (2014b) Sulfotransferase 1A1 (SULT1A1) gene expression is regulated by members of the NFI transcription factors in human breast cancer cells. BMC Clin Pathol 14(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi J, Huang WZ, Wen YQ, Yi YC (2019) Effect of miR-101 on proliferation and oxidative stress-induced apoptosis of breast cancer cells via Nrf2 signaling pathway. Eur Rev Med Pharmacol Sci 23(20):8931–8939

    CAS  PubMed  Google Scholar 

  • Zhang HS, Du GY, Zhang ZG, Zhou Z, Sun HL, Yu XY, Shi YT, Xiong DN, Li H, Huang YH (2018) NRF2 facilitates breast cancer cell growth via HIF1ɑ-mediated metabolic reprogramming. Int J Biochem Cell Biol 95:85–92

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZG, Du GY, Sun HL, Liu HY, Zhou Z, Gou XM, Wu XH, Yu XY, Huang YH (2019) Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis. J Cell Mol Med 23(5):3451–3463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nazmeen, A., Maiti, S. (2022). Redox Regulation of Estrogen Signaling in Human Breast Cancer. In: Chakraborti, S., Ray, B.K., Roychoudhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-9411-3_85

Download citation

Publish with us

Policies and ethics