Skip to main content

Iron Sulfur Clusters and ROS in Cancer

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Iron sulfur proteins (Fe-S) are ancient structures present in archaebacteria and are involved in central metabolic functions in these ancient organisms (Iwasaki, Archaea 2010:1, 2010). From an evolutionary perspective, Fe-S clusters originated early on during protein evolution; with the aid of an inducible and robust antioxidant defense system, organisms have evolved to tackle oxygen toxicity and metabolism. Since Fe-S cluster proteins are known to be responsible for a variety of physiological functions in mammals, destabilization of the clusters by oxidative and nitrosative stress can lead to consequences such as TCA cycle downregulation, mitochondrial dysfunction and also oxidative stress-induced carcinogenesis. Indeed, mutations of some Fe-S proteins have been correlated with cancer. Particularly, cancer pathophysiology has been linked to oxidative stress. Also, defective Fe-S cluster assembly due to genetic abnormalities is the underlying cause for several other diseases, which are discussed in detail in Roland Lill and Tracey Rouault’s works (Sheftel et al. Trends Endocrinol Metab 21 (5):302–314, 2010; Rouault and Tong, Trends Genet 24 (8):398–407, 2008; Ye and Rouault, Biochemistry 49 (24):4945–4956, 2010; Lill and Mühlenhoff, Annu Rev Biochem 77:669–700, 2008). Lack of mature Fe-S clusters in respiratory complexes leads to low energy (fatigue) and metabolic dysfunction because lipoic acid synthesis and many metabolic pathways are regulated by Fe-S proteins. Also, Fe-S cluster depletion in nuclear Fe-S proteins which are involved in DNA synthesis, maintenance and repair can potentially spark carcinogenesis. Moreover, since Fe-S cluster proteins are powerful ‘sensors’ of oxidative stress, they are important signalling agents which can alert cells to oxidative stress damage, and hence, were termed as “sentinels” (Py et al. Curr Opin Microbiol 14 (2):218–223, 2011). Reaction of Fe-S clusters with reactive oxygen and nitrogen species is an inevitable consequence of oxygen-dependent respiration; hence, cells possess machinery to synthesize and repair damaged Fe-S clusters, to restore protein functionality and cellular viability. When the oxidative damage overwhelms the antioxidant defense system and impairs Fe-S repair/reconstitution, there can be dire consequences, including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

BOLA1:

BolA Family Member 1

CDGSH:

CDGSH iron sulfur domain 1 (MitoNEET)

CIA:

Cytosolic iron-sulfur protein assembly

DCA:

Dichloroacetate

DNIC:

Dinitrosyl-Iron Complex

DPYD:

Dihydropyrimidine Dehydrogenase

ELP3:

Elongator complex protein 3

EPR:

Electron paramagnetic resonance

ETC:

Electron transport chain

ETFDH:

Electron Transfer Flavoprotein Dehydrogenase

FADH:

Flavin adenine dinucleotide, reduced

FANCJ:

Fanconi anemia group J

FMN:

Flavin mononucleotide

FXN:

Frataxin

GLRX5:

Glutaredoxin 5

GPAT:

Glycerol-3-phosphate acyltransferase

IRE-BP:

Iron-responsive element-binding protein

IRP-1:

Iron regulatory protein

ISCU:

Iron-Sulfur Cluster Assembly Enzyme

MOCS1:

Molybdenum Cofactor Synthesis 1

MUTYH:

mutY DNA glycosylase

NADH:

Nicotinamide adenine dinucleotide

NAF-1:

Nuclear Assembly Factor 1

NDUFS:

NADH:Ubiquinone Oxidoreductase Core Subunit S

NFS1:

Cysteine desulfurase

NMR:

Nuclear Magnetic Resonance

NTHL1:

Nth Like DNA Glycosylase 1

PEITC:

β-Phenethyl isothiocyanate

RNS:

Reactive Nitrogen Species

ROS/RNS:

Reactive Oxygen species

SDHB:

Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial

TCA:

Tricarboxylic acid cycle

VDAC:

Voltage-dependent anion channels

XDH:

Xanthine dehydrogenase

References

  • Beinert H (2000) Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5(1):0002–0015

    Article  CAS  Google Scholar 

  • Beinert H, Holm RH, Münck E (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277(5326):653–659

    Article  CAS  PubMed  Google Scholar 

  • Buss JL, Greene BT, Turner J, Torti FM, Torti SV (2004) Iron chelators in cancer chemotherapy. Curr Top Med Chem 4(15):1623–1635

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Chen Z, Hu Y, Huang P (2011) Inhibition of mitochondrial respiration and rapid depletion of mitochondrial glutathione by β-phenethyl isothiocyanate: mechanisms for anti-leukemia activity. Antioxid Redox Signal 15(12):2911–2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Choudens SO, Barras F (2017) Genetic, biochemical, and biophysical methods for studying Fe-S proteins and their assembly. In: Methods in enzymology, vol 595. Elsevier, pp 1–32. ISSN 0076-6879, ISBN 9780128119440, https://doi.org/10.1016/bs.mie.2017.07.015.

  • Ciccarone F, Di Leo L, Lazzarino G, Maulucci G, Di Giacinto F, Tavazzi B, Ciriolo MR (2020) Aconitase 2 inhibits the proliferation of MCF-7 cells promoting mitochondrial oxidative metabolism and ROS/FoxO1-mediated autophagic response. Br J Cancer 122(2):182–193

    Article  CAS  PubMed  Google Scholar 

  • Crack JC, Green J, Cheesman MR, Le Brun NE, Thomson AJ (2007) Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR. Proc Natl Acad Sci 104(7):2092–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D (2016) ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxidative Med Cell Longev 2016:1

    Article  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    Article  CAS  PubMed  Google Scholar 

  • Favaro E, Ramachandran A, McCormick R, Gee H, Blancher C, Crosby M, Devlin C, Blick C, Buffa F, Li J-L (2010) MicroRNA-210 regulates mitochondrial free radical response to hypoxia and Krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS One 5(4):e10345

    Article  PubMed  PubMed Central  Google Scholar 

  • Flint DH, Allen RM (1996) Iron− sulfur proteins with nonredox functions. Chem Rev 96(7):2315–2334

    Article  CAS  PubMed  Google Scholar 

  • Florence T (1995) The role of free radicals in disease. Aust N Z J Ophthalmol 23(1):3–7

    Article  CAS  PubMed  Google Scholar 

  • Fontecave M (2006) Iron-sulfur clusters: ever-expanding roles. Nat Chem Biol 2(4):171–174

    Article  CAS  PubMed  Google Scholar 

  • Furihata T, Takada S, Maekawa S, Mizushima W, Watanabe M, Takahashi H, Fukushima A, Tsuda M, Matsumoto J, Kakutani N, Yokota T, Matsushima S, Otsuka Y, Matsumoto M, Nakayama KI, Nio-Kobayashi J, Iwanaga T, Sabe H, Hatakeyama S, Tsutsui H, Kinugawa S (2018) mitoNEET regulates mitochondrial iron homeostasis interacting with transferrin receptor. bioRxiv:330084. https://doi.org/10.1101/330084

  • Geldenhuys WJ, Long TE, Saralkar P, Iwasaki T, Nuñez RA, Nair RR, Konkle ME, Menze MA, Pinti MV, Hollander JM (2019) Crystal structure of the mitochondrial protein mitoNEET bound to a benze-sulfonide ligand. Commun Chem 2(1):1–9

    Article  CAS  Google Scholar 

  • Gideon DA, Nirusimhan V, Manoj KM (2020) Are plastocyanin and ferredoxin specific electron carriers or generic redox capacitors? Classical and murburn perspectives on two photosynthetic proteins. J Biomol Struct Dyn:1–15, https://doi.org/10.1080/07391102.2020.1835715

  • Guccini I, Serio D, Condo I, Rufini A, Tomassini B, Mangiola A, Maira G, Anile C, Fina D, Pallone F (2011) Frataxin participates to the hypoxia-induced response in tumors. Cell Death Dis 2(2):e123–e123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (2015) Free Radicals and Other Reactive Species in Disease. In eLS, John Wiley & Sons, Ltd (Ed.). https://doi.org/10.1002/9780470015902.a0002269.pub3

  • Huang M-E, Facca C, Fatmi Z, Baïlle D, Bénakli S, Vernis L (2016) DNA replication inhibitor hydroxyurea alters Fe-S centers by producing reactive oxygen species in vivo. Sci Rep 6:29361

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang PM, Bunz F, Yu J, Rago C, Chan TA, Murphy MP, Kelso GF, Smith RA, Kinzler KW, Vogelstein B (2001) Ferredoxin reductase affects p53-dependent, 5-fluorouracil–induced apoptosis in colorectal cancer cells. Nat Med 7(10):1111–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki T (2010) Iron-sulfur world in aerobic and hyperthermoacidophilic archaea Sulfolobus. Archaea 2010:1

    Article  Google Scholar 

  • Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281

    Article  CAS  PubMed  Google Scholar 

  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810

    Article  CAS  PubMed  Google Scholar 

  • Lill R, Freibert S-A (2020) Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annu Rev Biochem 89:471

    Article  CAS  PubMed  Google Scholar 

  • Lill R, Mühlenhoff U (2008) Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77:669–700

    Article  CAS  PubMed  Google Scholar 

  • Lipper CH, Stofleth JT, Bai F, Sohn Y-S, Roy S, Mittler R, Nechushtai R, Onuchic JN, Jennings PA (2019) Redox-dependent gating of VDAC by mitoNEET. Proc Natl Acad Sci 116(40):19924–19929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahadevan A, Fernando S (2018) Inorganic iron-sulfur clusters enhance electron transport when used for wiring the NAD-glucose dehydrogenase based redox system. Microchim Acta 185(7):337

    Article  Google Scholar 

  • Manoj KM, Gideon DA (2020) Roles of cytochromes c and b5 in mitochondria and microsomes: classical and murburn perspectives

    Google Scholar 

  • Manoj KM, Soman V, Jacob VD, Parashar A, Gideon DA, Kumar M, Manekkathodi A, Ramasamy S, Pakshirajan K, Bazhin NM (2019) Chemiosmotic and murburn explanations for aerobic respiration: predictive capabilities, structure-function correlations and chemico-physical logic. Arch Biochem Biophys 676:108128

    Article  CAS  PubMed  Google Scholar 

  • Manoj KM, Gideon DA, Parashar A (2020) What is the role of lipid membrane-embedded quinones in mitochondria and chloroplasts? Chemiosmotic Q-cycle versus murburn reaction perspective. Cell Biochem Biophy 79:3–10. https://doi.org/10.1007/s12013-020-00945-y

  • Meyer J (2008) Iron–sulfur protein folds, iron–sulfur chemistry, and evolution. JBIC J Biol Inorg Chem 13(2):157–170

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Noodleman L, Peng C, Case D, Mouesca J-M (1995) Orbital interactions, electron delocalization and spin coupling in iron-sulfur clusters. Coord Chem Rev 144:199–244

    Article  CAS  Google Scholar 

  • Orme-Johnson W (1973) Iron-sulfur proteins: structure and function. Annu Rev Biochem 42(1):159–204

    Article  CAS  PubMed  Google Scholar 

  • Paul VD, Lill R (2015) Biogenesis of cytosolic and nuclear iron–sulfur proteins and their role in genome stability. Biochim Biophy Acta (BBA)-Mol Cell Res 1853(6):1528–1539

    Article  CAS  Google Scholar 

  • Py B, Barras F (2010) Building Fe–S proteins: bacterial strategies. Nat Rev Microbiol 8(6):436–446

    Article  CAS  PubMed  Google Scholar 

  • Py B, Moreau PL, Barras F (2011) Fe–S clusters, fragile sentinels of the cell. Curr Opin Microbiol 14(2):218–223

    Article  CAS  PubMed  Google Scholar 

  • Roberts CK, Barnard RJ, Sindhu RK, Jurczak M, Ehdaie A, Vaziri ND (2006) Oxidative stress and dysregulation of NAD (P) H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 55(7):928–934

    Article  CAS  PubMed  Google Scholar 

  • Rouault TA (2019) The indispensable role of mammalian iron sulfur proteins in function and regulation of multiple diverse metabolic pathways. Biometals 32(3):343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouault TA, Tong WH (2008) Iron–sulfur cluster biogenesis and human disease. Trends Genet 24(8):398–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahni S, Hickok JR, Thomas DD (2018) Nitric oxide reduces oxidative stress in cancer cells by forming dinitrosyliron complexes. Nitric Oxide 76:37–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sands RH, Beinert H (1960) Studies on mitochondria and submitochondrial particles by paramagnetic resonance (EPR) spectroscopy. Biochemical and Biophysical Research Communications 3(1):47–52. ISSN 0006-291X, https://doi.org/10.1016/0006-291X(60)90101-7.

  • Sheftel A, Stehling O, Lill R (2010) Iron–sulfur proteins in health and disease. Trends Endocrinol Metab 21(5):302–314

    Article  CAS  PubMed  Google Scholar 

  • Sohn Y-S, Tamir S, Song L, Michaeli D, Matouk I, Conlan AR, Harir Y, Holt SH, Shulaev V, Paddock ML (2013) NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proc Natl Acad Sci 110(36):14676–14681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stehling O, Elsässer H-P, Brückel B, Mühlenhoff U, Lill R (2004) Iron–sulfur protein maturation in human cells: evidence for a function of frataxin. Hum Mol Genet 13(23):3007–3015

    Article  CAS  PubMed  Google Scholar 

  • Toyokuni S (2009) Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci 100(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Mai C, Wei Y-l, Zhao J-j, Hu Y-m, Zeng Z-l, Yang J, Lu W-h, Xu R-h, Huang P (2013) Decreased expression of the mitochondrial metabolic enzyme aconitase (ACO2) is associated with poor prognosis in gastric cancer. Med Oncol 30(2):552

    Article  PubMed  Google Scholar 

  • Wilson DF, Erecinska M, Dutton PL, Tsudzuki T (1970) The oxidation-reduction potentials of the iron-sulfur proteins in mitochondria. Biochem Biophys Res Commun 41(5):1273–1278

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Rouault TA (2010) Human iron− sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49(24):4945–4956

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

James, J., Gideon, D.A.M., Roy, D., Mandal, A. (2022). Iron Sulfur Clusters and ROS in Cancer. In: Chakraborti, S., Ray, B.K., Roychoudhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-9411-3_24

Download citation

Publish with us

Policies and ethics