Skip to main content
Log in

Iron–sulfur protein folds, iron–sulfur chemistry, and evolution

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

An inventory of unique local protein folds around Fe–S clusters has been derived from the analysis of protein structure databases. Nearly 50 such folds have been identified, and over 90% of them harbor low-potential [2Fe–2S]2+,+ or [4Fe–4S]2+,+ clusters. In contrast, high-potential Fe–S clusters, notwithstanding their structural diversity, occur in only three different protein folds. These observations suggest that the extant population of Fe–S protein folds has to a large extent been shaped in the reducing iron- and sulfur-rich environment that is believed to have predominated on this planet until approximately two billion years ago. High-potential active sites are then surmised to be rarer because they emerged later, in a more oxidizing biosphere, in conditions where iron and sulfide had become poorly available, Fe–S clusters were less stable, and in addition faced competition from heme iron and copper active sites. Among the low-potential Fe–S active sites, protein folds hosting [4Fe–4S]2+,+ clusters outnumber those with [2Fe–2S]2+,+ ones by a factor of 3 at least. This is in keeping with the higher chemical stability and versatility of the tetranuclear clusters, compared with the binuclear ones. It is therefore suggested that, at least while novel Fe–S sites are evolving within proteins, the intrinsic chemical stability of the inorganic moiety may be more important than the stabilizing effect of the polypeptide chain. The discovery rate of novel Fe–S-containing protein folds underwent a sharp increase around 1995, and has remained stable to this day. The current trend suggests that the mapping of the Fe–S fold space is not near completion, in agreement with predictions made for protein folds in general. Altogether, the data collected and analyzed here suggest that the extant structural landscape of Fe–S proteins has been shaped to a large extent by primeval geochemical conditions on one hand, and iron–sulfur chemistry on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CoA:

coenzyme A

EPR:

electron paramagnetic resonance

Fd:

ferredoxin

FNR:

fumarate nitrate regulator

GABA:

γ-aminobutyric acid

HiPIP:

high potential iron protein

PDB:

Protein Data Bank

PRPP:

phosphoribosylpyrophosphate

Rd:

rubredoxin

tRNA:

transfer RNA

References

  1. Beinert H, Sands RH (1960) Biochem Biophys Res Commun 3:41–46

    Article  CAS  Google Scholar 

  2. Mortenson LE, Valentine RC, Carnahan JE (1962) Biochem Biophys Res Commun 7:448–452

    Article  PubMed  CAS  Google Scholar 

  3. Tagawa K, Arnon DI (1962) Nature 195:537–543

    Article  PubMed  CAS  Google Scholar 

  4. Malkin R, Rabinowitz JC (1966) Biochem Biophys Res Commun 23:822–827

    Article  PubMed  CAS  Google Scholar 

  5. Beinert H, Holm RH, Münck E (1997) Science 277:653–659

    Article  PubMed  CAS  Google Scholar 

  6. Rao PV, Holm RH (2004) Chem Rev 104:527–559

    Article  CAS  Google Scholar 

  7. Beinert H, Meyer J, Lill R (2004) In: Lennarz WJ, Lane MD (eds) Encyclopedia of biological chemistry, vol 2. Elsevier, Amsterdam, pp 482–489

    Google Scholar 

  8. Rees DC (2002) Annu Rev Biochem 71:221–246

    Article  PubMed  CAS  Google Scholar 

  9. Volbeda A, Fontecilla-Camps JC (2005) Dalton Trans 3443–3450

  10. Moulis JM, Davasse V, Golinelli MP, Meyer J, Quinkal I (1996) J Biol Inorg Chem 1:2–14

    Article  CAS  Google Scholar 

  11. Sazanov LA, Hinchliffe P (2006) Science 311:1430–1436

    Article  PubMed  CAS  Google Scholar 

  12. Johnson MK (1998) Curr Opin Chem Biol 2:173–181

    Article  PubMed  CAS  Google Scholar 

  13. Johnson MK, Smith AD (2005) In: King RB (ed) Encyclopaedia of inorganic chemistry, vol 4. Wiley, Chichester, pp 2589–2619

    Google Scholar 

  14. Johnson DC, Dean DR, Smith AD, Johnson MK (2004) Annu Rev Biochem 74:247–281

    Article  CAS  Google Scholar 

  15. Mitou G, Higgins C, Wittung-Stafshede P, Conover RC, Smith AD, Johnson MK, Gaillard J, Stubna A, Münck E, Meyer J (2003) Biochemistry 42:1354–1364

    Article  PubMed  CAS  Google Scholar 

  16. Eady RR, Smith BE, Cook KA, Postgate JR (1972) Biochem J 128:655–675

    PubMed  CAS  Google Scholar 

  17. You JF, Papaefthymiou GC, Holm RH (1992) J Am Chem Soc 114:2697–2710

    Article  CAS  Google Scholar 

  18. Long JR, Holm RH (1994) J Am Chem Soc 116:9987–10002

    Article  CAS  Google Scholar 

  19. Wächtershäuser G (2006) Philos Trans R Soc Lond Ser B 361:1787–1808

    Article  CAS  Google Scholar 

  20. Russell MJ (2007) Acta Biotheor (in press). doi:10.1007/s10441-007-9018-5

  21. Kirschvink JL (2005) Engineering & Science 4:10–20

    Google Scholar 

  22. Eck RV, Dayhoff MO (1966) Science 152:363–366

    Article  PubMed  CAS  Google Scholar 

  23. Adman ET, Sieker LC, Jensen LH (1973) J Biol Chem 248:3987–3996

    PubMed  CAS  Google Scholar 

  24. Sieker LC, Adman ET (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 574–592

    Google Scholar 

  25. Orengo CA, Thornton JM (2005) Annu Rev Biochem 74:867–900

    Article  PubMed  CAS  Google Scholar 

  26. Herskovitz T, Averill BA, Holm RH, Ibers JA, Phillips WD, Weiher JF (1972) Proc Natl Acad Sci USA 69:2437–2441

    Article  PubMed  CAS  Google Scholar 

  27. Moulis JM, Sieker LC, Wilson KS, Dauter Z (1996) Protein Sci 5:1765–1775

    Article  PubMed  CAS  Google Scholar 

  28. Johnson MK, Duderstadt RE, Duin EC (1999) Adv Inorg Chem 47:1–82

    CAS  Google Scholar 

  29. Beinert H, Kennedy MC, Stout CD (1996) Chem Rev 96:2335–2373

    Article  PubMed  CAS  Google Scholar 

  30. Dauter Z, Wilson KS, Sieker LC, Meyer J, Moulis J-M (1997) Biochemistry 36:16065–16073

    Article  PubMed  CAS  Google Scholar 

  31. Darimont B, Sterner R (1994) EMBO J 13:1772–1781

    PubMed  CAS  Google Scholar 

  32. Brochier C, Philippe H (2002) Nature 417:244

    Article  PubMed  CAS  Google Scholar 

  33. Skophammer RG, Servin JA, Herbold CW, Lake JA (2007) Mol Biol Evol 24:1761–1768

    Article  PubMed  CAS  Google Scholar 

  34. Bartsch RG (1978) Methods Enzymol 53:329–340

    Article  PubMed  CAS  Google Scholar 

  35. Ciurli S, Musiani F (2005) Photosynth Res 85:115–131

    Article  PubMed  CAS  Google Scholar 

  36. Liu L, Nogi T, Kobayashi M, Nozawa T, Miki K (2002) Acta Cryst D58:1085–1091

    CAS  Google Scholar 

  37. Carter CW Jr (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 602–609

    Google Scholar 

  38. Bertini I, Luchinat C, Provenzani A, Rosato A, Vasos PR (2002) Proteins 46:110–127

    Article  PubMed  CAS  Google Scholar 

  39. Tsukihara T, Fukuyama K, Nakamura M, Katsube Y, Tanaka N, Kakudo M, Wada K, Hase T, Matsubara H (1981) J Biochem (Tokyo) 90:1763–1773

    CAS  Google Scholar 

  40. Grinberg AV, Hannemann F, Schiffler B, Müller J, Heinemann U, Bernhardt R (2000) Proteins 40:590–612

    Article  PubMed  CAS  Google Scholar 

  41. Kakuta Y, Horio T, Takahashi Y, Fukuyama K (2001) Biochemistry 40:11007–11012

    Article  PubMed  CAS  Google Scholar 

  42. Hugo N, Meyer C, Armengaud J, Gaillard J, Timmis KN, Jouanneau Y (2000) J Bacteriol 182:5580–5585

    Article  PubMed  CAS  Google Scholar 

  43. Frolow F, Harel M, Sussman JL, Mevarech M, Shoham M (1996) Nat Struct Biol 3:452–458

    Article  PubMed  CAS  Google Scholar 

  44. Zanetti G, Binda C, Aliverti A (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins, Wiley, Chichester, pp 532–542

    Google Scholar 

  45. Morales R, Charon MH, Hudry-Clergeon G, Pétillot Y, Nørager S, Medina M, Frey M (1999) Biochemistry 38:15764–15773

    Article  PubMed  CAS  Google Scholar 

  46. Link TA (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 518–531

    Google Scholar 

  47. Lebrun E, Santini JM, Brugna M, Ducluzeau AL, Ouchane S, Schoepp-Cothenet B, Baymann F, Nitschke W (2006) Mol Biol Evol 23:1180–1191

    Article  PubMed  CAS  Google Scholar 

  48. Iwata S, Saynovits M, Link TA, Michel H (1996) Structure 4:567–579

    Article  PubMed  CAS  Google Scholar 

  49. Colbert CL, Couture MMJ, Eltis LD, Bolin JT (2000) Structure 8:1267–1278

    Article  PubMed  CAS  Google Scholar 

  50. Shethna YI, Wilson PW, Hansen RE, Beinert H (1964) Proc Natl Acad Sci USA 52:1263–1271

    Article  PubMed  CAS  Google Scholar 

  51. Yeh AP, Chatelet C, Soltis SM, Kuhn P, Meyer J, Rees DC (2000) J Mol Biol 300:587–595

    Article  PubMed  CAS  Google Scholar 

  52. Meyer J (2001) FEBS Lett 509:1–5

    Article  PubMed  CAS  Google Scholar 

  53. Vignais PM, Billoud B, Meyer J (2001) FEMS Microbiol Rev 25:455–501

    PubMed  CAS  Google Scholar 

  54. Herriott JR, Sieker LC, Jensen LH (1970) J Mol Biol 50:391–406

    Article  PubMed  CAS  Google Scholar 

  55. Meyer J, Moulis JM (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 505–517

    Google Scholar 

  56. Archer M, Huber R, Tavares P, Moura I, Moura JJG, Carrondo MA, Sieker LC, LeGall J, Romão MJ (1995) J Mol Biol 251:690–702

    Article  PubMed  CAS  Google Scholar 

  57. deMaré F, Kurtz DM Jr, Nordlund P (1996) Nat Struct Biol 3:539–546

    Article  PubMed  Google Scholar 

  58. Yeh AP, Hu Y, Jenney FE Jr, Adams MWW, Rees DC (2000) Biochemistry 39:2499–2508

    Article  PubMed  CAS  Google Scholar 

  59. Logan DT, Mulliez E, Larsson KM, Bodevin S, Atta M, Garnaud PE, Sjöberg BM, Fontecave M (2003) Proc Natl Acad Sci USA 100:3826–3831

    Article  PubMed  CAS  Google Scholar 

  60. Scherr N, Honnappa S, Kunz G, Mueller P, Jayachandran R, Winkler F, Pieters J, Steinmetz MO (2007) Proc Natl Acad Sci USA 104:12151–12156

    Article  PubMed  CAS  Google Scholar 

  61. Meyer J, Gagnon J, Gaillard J, Lutz M, Achim C, Münck E, Pétillot Y, Colangelo CM, Scott RA (1997) Biochemistry 36:13374–13380

    Article  PubMed  CAS  Google Scholar 

  62. Iwasaki T, Kounosu A, Tao Y, Li Z, Shokes JE, Cosper NJ, Imai T, Urushiyama A, Scott RA (2005) J Biol Chem 280:9129–9134

    Article  PubMed  CAS  Google Scholar 

  63. Dauter Z, Wilson KS, Sieker LC, Moulis JM, Meyer J (1996) Proc Natl Acad Sci USA 93:8836–8840

    Article  PubMed  CAS  Google Scholar 

  64. Maher M, Cross M, Wilce MCJ, Guss JM, Wedd AG (2004) Acta Crystallogr Sect D 60:298–303

    Article  CAS  Google Scholar 

  65. Meyer J (2004) FEBS Lett 570:1–6

    Article  PubMed  CAS  Google Scholar 

  66. Meyer J (2007) Cell Mol Life Sci 64:1063–1084

    Article  PubMed  CAS  Google Scholar 

  67. Leiros HKS, McSweeney SM (2007) J Struct Biol 159:92–102

    Article  PubMed  CAS  Google Scholar 

  68. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  69. Bertini I, Luchinat C, Parigi G, Pierattelli R (2005) Chembiochem 6:1536–1549

    Article  PubMed  CAS  Google Scholar 

  70. Sayle RA, Milner-White EJ (1995) Trends Biochem Sci 20:374–376

    Article  PubMed  CAS  Google Scholar 

  71. Andrade SLA, Cruz F, Drennan CL, Ramakrishnan V, Rees DC, Ferry JG, Einsle O (2005) J Bacteriol 187:3848–3854

    Article  PubMed  CAS  Google Scholar 

  72. Dai S, Friemann R, Glauser DA, Bourquin F, Manieri W, Schürmann P, Eklund H (2007) Nature 448:92–98

    Article  PubMed  CAS  Google Scholar 

  73. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853–1858

    Article  PubMed  CAS  Google Scholar 

  74. Holm L, Sander C (1993) J Mol Biol 233:123–138

    Article  PubMed  CAS  Google Scholar 

  75. Lancaster CRD, Kröger A, Auer M, Michel H (1999) Nature 402:377–385

    Article  PubMed  CAS  Google Scholar 

  76. Grabowski M, Joachimiak A, Otwinowski Z, Minor W (2007) Curr Opin Struct Biol 17:347–353

    Article  PubMed  CAS  Google Scholar 

  77. Caetano-Anolles G, Kim HS, Mittenthal JE (2007) Proc Natl Acad Sci USA 104:9358–9363

    Article  PubMed  CAS  Google Scholar 

  78. Zhang Y, Hubner IA, Arakaki AK, Shakhnovich E, Skolnick J (2006) Proc Natl Acad Sci USA 103:2605–2610

    Article  PubMed  CAS  Google Scholar 

  79. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, van Belle C, Chandonia JM, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, Strausberg RL, Frazier M, Venter JC (2007) PLoS Biol 5:e16

    Article  PubMed  CAS  Google Scholar 

  80. Layer G, Heinz DW, Jahn D, Schubert W-D (2004) Curr Opin Chem Biol 8:468–476

    Article  PubMed  CAS  Google Scholar 

  81. Morimoto K, Yamashita E, Kondou Y, Lee SJ, Arisaka F, Tsukihara T, Nakai M (2006) J Mol Biol 360:117–132

    Article  PubMed  CAS  Google Scholar 

  82. Berkovitch F, Nicolet Y, Wan JT, Jarrett JT, Drennan CL (2004) Science 303:76–79

    Article  PubMed  CAS  Google Scholar 

  83. Collet JF, Peisach D, Bardwell JC, Xu Z (2005) Protein Sci 14:1863–1869

    Article  PubMed  CAS  Google Scholar 

  84. Paddock ML, Wiley SE, Axelrod HL, Cohen AE, Roy M, Abresch EC, Capraro D, Murphy AN, Nechushtai R, Dixon JE, Jennings PA (2007) Proc Natl Acad Sci USA 104:14342–14347

    Article  PubMed  CAS  Google Scholar 

  85. Demple B (2002) Mol Cell Biochem 234/235:11–18

    Article  CAS  Google Scholar 

  86. Kiley PJ, Beinert H (2003) Curr Opin Microbiol 6:181–185

    Article  PubMed  CAS  Google Scholar 

  87. Dupuy J, Volbeda A, Carpentier P, Darnault C, Moulis J-M, Fontecilla-Camps JC (2006) Structure 14:129–139

    Article  PubMed  CAS  Google Scholar 

  88. Walden WE, Selezneva AI, Dupuy J, Volbeda A, Fontecilla-Camps JC, Theil EC, Volz C (2007) Science 314:1903–1908

    Article  CAS  Google Scholar 

  89. Yeh AP, Ambroggio XI, Andrade SLA, Einsle O, Chatelet C, Meyer J, Rees DC (2002) J Biol Chem 277:34499–34507

    Article  PubMed  CAS  Google Scholar 

  90. Anderson GL, Howard JB (1984) Biochemistry 23:2118–2122

    Article  PubMed  CAS  Google Scholar 

  91. Sen S, Igarashi R, Smith A, Johnson MK, Seefeldt LC, Peters JW (2004) Biochemistry 43:1787–1797

    Article  PubMed  CAS  Google Scholar 

  92. Mayerle JJ, Frankel RB, Holm RH, Ibers JA, Phillips WD, Weiher JF (1973) Proc Natl Acad Sci USA 70:2429–2433

    Article  PubMed  CAS  Google Scholar 

  93. Müller A, Schladerbeck NH (1986) Naturwissenschaften 73:S669

    Article  Google Scholar 

  94. Müller A, Schladerbeck NH (1985) Chimia 39:23–24

    Google Scholar 

  95. Hagen KS, Reynolds JG, Holm RH (1981) J Am Chem Soc 103:4054–4063

    Article  CAS  Google Scholar 

  96. Stack TDP, Holm RH (1988) J Am Chem Soc 110:2484–2494

    Article  CAS  Google Scholar 

  97. Weigel JA, Holm RH (1991) J Am Chem Soc 113:4184–4191

    Article  CAS  Google Scholar 

  98. Zhou J, Hu Z, Münck E, Holm RH (1996) J Am Chem Soc 118:1966–1980

    Article  CAS  Google Scholar 

  99. Meyer J, Fujinaga J, Gaillard J, Lutz M (1994) Biochemistry 33:13642–13650

    Article  PubMed  CAS  Google Scholar 

  100. Broach RB, Jarrett JT (2006) Biochemistry 45:14166–14174

    Article  PubMed  CAS  Google Scholar 

  101. Delaye L, Becerra A, Lazcano A (2005) Orig Life Evol Biosph 35:537–554

    Article  PubMed  CAS  Google Scholar 

  102. Williams RJP (2007) Dalton Trans 991–1001

  103. Burroughs AM, Balaji S, Iyer LM, Aravind L (2007) Biol Direct 2:18

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, J. Iron–sulfur protein folds, iron–sulfur chemistry, and evolution. J Biol Inorg Chem 13, 157–170 (2008). https://doi.org/10.1007/s00775-007-0318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0318-7

Keywords

Navigation