Skip to main content

Retinoids and Reactive Oxygen Species in Cancer Cell Death and Therapeutics

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Retinoids are a large family of structurally related natural and synthetic molecules that exhibit a variety of effects in embryogenesis and adult life. The parent compound of retinoids is vitamin A which was first discovered for its impact on vision and later on cell proliferation, cell differentiation, and cell death. Clinically, retinoids were used for six decades in cancer management as they exhibit antitumor effects such as inhibiting cellular proliferation, inducing apoptosis, modulating cell cycle, and cell differentiation. Initially, early research focused on the mechanism of action of retinoids by their binding to retinoic acid receptors. However, recently accumulated evidence points that retinoids can act independent of the retinoid receptor signaling pathway for example by inducing stress, changes in redox balance, and reactive oxygen species (ROS) generation, and modulation of pathways that do not require binding of transcription factors to retinoic acid responsive DNA sequences. This review focuses on the mechanism of action of natural as well as synthetic retinoids, in particular, on the generation of ROS in in vitro and in vivo tumor models. A better understanding of the effects of retinoids on cellular redox balance and oxidative stress will impact future strategies of cancer management and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Mamun Bhuyan A, Bissinger R, Cao H, Lang F (2016) Triggering of suicidal erythrocyte death by bexarotene. Cell Physiol Biochem 40:1239–1251

    Article  PubMed  Google Scholar 

  • Al Tanoury Z, Piskunov A, Rochette-Egly C (2013) Vitamin a and retinoid signaling: genomic and nongenomic effects. J Lipid Res 54:1761–1775

    Article  PubMed  PubMed Central  Google Scholar 

  • Apraiz A, Idkowiak-Baldys J, Nieto-Rementería N, Boyano MD, Hannun YA, Asumendi A (2012) Dihydroceramide accumulation and reactive oxygen species are distinct and nonessential events in 4-hpr-mediated leukemia cell death. Biochem Cell Biol 90:209–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asumendi A, Morales MC, Alvarez A, Aréchaga J, Pérez-Yarza G (2002) Implication of mitochondria-derived ros and cardiolipin peroxidation in n-(4-hydroxyphenyl)retinamide-induced apoptosis. Br J Cancer 86:1951–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batra S, Reynolds CP, Maurer BJ (2004) Fenretinide cytotoxicity for ewing’s sarcoma and primitive neuroectodermal tumor cell lines is decreased by hypoxia and synergistically enhanced by ceramide modulators. Cancer Res 64:5415–5424

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj V, He J (2020) Reactive oxygen species, metabolic plasticity, and drug resistance in cancer. Int J Mol Sci 21

    Google Scholar 

  • Bohne M, Struy H, Gerber A, Gollnick H (1997) Effects of retinoids on the generation of neutrophil-derived reactive oxygen species studied by epr spin trapping techniques. Inflamm Res 46:423–424

    Article  CAS  PubMed  Google Scholar 

  • Boya P, Morales MC, Gonzalez-Polo RA, Andreau K, Gourdier I, Perfettini JL, Larochette N et al (2003) The chemopreventive agent n-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the bcl-2 family. Oncogene 22:6220–6230

    Article  CAS  PubMed  Google Scholar 

  • Brack E, Wachtel M, Wolf A, Kaech A, Ziegler U, Schäfer BW (2020) Fenretinide induces a new form of dynamin-dependent cell death in pediatric sarcoma. Cell Death Differ 27:2500–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  • Bruno S, Tenca C, Saverino D, Ciccone E, Grossi CE (2002) Apoptosis of squamous cells at different stages of carcinogenesis following 4-hpr treatment. Carcinogenesis 23:447–456

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Xu D, Wang D, Wu R, Zhang L, Zhu H, He Q et al (2009) Ros-driven akt dephosphorylation at ser-473 is involved in 4-hpr-mediated apoptosis in nb4 cells. Free Radic Biol Med 47:536–547

    Article  CAS  PubMed  Google Scholar 

  • Carrera S, Cuadrado-Castano S, Samuel J, Jones GD, Villar E, Lee SW, Macip S (2013) Stra6, a retinoic acid-responsive gene, participates in p53-induced apoptosis after DNA damage. Cell Death Differ 20:910–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Buck J, Derguini F (1999) Anhydroretinol induces oxidative stress and cell death. Cancer Res 59:3985–3990

    CAS  PubMed  Google Scholar 

  • Chen NE, Maldonado NV, Khankaldyyan V, Shimada H, Song MM, Maurer BJ, Reynolds CP (2016) Reactive oxygen species mediates the synergistic activity of fenretinide combined with the microtubule inhibitor abt-751 against multidrug-resistant recurrent neuroblastoma xenografts. Mol Cancer Ther 15:2653–2664

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Chun KH, Raz A, Lotan R (2004) Inhibition of n-(4-hydroxyphenyl)retinamide-induced apoptosis in breast cancer cells by galectin-3. Cancer Biol Ther 3:447–452

    Article  CAS  PubMed  Google Scholar 

  • Clifford JL, Menter DG, Wang M, Lotan R, Lippman SM (1999) Retinoid receptor-dependent and -independent effects of n-(4-hydroxyphenyl)retinamide in f9 embryonal carcinoma cells. Cancer Res 59:14–18

    CAS  PubMed  Google Scholar 

  • D’Autréaux B, Toledano MB (2007) Ros as signalling molecules: mechanisms that generate specificity in ros homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  PubMed  Google Scholar 

  • Darwiche N, Abou-Lteif G, Bazarbachi A (2007) Reactive oxygen species mediate n-(4-hydroxyphenyl)retinamide-induced cell death in malignant t cells and are inhibited by the htlv-i oncoprotein tax. Leukemia 21:261–269

    Article  CAS  PubMed  Google Scholar 

  • De L, Yuan T, Yong Z (2020) St1926 inhibits glioma progression through regulating mitochondrial complex II. Biomed Pharmacother 128:110291

    Article  CAS  PubMed  Google Scholar 

  • Delia D, Aiello A, Lombardi L, Pelicci PG, Grignani F, Grignani F, Formelli F et al (1993) N-(4-hydroxyphenyl)retinamide induces apoptosis of malignant hemopoietic cell lines including those unresponsive to retinoic acid. Cancer Res 53:6036–6041

    CAS  PubMed  Google Scholar 

  • Delia D, Aiello A, Formelli F, Fontanella E, Costa A, Miyashita T, Reed JC et al (1995) Regulation of apoptosis induced by the retinoid n-(4-hydroxyphenyl) retinamide and effect of deregulated bcl-2. Blood 85:359–367

    Article  CAS  PubMed  Google Scholar 

  • Delia D, Aiello A, Meroni L, Nicolini M, Reed JC, Pierotti MA (1997) Role of antioxidants and intracellular free radicals in retinamide-induced cell death. Carcinogenesis 18:943–948

    Article  CAS  PubMed  Google Scholar 

  • Di Francesco AM, Meco D, Torella AR, Barone G, D’Incalci M, Pisano C, Carminati P et al (2007) The novel atypical retinoid st1926 is active in atra resistant neuroblastoma cells acting by a different mechanism. Biochem Pharmacol 73:643–655

    Article  PubMed  Google Scholar 

  • Gander RJ (1982). Method of treating carcinogenesis. Google Patents

    Google Scholar 

  • Garattini E, Bolis M, Garattini SK, Fratelli M, Centritto F, Paroni G, Gianni M et al (2014) Retinoids and breast cancer: from basic studies to the clinic and back again. Cancer Treat Rev 40:739–749

    Article  CAS  PubMed  Google Scholar 

  • Gelain DP, Moreira JC (2008) Evidence of increased reactive species formation by retinol, but not retinoic acid, in pc12 cells. Toxicol In Vitro 22:553–558

    Article  CAS  PubMed  Google Scholar 

  • Goto H, Takahashi H, Fujii H, Ikuta K, Yokota S (2003) N-(4-hydroxyphenyl)retinamide (4-HPR) induces leukemia cell death via generation of reactive oxygen species. Int J Hematol 78:219–225

    Article  CAS  PubMed  Google Scholar 

  • Hail N Jr, Lotan R (2001a) Synthetic retinoid cd437 promotes rapid apoptosis in malignant human epidermal keratinocytes and g1 arrest in their normal counterparts. J Cell Physiol 186:24–34

    Article  CAS  PubMed  Google Scholar 

  • Hail N Jr, Lotan R (2001b) Mitochondrial respiration is uniquely associated with the prooxidant and apoptotic effects ofn-(4-hydroxyphenyl) retinamide. J Biol Chem 276:45614–45621

    Article  CAS  PubMed  Google Scholar 

  • Hail N Jr, Youssef EM, Lotan R (2001) Evidence supporting a role for mitochondrial respiration in apoptosis induction by the synthetic retinoid cd437. Cancer Res 61:6698–6702

    CAS  PubMed  Google Scholar 

  • Hail N Jr, Kim HJ, Lotan R (2006) Mechanisms of fenretinide-induced apoptosis. Apoptosis 11:1677–1694

    Article  CAS  PubMed  Google Scholar 

  • Hail N, Lotan R (2000) Mitochondrial permeability transition is a central coordinating event in n-(4-hydroxyphenyl) retinamide-induced apoptosis. Cancer Epidemiol Prev Biomark 9:1293–1301

    CAS  Google Scholar 

  • Hamada T, Sugaya M, Tokura Y, Ohtsuka M, Tsuboi R, Nagatani T, Tani M et al (2017) Phase I/II study of the oral retinoid x receptor agonist bexarotene in japanese patients with cutaneous t-cell lymphomas combined treatments with a retinoid receptor agonist and epigenetic modulators in human neuroblastoma cells enhancement of regression of cervical intraepithelial neoplasia II (moderate dysplasia) with topically applied all-trans-retinoic acid: a randomized trial. J Dermatol 44:135–142

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Chen Y, Lu H, Cao X (2007) Coupling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-beta and retinoic acid-induced cancer cell death. Cell Death Differ 14:327–337

    Article  CAS  PubMed  Google Scholar 

  • Hursting SD, Shen JC, Sun XY, Wang TT, Phang JM, Perkins SN (2002) Modulation of cyclophilin gene expression by n-4-(hydroxyphenyl)retinamide: association with reactive oxygen species generation and apoptosis. Mol Carcinog 33:16–24

    Article  CAS  PubMed  Google Scholar 

  • Huynh TT, Sultan M, Vidovic D, Dean CA, Cruickshank BM, Lee K, Loung CY et al (2019) Retinoic acid and arsenic trioxide induce lasting differentiation and demethylation of target genes in apl cells. Sci Rep 9:9414

    Article  PubMed  PubMed Central  Google Scholar 

  • Jinno H, Steiner MG, Mehta RG, Osborne MP, Telang NT (1999) Inhibition of aberrant proliferation and induction of apoptosis in HER-2/neu oncogene transformed human mammary epithelial cells by n-(4-hydroxyphenyl)retinamide. Carcinogenesis 20:229–236

    Article  CAS  PubMed  Google Scholar 

  • Kadara H, Lacroix L, Lotan D, Lotan R (2007) Induction of endoplasmic reticulum stress by the pro-apoptotic retinoid n-(4-hydroxyphenyl)retinamide via a reactive oxygen species-dependent mechanism in human head and neck cancer cells. Cancer Biol Ther 6:705–711

    Article  CAS  PubMed  Google Scholar 

  • Khalil S, Bardawil T, Stephan C, Darwiche N, Abbas O, Kibbi AG, Nemer G et al (2017) Retinoids: a journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects. J Dermatolog Treat 28:684–696

    Article  CAS  PubMed  Google Scholar 

  • Kim DG, You KR, Liu MJ, Choi YK, Won YS (2002) Gadd153-mediated anticancer effects of n-(4-hydroxyphenyl)retinamide on human hepatoma cells. J Biol Chem 277:38930–38938

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Chakravarti N, Oridate N, Choe C, Claret FX, Lotan R (2006) N-(4-hydroxyphenyl)retinamide-induced apoptosis triggered by reactive oxygen species is mediated by activation of mapks in head and neck squamous carcinoma cells. Oncogene 25:2785–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiningham KK, Silvis A (2012) Receptor independent effects of retinoids. Nutr Cancer Epidemiol Biol 50

    Google Scholar 

  • Konopka R, Kubala L, Lojek A, Pacherník J (2008) Alternation of retinoic acid induced neural differentiation of p19 embryonal carcinoma cells by reduction of reactive oxygen species intracellular production. Neuro Endocrinol Lett 29:770–774

    CAS  PubMed  Google Scholar 

  • Lam K, Vender R (2019) Mechanism of action of acitretin. Retinoids Dermatol

    Google Scholar 

  • Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    Article  CAS  PubMed  Google Scholar 

  • Lovat PE, Ranalli M, Bernassola F, Tilby M, Malcolm AJ, Pearson AD, Piacentini M et al (2000a) Synergistic induction of apoptosis of neuroblastoma by fenretinide or cd437 in combination with chemotherapeutic drugs gangliosides link the acidic sphingomyelinase-mediated induction of ceramide to 12-lipoxygenase-dependent apoptosis of neuroblastoma in response to fenretinide reactive oxygen species modulate the differentiation of neurons in clonal cortical cultures. Int J Cancer 88:977–985

    Article  CAS  PubMed  Google Scholar 

  • Lovat PE, Ranalli M, Annichiarrico-Petruzzelli M, Bernassola F, Piacentini M, Malcolm AJ, Pearson ADJ et al (2000b) Effector mechanisms of fenretinide-induced apoptosis in neuroblastoma. Exp Cell Res 260:50–60

    Article  CAS  PubMed  Google Scholar 

  • Lovat PE, Oliverio S, Corazzari M, Rodolfo C, Ranalli M, Goranov B, Melino G et al (2003a) Bak: a downstream mediator of fenretinide-induced apoptosis of sh-sy5y neuroblastoma cells. Cancer Res 63:7310–7313

    CAS  PubMed  Google Scholar 

  • Lovat PE, Ranalli M, Corazzari M, Raffaghello L, Pearson AD, Ponzoni M, Piacentini M et al (2003b) Mechanisms of free-radical induction in relation to fenretinide-induced apoptosis of neuroblastoma. J Cell Biochem 89:698–708

    Article  CAS  PubMed  Google Scholar 

  • Lovat PE, Corazzari M, Goranov B, Piacentini M, Redfern CP (2004a) Molecular mechanisms of fenretinide-induced apoptosis of neuroblastoma cells. Ann N Y Acad Sci 1028:81–89

    Article  CAS  PubMed  Google Scholar 

  • Lovat PE, Di Sano F, Corazzari M, Fazi B, Donnorso RP, Pearson AD, Hall AG et al (2004b) Gangliosides link the acidic sphingomyelinase-mediated induction of ceramide to 12-lipoxygenase-dependent apoptosis of neuroblastoma in response to fenretinide. J Natl Cancer Inst 96:1288–1299

    Article  CAS  PubMed  Google Scholar 

  • Makena MR, Koneru B, Nguyen TH, Kang MH, Reynolds CP (2017) Reactive oxygen species-mediated synergism of fenretinide and romidepsin in preclinical models of t-cell lymphoid malignancies. Mol Cancer Ther 16:649–661

    Article  CAS  PubMed  Google Scholar 

  • Mäntymaa P, Guttorm T, Siitonen T, Säily M, Savolainen ER, Levonen AL, Kinnula V et al (2000) Cellular redox state and its relationship to the inhibition of clonal cell growth and the induction of apoptosis during all-trans retinoic acid exposure in acute myeloblastic leukemia cells. Haematologica 85:238–245

    PubMed  Google Scholar 

  • Maurer BJ, Metelitsa LS, Seeger RC, Cabot MC, Reynolds CP (1999) Increase of ceramide and induction of mixed apoptosis/necrosis by n-(4-hydroxyphenyl)- retinamide in neuroblastoma cell lines. J Natl Cancer Inst 91:1138–1146

    Article  CAS  PubMed  Google Scholar 

  • Messner MC, Cabot MC (2011) Cytotoxic responses to n-(4-hydroxyphenyl)retinamide in human pancreatic cancer cells. Cancer Chemother Pharmacol 68:477–487

    Article  CAS  PubMed  Google Scholar 

  • Moloney JN, Cotter TG (2018) Ros signalling in the biology of cancer. Semin Cell Dev Biol 80:50–64

    Article  CAS  PubMed  Google Scholar 

  • Morales MC, Pérez-Yarza G, Nieto-Rementeria N, Boyano MD, Jangi M, Atencia R, Asumendi A (2005) Intracellular glutathione levels determine cell sensitivity to apoptosis induced by the antineoplasic agent n-(4-hydroxyphenyl) retinamide. Anticancer Res 25:1945–1951

    CAS  PubMed  Google Scholar 

  • Myatt SS, Redfern CP, Burchill SA (2005) P38mapk-dependent sensitivity of ewing’s sarcoma family of tumors to fenretinide-induced cell death. Clin Cancer Res 11:3136–3148

    Article  CAS  PubMed  Google Scholar 

  • Nasr RR, Hmadi RA, El-Eit RM, Iskandarani AN, Jabbour MN, Zaatari GS, Mahon FX et al (2015) St1926, an orally active synthetic retinoid, induces apoptosis in chronic myeloid leukemia cells and prolongs survival in a murine model. Int J Cancer 137:698–709

    Article  CAS  PubMed  Google Scholar 

  • Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI (2007) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 67:11021–11028

    Article  CAS  PubMed  Google Scholar 

  • Oridate N, Suzuki S, Higuchi M, Mitchell MF, Hong WK, Lotan R (1997) Involvement of reactive oxygen species in n-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. J Natl Cancer Inst 89:1191–1198

    Article  CAS  PubMed  Google Scholar 

  • Osone S, Hosoi H, Kuwahara Y, Matsumoto Y, Iehara T, Sugimoto T (2004) Fenretinide induces sustained-activation of jnk/p38 mapk and apoptosis in a reactive oxygen species-dependent manner in neuroblastoma cells. Int J Cancer 112:219–224

    Article  CAS  PubMed  Google Scholar 

  • Ozkol HU, Ozkol H, Karadag AS, Bilgili SG, Tuluce Y, Calka O (2015) Oral isotretinoin therapy of acne patients decreases serum paraoxonase-1 activity through increasing oxidative stress. Drug Chem Toxicol 38:63–66

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Guo Y, Zhang P, Cao X, Luan Y (2016) Preventive and therapeutic effects of the retinoid x receptor agonist bexarotene on tumors. Curr Drug Metab 17:118–128

    Article  CAS  PubMed  Google Scholar 

  • Reczek CR, Chandel NS (2017) The two faces of reactive oxygen species in cancer

    Google Scholar 

  • Schenk T, Stengel S, Zelent A (2014) Unlocking the potential of retinoic acid in anticancer therapy. Br J Cancer 111:2039–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30

    Article  PubMed  Google Scholar 

  • Silvis AM, McCormick ML, Spitz DR, Kiningham KK (2016) Redox balance influences differentiation status of neuroblastoma in the presence of all-trans retinoic acid. Redox Biol 7:88–96

    Article  CAS  PubMed  Google Scholar 

  • Sun SY, Li W, Yue P, Lippman SM, Hong WK, Lotan R (1999a) Mediation of n-(4-hydoxyphenyl)retinamide-induced apoptosis in human cancer cells by different mechanisms. Cancer Res 59:2493–2498

    CAS  PubMed  Google Scholar 

  • Sun SY, Yue P, Lotan R (1999b) Induction of apoptosis by n-(4-hydroxyphenyl)retinamide and its association with reactive oxygen species, nuclear retinoic acid receptors, and apoptosis-related genes in human prostate carcinoma cells. Mol Pharmacol 55:403–410

    CAS  PubMed  Google Scholar 

  • Sun SY, Yue P, Kelloff GJ, Steele VE, Lippman SM, Hong WK, Lotan R (2001) Identification of retinamides that are more potent than n-(4-hydroxyphenyl)retinamide in inhibiting growth and inducing apoptosis of human head and neck and lung cancer cells. Cancer Epidemiol Biomark Prev 10:595–601

    CAS  Google Scholar 

  • Suzuki S, Higuchi M, Proske RJ, Oridate N, Hong WK, Lotan R (1999) Implication of mitochondria-derived reactive oxygen species, cytochrome c and caspase-3 in n-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. Oncogene 18:6380–6387

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Yuan X, Xiao J, Zhong Q, Yang C, Liu B, Cai Y et al (2020) Clinical characteristics and risk factors associated with covid-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study. Lancet Oncol 21:893–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiberio P, Cavadini E, Abolafio G, Formelli F, Appierto V (2010) 4-oxo-n-(4-hydroxyphenyl)retinamide: two independent ways to kill cancer cells. PLoS One 5:e13362

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsatmali M, Walcott EC, Makarenkova H, Crossin KL (2006) Reactive oxygen species modulate the differentiation of neurons in clonal cortical cultures. Mol Cell Neurosci 33:345–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahlquist A (1999) What are natural retinoids? Dermatology 199(Suppl 1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Venè R, Cardinali B, Arena G, Ferrari N, Benelli R, Minghelli S, Poggi A et al (2014) Glycogen synthase kinase 3 regulates cell death and survival signaling in tumor cells under redox stress. Neoplasia 16:710–722

    Article  PubMed  PubMed Central  Google Scholar 

  • Villani MG, Appierto V, Cavadini E, Bettiga A, Prinetti A, Clagett-Dame M, Curley RW et al (2006) 4-oxo-fenretinide, a recently identified fenretinide metabolite, induces marked g2-m cell cycle arrest and apoptosis in fenretinide-sensitive and fenretinide-resistant cell lines. Cancer Res 66:3238–3247

    Article  CAS  PubMed  Google Scholar 

  • Wolf G (1996) A history of vitamin a and retinoids. FASEB J 10:1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Wolf G, Maurer BJ, Metelitsa LS, Seeger RC, Cabot MC, Reynolds CP, Delia D et al (2000) The oxidation of 9-cis-retinol: a possible synthesis pathway for 9-cis-retinoic acid increase of ceramide and induction of mixed apoptosis/necrosis by n-(4-hydroxyphenyl)- retinamide in neuroblastoma cell lines regulation of apoptosis induced by the retinoid n-(4-hydroxyphenyl) retinamide and effect of deregulated bcl-2 preventive and therapeutic effects of the retinoid x receptor agonist bexarotene on tumors. Nutr Rev 58:354–356

    Article  CAS  PubMed  Google Scholar 

  • Wolverton SE, Harper JC (2013) Important controversies associated with isotretinoin therapy for acne. Am J Clin Dermatol 14:71–76

    Article  PubMed  Google Scholar 

  • Wu CS, Chen GS, Lin PY, Pan IH, Wang ST, Lin SH, Yu HS et al (2014) Tazarotene induces apoptosis in human basal cell carcinoma via activation of caspase-8/t-bid and the reactive oxygen species-dependent mitochondrial pathway. DNA Cell Biol 33:652–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, Liang X (2018) The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 37:266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang Y, Beard RL, Chandraratna RA, Kang JX (2001) Evidence of a lysosomal pathway for apoptosis induced by the synthetic retinoid CD437 in human leukemia HL-60 cells. Cell Death Differ 8:477–485

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Darwiche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

El-Baba, C., Eid, A.H., Shaito, A., Kobeissy, F., Darwiche, N. (2022). Retinoids and Reactive Oxygen Species in Cancer Cell Death and Therapeutics. In: Chakraborti, S., Ray, B.K., Roychoudhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-9411-3_186

Download citation

Publish with us

Policies and ethics