Skip to main content

Advertisement

Log in

Mechanisms of fenretinide-induced apoptosis

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Fenretinide, a synthetic retinoid, has emerged as a promising anticancer agent based on numerous in vitro and animal studies, as well as chemoprevention clinical trials. In vitro observations suggest that the anticancer activity of fenretinide may arise from its ability to induce apoptosis in tumor cells. Diverse signaling molecules including reactive oxygen species, ceramide, and ganglioside GD3 can mediate apoptosis induction by fenretinide in transformed, premalignant, and malignant cells. In many cell types, these signaling intermediates appear to be induced by mechanisms that are independent of retinoic acid receptor activation, and ultimately initiate the intrinsic or mitochondrial-mediated pathway of cell elimination. Numerous investigations conducted during the past 10 years have discovered a great deal about the apoptogenic activity of fenretinide. In this review we explore the mechanisms associated with fenretinide-induced apoptosis and highlight certain mechanistic underpinnings of fenretinide-induced cell death that remain poorly understood and thus warrant further characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hail N Jr (2005) Mitochondria: a novel target for the chemoprevention of cancer. Apoptosis 10:687–705

    PubMed  CAS  Google Scholar 

  2. Sun SY, Hail N Jr, Lotan R (2004) Apoptosis as a novel target for cancer chemoprevention. J Natl Cancer Inst 96:662–672

    PubMed  CAS  Google Scholar 

  3. Sporn MB (1976) Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res 36:2699–2702

    PubMed  CAS  Google Scholar 

  4. Kelloff GJ, Crowell JA, Steele VE et al (1999) Progress in cancer chemoprevention. Ann NY Acad Sci 889:1–13

    PubMed  CAS  Google Scholar 

  5. Hong WK, Sporn MB (1997) Recent advances in chemoprevention of cancer. Science 278:1073–1077

    PubMed  CAS  Google Scholar 

  6. Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 20:252–266

    Google Scholar 

  7. Fabian CJ, Kimler BF (2001) Beyond tamoxifen new endpoints for breast cancer chemoprevention, new drugs for breast cancer prevention. Ann NY Acad Sci 952:44–59

    Article  PubMed  CAS  Google Scholar 

  8. Kelloff GJ, Lieberman R, Steele VE et al (2001) Agents, biomarkers, and cohorts for chemopreventive agent development in prostate cancer. Urology 57:46–51

    PubMed  CAS  Google Scholar 

  9. Paulson JD, Oldham JW, Preston RF, Newman D (1985) Lack of genotoxicity of the cancer chemopreventive agent N-(4-hydroxyphenyl)retinamide. Fundam Appl Toxicol 5:44–150

    Google Scholar 

  10. Abou-Issa H, Moeschberger M, el-Masry W, Tejwani S, Curley RW Jr, Webb TE (1995) Relative efficacy of glucarate on the initiation and promotion phases of rat mammary carcinogenesis. Anticancer Res 15:805–810

    PubMed  CAS  Google Scholar 

  11. Ohshima M, Ward JM, Wenk ML (1985) Preventive and enhancing effects of retinoids on the development of naturally occurring skin, prostate gland, and endocrine pancreas in aged male ACI/segHapBR rats. J Natl Cancer Inst 74:517–524

    PubMed  CAS  Google Scholar 

  12. McCormick DL, Moon RC (1986) Antipromotional activity of dietary N-(4-hydroxyphenyl)retinamide in two-stage skin tumorigenesis in CD-1 and SENCAR mice. Cancer Lett 31:133–138

    PubMed  CAS  Google Scholar 

  13. McCormick DL, Bagg BJ, Hultin TA(1987) Comparative activity of dietary or topical exposure to three retinoids in the promotion of skin tumor induction in mice. Cancer Res 47:5989–5993

    PubMed  CAS  Google Scholar 

  14. Chodak GW, Rukstalis D, Kellman HM, Williams M (1993) Phase II study of the retinoid analogue 4-HPR in men with carcinoma of the prostate. J Urol 149:257

    Google Scholar 

  15. Veronesi U, De Palo G, Marubini E et al (1999) Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer. J Natl Cancer Inst 91:1847–1856

    PubMed  CAS  Google Scholar 

  16. Chiesa F, Tradati N, Grigolato R et al (2005) Randomized trial of fenretinide (4-HPR) to prevent recurrences, new localizations and carcinomas in patients operated on for oral leukoplakia: Long-term results. Int J Cancer 115:625–629

    PubMed  CAS  Google Scholar 

  17. Formelli F, Barua AB, Olson JA (1996) Bioactivities of N-(4-hydroxyphenyl)-retinamide and retinoyl β-glucuronide. FASEB J 10:1014–1024

    PubMed  CAS  Google Scholar 

  18. Lotan R (1995) Retinoids and apoptosis: implications for chemoprevention and therapy [editorial]. J Natl Cancer Inst 87:1655–1657

    PubMed  CAS  Google Scholar 

  19. Ulukaya E, Kurt A, Wood EJ (2001) 4-(N-hydroxyphenyl)retinamide can selectively induce apoptosis in human epidermoid carcinoma cells but not in normal dermal fibroblasts. Cancer Invest 19:145–154

    PubMed  CAS  Google Scholar 

  20. Darwiche N, Hatoum A, Dbaibo G et al (2004) N-(4-hydroxyphenyl)retinamide induces growth arrest and apoptosis in HTLV-I-transformed cells. Leukemia 18:607–615

    PubMed  CAS  Google Scholar 

  21. Asumendi A, Morales MC, Alvarez A, Arechaga J, Perez-Yarza G (2002) Implication of mitochondria-derived ROS and cardiolipin peroxidation in N-(4-hydroxyphenyl)retinamide-induced apoptosis. Br J Cancer 86:1951–1956

    PubMed  CAS  Google Scholar 

  22. Broaddus RR, Xie S, Hsu CJ, Wang J, Zhang S, Zou C (2004) The chemopreventive agents 4-HPR and DFMO inhibit growth and induce apoptosis in uterine leiomyomas. Am J Obstet Gynecol 190:686–692

    PubMed  CAS  Google Scholar 

  23. Han HS, Kwon YJ, Park SH et al (2004) Potent effect of 5-HPBR, a butanoate derivative of 4-HPR, on cell growth and apoptosis in cancer cells. Int J Cancer 109:58–64

    PubMed  CAS  Google Scholar 

  24. Oridate N, Suzuki S, Higuchi M, Mitchell MF, Hong WK, Lotan R (1997) Involvement of reactive oxygen species in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. J Natl Cancer Inst 89:1191–1198

    PubMed  CAS  Google Scholar 

  25. Maurer B, Metelitsa L, Seeger R, Cabot M, Reynolds C (1999) Increased of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)retinamide in neuroblastoma cell lines. J Natl Cancer Inst 91:1138–1146

    PubMed  CAS  Google Scholar 

  26. Faderl S, Lotan R, Kantarjian HM, Harris D, Van Q, Estrov Z (2003) N-(4-Hydroxylphenyl)retinamide (fenretinide, 4-HPR), a retinoid compound with antileukemic and proapoptotic activity in acute lymphoblastic leukemia (ALL). Leuk Res 27:259–266

    PubMed  CAS  Google Scholar 

  27. Chan LN, Zhang S, Shao J, Waikel R, Thompson EA, Chan TS (1997) N-(4-hydroxyphenyl)retinamide induces apoptosis in T lymphoma and T lymphoblastoid leukemia cells. Leuk Lymphoma 25:271–280

    PubMed  CAS  Google Scholar 

  28. Gopal AK, Pagel JM, Hedin N, Press OW (2003) Fenretinide enhances rituximab-induced cytotoxicity against B-cell lymphoma xenografts through a caspase-dependent mechanism. Blood 103:3516–3520

    PubMed  Google Scholar 

  29. Hsieh T, Wu JM (2000) Apoptosis and restriction of G(1)/S cell cycle by fenretinide in Burkitt’s lymphoma Mutu I cell line accessed with bcl-6 down-regulation. Biochem Biophys Res Commun 276:1295–1301

    PubMed  CAS  Google Scholar 

  30. Kroemer G, Petit P, Zamzami N, Vayssière JL (1995) The biochemistry of programmed cell death. FASEB J 9:1277–1287

    PubMed  CAS  Google Scholar 

  31. Hail N Jr, Carter BZ, Konopleva M, Andreeff M (2006) Apoptosis effectors mechanisms: a requiem performed in different keys. Apoptosis 11:889–904

    Google Scholar 

  32. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    PubMed  CAS  Google Scholar 

  33. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    PubMed  CAS  Google Scholar 

  34. Li LY, Lou X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    PubMed  CAS  Google Scholar 

  35. van Loo G, Schotte P, van Gurp M et al (2001) Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ 8:1136–1142

    PubMed  CAS  Google Scholar 

  36. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862

    PubMed  CAS  Google Scholar 

  37. van Loo G, van Gurp M, Depuydt B et al (2002) The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi/HtrA2 interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9:20–27

    PubMed  CAS  Google Scholar 

  38. Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    PubMed  CAS  Google Scholar 

  39. Wu M, Xu L-G, Li X, Zhai Z, Shu HB (2002) AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem 277:25617–25623

    PubMed  CAS  Google Scholar 

  40. Tsujinoto Y (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 195:151–167

    Google Scholar 

  41. Costantini P, Jocotot E, Decaudin D, Kroemer G (2000) Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92:1042–1053

    PubMed  CAS  Google Scholar 

  42. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    PubMed  CAS  Google Scholar 

  43. Garrido C, Kroemer G (2004) Life’s smile, death’s grin: vital functions of apoptosis-executing proteins. Curr Opin Cell Biol 16:639–646

    PubMed  CAS  Google Scholar 

  44. Pedersen PL (1999) Mitochondrial events in the life and death of animal cells: a brief overview. J Bioenerg Biomembr 31:291–304

    PubMed  CAS  Google Scholar 

  45. Zamzami N, Hirsch T, Dallaporta B, Petit PX, Kroemer G (1997) Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J Bioenerg Biomembr 29:185–193

    PubMed  CAS  Google Scholar 

  46. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    PubMed  CAS  Google Scholar 

  47. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    PubMed  CAS  Google Scholar 

  48. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of Bid by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    PubMed  CAS  Google Scholar 

  49. Creagh EM, Martin SJ (2001) Caspases: cellular demolition experts. Biochem Soc Trans 29:696–702

    PubMed  CAS  Google Scholar 

  50. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3:401–410

    PubMed  CAS  Google Scholar 

  51. Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263

    PubMed  CAS  Google Scholar 

  52. Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150:887–894

    PubMed  CAS  Google Scholar 

  53. Nakagawa T, Zhu H, Morishima N et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98–103

    PubMed  CAS  Google Scholar 

  54. Xie Q, Khaoustov VI, Chung CC et al (2002) Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology 36:592–601

    PubMed  CAS  Google Scholar 

  55. Jacobson J, Duchen MR (2002) Mitochondrial oxidative stress and cell death in astrocytes–requirement for stored Ca2+ and sustained opening of the permeability transition pore. J Cell Sci 115:1175–1188

    PubMed  CAS  Google Scholar 

  56. Wang KK, Posmantur R, Nadimpalli R et al (1998) Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis 356:187–196

    Google Scholar 

  57. Takano J, Tomioka M, Tsubuki S et al (2005) Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: Evidence from calpastatin-mutant mice. J Biol Chem 280:16175–16184

    PubMed  CAS  Google Scholar 

  58. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380

    PubMed  CAS  Google Scholar 

  59. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    PubMed  CAS  Google Scholar 

  60. Gentil B, Grimot F, Riva C (2003) Commitment to apoptosis by ceramides depends on mitochondrial respiratory function, cytochrome c release and caspase-3 activation in Hep-G2 cells. Mol Cell Biochem 254:203–210

    PubMed  CAS  Google Scholar 

  61. Boya P, Andreau K, Poncet D et al (2003) Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197:1323–1334

    PubMed  CAS  Google Scholar 

  62. Di Paola M, Cocco T, Lorusso M (2000) Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry 39:6660–6668

    PubMed  CAS  Google Scholar 

  63. Boya P, Gonzalez- Polo RA, Poncet D et al (2003) Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22:3927–3936

    PubMed  CAS  Google Scholar 

  64. Garcia-Ruiz C, Colell A, Morales A, Calvo M, Enrich C, Fernandez-Checa JC (2002) Trafficking of ganglioside GD3 to mitochondria by tumor necrosis factor-α. J Biol Chem 277:36443–36448

    PubMed  CAS  Google Scholar 

  65. Garcia-Ruiz C, Colell A, Paris R, Fernandez-Checa JC (2000) Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. FASEB J 14:847–858

    PubMed  CAS  Google Scholar 

  66. Rippo MR, Malisan F, Ravagnan L et al (2000) GD3 ganglioside directly targets mitochondria in a bcl-2-controlled fashion. FASEB J 14:2047–2054

    PubMed  CAS  Google Scholar 

  67. De Maria R, Lenti L, Malisan F et al (1997) Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science5 277:1652–1655

    PubMed  CAS  Google Scholar 

  68. Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    PubMed  CAS  Google Scholar 

  69. Lotan R (1996) Retinoids in cancer prevention. FASEB J 10:1031–1039

    PubMed  CAS  Google Scholar 

  70. Fanjul AN, Delia D, Pierotti MA, Rideout D, Qiu J, Pfahl M (1996) 4-Hydroxyphenyl retinamide is a highly selective activator of retinoid receptors. J Biol Chem 271:22441–22446

    PubMed  CAS  Google Scholar 

  71. Sun S-Y, Yue P, Lotan R (1999) Induction of apoptosis by N-(4-hydroxyphenyl)retinamide and its association with reactive oxygen species, nuclear retinoic acid receptors, and apoptosis related genes in human prostate carcinoma cells. Mol Pharmacol 55:403–410

    PubMed  CAS  Google Scholar 

  72. Clifford JL, Menter DG, Wang M, Lotan R, Lippman SM (1999) Retinoid receptor-dependent and -independent effects of N-(4-hydroxyphenyl)retinamide in F9 embryonal carcinoma cells. Cancer Res 59:14–18

    PubMed  CAS  Google Scholar 

  73. Appierto V, Cavadini E, Pergolizzi R et al (2001) Decrease in drug accumulation and in tumour aggressiveness marker expression in a fenretinide-induced resistant ovarian tumour cell line. Br J Cancer 84:1528–1534

    PubMed  CAS  Google Scholar 

  74. Supino R, Crosti M, Clerici M et al (1996) Induction of apoptosis by fenretinide (4HPR) in human ovarian carcinoma cells and its association with retinoic acid receptor expression. Int J Cancer 65:491–497

    PubMed  CAS  Google Scholar 

  75. Sabichi AL, Hendricks DT, Bober MA, Birrer MJ (1998) Retinoic acid receptor beta expression and growth inhibition of gynecologic cancer cells by the synthetic retinoid N-(4-hydroxyphenyl) retinamide. J Natl Cancer Inst 90:597–605

    PubMed  CAS  Google Scholar 

  76. Liu G, Wu M, Levi G, Ferrari N (1998) Inhibition of cancer cell growth by all-trans retinoic acid and its analog N-(4-hydroxyphenyl) retinamide: a possible mechanism of action via regulation of retinoid receptors expression. Int J Cancer 78:248–254

    PubMed  CAS  Google Scholar 

  77. Sun SY, Li W, Yue P (1999) Mediation of N-(4-hydoxyphenyl)retinamide-induced apoptosis in human cancer cells by different mechanisms. Cancer Res 59:2493–2498

    PubMed  CAS  Google Scholar 

  78. Ulukaya E, Pirianov G, Kurt MA, Wood EJ, Mehmet H (2003) Fenretinide induces cytochrome c release, caspase 9 activation and apoptosis in the absence of mitochondrial membrane depolarisation. Cell Death Differ 10:856–859

    PubMed  CAS  Google Scholar 

  79. Lovat PE, Ranalli M, Annichiarrico-Petruzzelli M (2000) Effector mechanisms of fenretinide-induced apoptosis in neuroblastoma. Exp Cell Res 260:50–60

    PubMed  CAS  Google Scholar 

  80. Lovat PE, Di Sano F, Corazzari M et al (2004) Gangliosides link the acidic sphingomyelinase-mediated induction of ceramide to 12-lipoxygenase-dependent apoptosis of neuroblastoma in response to fenretinide. J Natl Cancer Inst 96:1288–1299

    Article  PubMed  CAS  Google Scholar 

  81. Lovat PE, Corazzari M, Goranov B, Piacentini M, Redfern CP (2004) Molecular mechanisms of fenretinide-induced apoptosis of neuroblastoma cells. Ann N Y Acad Sci 1028:81–89

    PubMed  CAS  Google Scholar 

  82. Lovat PE, Ranalli M, Bernassola F et al (2000) Synergistic induction of apoptosis of neuroblastoma by fenretinide or CD437 in combination with chemotherapeutic drugs. Int J Cancer 88:977–985

    PubMed  CAS  Google Scholar 

  83. Dmitrovsky E (2004) Fenretinide activates a distinct apoptotic pathway. J Natl Cancer Inst 96:1264–1265

    PubMed  CAS  Google Scholar 

  84. Fleury C, Mignotte B, Vayssière J-L (2002) Mitochondrial reactive species in cell death signaling. Biochimie 84:131–141

    PubMed  CAS  Google Scholar 

  85. Mignotte B, Vayssière J-L (1998) Mitochondria and apoptosis. Eur J Biochem 252:1–15

    PubMed  CAS  Google Scholar 

  86. Skulachev VP (1996) Why are mitochondria involved in apoptosis? FEBS Lett 397:7–10

    PubMed  CAS  Google Scholar 

  87. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    PubMed  CAS  Google Scholar 

  88. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2002) Cytochrome c release from the mitochondria proceeds in by a two-step process. Proc Natl Acad Sci USA 99:1259–1263

    PubMed  CAS  Google Scholar 

  89. Moldovan L, Moldovan NI (2004) Oxygen free radicals and redox biology of organelles. Histochem Cell Biol 122:395–412

    PubMed  CAS  Google Scholar 

  90. France-Lanord V, Brugg B, Michel PP, Agid Y, Ruberg M (1997) Mitochondrial free radical signal in ceramide-dependent apoptosis: a putative mechanism for neuronal death in Parkinson’s disease. J Neurochem 69:12–21

    Google Scholar 

  91. Quillet-Mary A, Jaffrezou JP, Mansat V, Bordier C, Naval J, Laurent G (1997) Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem 272:21388–21395

    PubMed  CAS  Google Scholar 

  92. Andrieu-Abadie N, Gouaze V, Salvayre R, Levade T (2001) Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic Biol Med 31:717–728

    PubMed  CAS  Google Scholar 

  93. Boya P, Morales MC, Gonzalez-Polo RA et al (2003) The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family. Oncogene 22:6220–6230

    PubMed  CAS  Google Scholar 

  94. Rehman F, Shanmugasundaram P, Schrey MP (2004) Fenretinide stimulates redox-sensitive ceramide production in breast cancer cells: potential role in drug-induced cytotoxicity. Br J Cancer 91:1821–1828

    PubMed  CAS  Google Scholar 

  95. Osone S, Hosoi H, Kuwahara Y, Matsumoto Y, Iehara T, Sugimoto T (2004) Fenretinide induces sustained-activation of JNK/p38 MAPK and apoptosis in a reactive oxygen species-dependent manner in neuroblastoma cells. Int J Cancer 112:219–224

    PubMed  CAS  Google Scholar 

  96. Batra S, Reynolds CP, Maurer BJ (2004) Fenretinide cytotoxicity for Ewing’s sarcoma and primitive neuroectodermal tumor cell lines is decreased by hypoxia and synergistically enhanced by ceramide modulators. Cancer Res 64:5415–5424

    PubMed  CAS  Google Scholar 

  97. Lovat PE, Oliverio S, Corazzari M et al (2003) Bak: a downstream mediator of fenretinide-induced apoptosis of SH-SY5Y neuroblastoma cells. Cancer Res 63:7310–7313

    PubMed  CAS  Google Scholar 

  98. Goto H, Takahashi H, Fujii H, Ikuta K, Yokota S (2003) N-(4-Hydroxyphenyl)retinamide (4-HPR) induces leukemia cell death via generation of reactive oxygen species. Int J Hematol 78:219–225

    PubMed  CAS  Google Scholar 

  99. Lovat PE, Oliverio S, Corazzari M et al (2003) Induction of GADD153 and Bak: novel molecular targets of fenretinide-induced apoptosis of neuroblastoma. Cancer Lett 197:157–163

    PubMed  CAS  Google Scholar 

  100. Tosetti F, Vene R, Arena G et al (2003) N-(4-hydroxyphenyl)retinamide inhibits retinoblastoma growth through reactive oxygen species-mediated cell death. Mol Pharmacol 63:565–573

    PubMed  CAS  Google Scholar 

  101. Lovat PE, Oliverio S, Ranalli M et al (2002) GADD153 and 12-lipoxygenase mediate fenretinide-induced apoptosis of neuroblastoma. Cancer Res 62:5158–5167

    PubMed  CAS  Google Scholar 

  102. Bruno S, Tenca C, Saverino D, Ciccone E, Grossi CE (2002) Apoptosis of squamous cells at different stages of carcinogenesis following 4-HPR treatment. Carcinogenesis 23:447–456

    PubMed  CAS  Google Scholar 

  103. Hail N Jr, Lotan R (2001) Mitochondrial respiration is uniquely associated with the prooxidant and apoptotic effects of N-(4-hydroxyphenyl)retinamide. J Biol Chem 276:45614–45621

    PubMed  CAS  Google Scholar 

  104. Hail N Jr, Lotan R (2000) Mitochondrial permeability transition is a central coordinating event in N-(4-hydroxyphenly)retinamide-induced apoptosis. Cancer Epidemiol Biomarkers Prev 9:1293–1301

    PubMed  CAS  Google Scholar 

  105. Delia D, Aiello A, Meroni L, Nicolini M, Reed JC, Pierotti MA (1997) Role of antioxidants and intracellular free radicals in retinamide-induced cell death. Carcinogenesis 18:943–948

    PubMed  CAS  Google Scholar 

  106. Suzuki S, Higuchi M, Proske RJ, Oridate N, Hong WK, Lotan R (1999) Implication of mitochondria-derived reactive oxygen species, cytochrome c and caspase-3 in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. Oncogene 18:6380–6387

    PubMed  CAS  Google Scholar 

  107. DiPietrantonio AM, Hsieh TC, Juan G, Traganos F, Darzynkiewicz Z, Wu JM (2000) Fenretinide-induced caspase 3 activity involves increased protein stability in a mechanism distinct from reactive oxygen species elevation. Cancer Res 60:4331–4335

    PubMed  CAS  Google Scholar 

  108. Myatt SS, Redfern CPF, Burchill SA (2005) p38MAPK-dependent sensitivity of Ewing’s sarcoma family of tumors to fenretinide-induced cell death. Clin Cancer Res 11:3136–3148

    PubMed  CAS  Google Scholar 

  109. Poot M, Hosier S, Swisshelm K (2002) Distinct patterns of mitochondrial changes precede induction of apoptosis by all-trans-retinoic acid and N-(4-hydroxyphenyl)retinamide in MCF7 breast cancer cells. Exp Cell Res 279:128–140

    PubMed  CAS  Google Scholar 

  110. Lovat PE, Ranalli M, Corazzari M et al (2003) Mechanisms of free-radical induction in relation to fenretinide-induced apoptosis of neuroblastoma. J Cell Biochem 89:698–708

    PubMed  CAS  Google Scholar 

  111. Choi JH, Chun KH, Raz A, Lotan R (2004) Inhibition of N-(4-hydroxyphenyl)retinamide-induced apoptosis in breast cancer cells by galectin-3. Cancer Biol Ther 3:447–452

    PubMed  CAS  Google Scholar 

  112. Hail N Jr, Konopleva M, Sporn M, Lotan R, Andreeff M (2004) Evidence supporting a role for calcium in apoptosis induction by the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO). J Biol Chem 279:11179–11187

    PubMed  CAS  Google Scholar 

  113. You KR, Wen J, Lee ST, Kim DG (2002) Cytochrome c oxidase subunit III: a molecular marker for N-(4-hydroxyphenyl)retinamide-induced oxidative stress in hepatoma cells. J Biol Chem 277:3870–3877

    PubMed  CAS  Google Scholar 

  114. Takahashi N (2000) Antioxidant properties of N-(4-hydroxy- phenyl)retinamide (fenretinide). Biol Pharm Bull 23:222–225

    PubMed  CAS  Google Scholar 

  115. Takahashi N, Ohba T, Togashi S, Fukui T (2002) Biological activity of p-methylaminophenol, an essential structural component of N-(4-hydroxyphenyl)retinamide, fenretinide. J Biochem (Tokyo) 132:767–774

    CAS  Google Scholar 

  116. Waliszewski P, Skwarek R, Jeromin L, Manikoski H (1999) On the mitochondrial aspect of reactive oxygen species action in external magnetic fields. J Photochem Photobiol 52:137–140

    Article  CAS  Google Scholar 

  117. Vrbacky M, Krijt J, Drahota Z, Melkova Z (2003) Inhibitory effects of Bcl-2 on mitochondrial respiration. Physiol Res 52:545–554

    PubMed  CAS  Google Scholar 

  118. Harris MH, Vander Heiden MG, Kron SJ, Thompson CB (2000) Role of oxidative phosphorylation in Bax toxicity Mol Cell Biol 20:3590–3596

    PubMed  CAS  Google Scholar 

  119. Manfredi G, Kwong JQ, Oca-Cossio JA et al (2003) BCL-2 improves oxidative phosphorylation and modulates adenine nucleotide translocation in mitochondria of cells harboring mutant mtDNA. J Biol Chem 278:5639–5645

    PubMed  CAS  Google Scholar 

  120. Saikumar P, Dong Z, Patel Y et al (1998) Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 17:3401–3415

    PubMed  CAS  Google Scholar 

  121. Schwarz CS, Evert BO, Seyfried J et al (2001) Overexpression of bcl-2 results in reduction of cytochromec content and inhibition of complex I activity. Biochem Biophys Res Commun 280:1021–1027

    PubMed  CAS  Google Scholar 

  122. Vander Heiden MG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB (2000) Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci USA 97:4666–4671

    PubMed  CAS  Google Scholar 

  123. Lim SJ, Simeone AM, Kim CK, Tari AM (2002) Cyclosporin A enhances the apoptotic effects of N-(4-hydroxyphenyl)retinamide in breast cancer cells. Int J Cancer 101:243–247

    PubMed  CAS  Google Scholar 

  124. Simeone AM, Ekmekcioglu S, Broemeling LD, Grimm EA, Tari AM (2002) A novel mechanism by which N-(4-hydroxyphenyl)retinamide inhibits breast cancer cell growth: the production of nitric oxide. Mol Cancer Ther 1:1009–1017

    PubMed  CAS  Google Scholar 

  125. Simeone AM, Broemeling LD, Rosenblum J, Tari AM (2003) HER2/neu reduces the apoptotic effects of N-(4-hydroxyphenyl)retinamide (4-HPR) in breast cancer cells by decreasing nitric oxide production. Oncogene 22:6739–6747

    PubMed  CAS  Google Scholar 

  126. Simeone AM, Li YJ, Broemeling LD, Johnson MM, Tuna M, Tari AM (2004) Cyclooxygenase-2 is essential for HER2/neu to suppress N-(4-hydroxyphenyl)retinamide apoptotic effects in breast cancer cells. Cancer Res 64:1224–1228

    PubMed  CAS  Google Scholar 

  127. Turrens JF (2003) Mitochondrial formation of reactive species. J Physiol 522:335–344

    Google Scholar 

  128. Fernandez-Checa JC (2003) Redox regulation and signaling lipids in mitochondrial apoptosis. Biochem Biophys Res Commun 304:471–479

    PubMed  CAS  Google Scholar 

  129. Mimeault M (2002) New advances on structural and biological functions of ceramide in apoptotic/necrotic cell death and cancer. FEBS Lett 530:9–16

    PubMed  CAS  Google Scholar 

  130. Malisan F, Testi R (2002) GD3 ganglioside and apoptosis. Biochim Biophys Acta 1585:179–187

    PubMed  CAS  Google Scholar 

  131. Wang H, Maurer BJ, Reynolds CP, Cabot MC (2001) N-(4-hydroxyphenyl)retinamide elevates ceramide in neuroblastoma cell lines by coordinate activation of serine palmitoyltransferase and ceramide synthase. Cancer Res 61:5102–5105

    PubMed  CAS  Google Scholar 

  132. DiPietrantonio AM, Hsieh TC, Olson SC, Wu JM (1998) Regulation of G1/S transition and induction of apoptosis in HL-60 leukemia cells by fenretinide (4HPR). Int J Cancer 78:53–61

    PubMed  CAS  Google Scholar 

  133. Erdreich-Epstein A, Tran LB, Bowman NN et al (2002) Ceramide signaling in fenretinide-induced endothelial cell apoptosis. J Biol Chem 277:49531–49537

    PubMed  CAS  Google Scholar 

  134. O’Donnell PH, Guo WX, Reynolds CP, Maurer BJ (2002) N-(4-hydroxyphenyl)retinamide increases ceramide and is cytotoxic to acute lymphoblastic leukemia cell lines, but not to non-malignant lymphocytes. Leukemia 16:902–910

    PubMed  CAS  Google Scholar 

  135. Smyth MJ, Perry DK, Zhang J, Poirier GG, Hannun YA, Obeid LM (1996) prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2. Biochem J 316:25–28

    PubMed  CAS  Google Scholar 

  136. Dbaibo GS, Perry DK, Gamard CJ et al (1997) Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-α: CrmA and Bcl-2 target distinct components in the apoptotic pathway. J Exp Med 185:481–490

    PubMed  CAS  Google Scholar 

  137. Goswami R, Kilkus J, Scurlock B, Dawson G (2002) CrmA protects against apoptosis and ceramide formation in PC12 cells. Neurochem Res 27:735–741

    PubMed  CAS  Google Scholar 

  138. Maurer BJ, Melton L, Billups C, Cabot MC, Reynolds CP (2000) Synergistic cytotoxicity in solid tumor cell lines between N-(4-hydroxyphenyl)retinamide and modulators of ceramide metabolism. J Natl Cancer Inst 92:1897–1909

    PubMed  CAS  Google Scholar 

  139. Wang H, Charles AG, Frankel AJ, Cabot MC (2003) Increasing intracellular ceramide: an approach that enhances the cytotoxic response in prostate cancer cells. Urology 61:1047–1052

    PubMed  Google Scholar 

  140. Appierto V, Villani MG, Cavadini E, Lotan R, Vinson C, Formelli F (2004) Involvement of c-Fos in fenretinide-induced apoptosis in human ovarian carcinoma cells. Cell Death Differ 11:270–279

    PubMed  CAS  Google Scholar 

  141. Gudz TI, Tserng KY, Hoppel CL (1997) Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem 272:24154–24158

    PubMed  CAS  Google Scholar 

  142. Ghafourifar P, Klein SD, Schucht O et al (1999) Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state. J Biol Chem 274:6080–6084

    PubMed  CAS  Google Scholar 

  143. Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 272:11369–11377

    PubMed  CAS  Google Scholar 

  144. Corda S, Laplace C, Vicaut E, Duranteau J (2001) Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol 24:762–768

    PubMed  CAS  Google Scholar 

  145. Poppe M, Reimertz C, Munstermann G, Kogel D, Prehn JH (2002) Ceramide-induced apoptosis of D283 medulloblastoma cells requires mitochondrial respiratory chain activity but occurs independently of caspases and is not sensitive to Bcl-xL overexpression. J Neurochem 82:482–494

    PubMed  CAS  Google Scholar 

  146. Bertram JS (2001) The molecular biology of cancer. Mol Aspects Med 21:167–223

    Google Scholar 

  147. Aoki M, Nata T, Morishita R et al (2001) Endothelial apoptosis induced by oxidative stress through activation of NF-κB: antiapoptotic effect of antioxidant agents on endothelial cells. Hypertension 38:48–55

    PubMed  CAS  Google Scholar 

  148. Shimada K, Nakamura M, Ishida E, Kishi M, Yonehara S, Konishi N (2002) Contributions of mitogen-activated protein kinase and nuclear factor kappa B to N-(4-hydroxyphenyl)retinamide-induced apoptosis in prostate cancer cells. Mol Carcinog 35:127–137

    PubMed  CAS  Google Scholar 

  149. Campbell Hewson QD, Lovat PE, Corazzari M, Catterall JB, Redfern CPF (2005) The NF-κB pathway mediates fenretinide-induced apoptosis in SH-SY5Y neuroblastoma cells. Apoptosis 10:493–498

    Google Scholar 

  150. Park J-H, Liu L, Kim J-H, You K-Y, Kim D-G (2005) Identification of the genes involved in enhanced fenretinide-induced apoptosis by parthenolide in human hepatoma cells. Cancer Res 65:2804–2814

    PubMed  CAS  Google Scholar 

  151. Hursting SD, Perkins SN, Phang JM, Barrett JC (2001) Diet and cancer prevention studies in p53-deficient mice. J Nutr 131:3092S–3094S

    PubMed  CAS  Google Scholar 

  152. Even G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322

    Google Scholar 

  153. Shaker MR, Yang G, Timme TL et al (2000) Dietary 4-HPR suppresses the development of bone metastasis in vivo in a mouse model of prostate cancer progression. Clin Exp Metastasis 18:429–438

    PubMed  CAS  Google Scholar 

  154. Delia D, Aiello A, Formelli F et al (1995) Regulation of apoptosis induced by the retinoid N-(4-hydroxyphenyl) retinamide and effect of deregulated bcl-2. Blood 85:359–367

    PubMed  CAS  Google Scholar 

  155. Zou CP, Kurie JM, Lotan D, Zou CC, Hong WK, Lotan R (1998) Higher potency of N-(4-hydroxyphenyl)retinamide than all-trans-retinoic acid in induction of apoptosis in non-small cell lung cancer cell lines. Clin Cancer Res 4:1345–1355

    PubMed  CAS  Google Scholar 

  156. Zou C, Guan Y, Zou C et al (2002) N-(4-hydroxyphenyl) retinamide (4-HPR) modulates GADD45 expression in radiosensitive bladder cancer cell lines. Cancer Lett 180:131–137

    PubMed  CAS  Google Scholar 

  157. Corazzari M, Lovat PE, OliverioS, Pearson AD, Piacentini M, Redfern CP (2003) Growth and DNA damage-inducible transcription factor 153 mediates apoptosis in response to fenretinide but not synergy between fenretinide and chemotherapeutic drugs in neuroblastoma. Mol Pharmacol 64:1370–1378

    PubMed  CAS  Google Scholar 

  158. You KR, Liu MJ, Han XJ, Lee ZW, Kim DG (2003) Transcriptional regulation of the human transferrin gene by GADD153 in hepatoma cells. Hepatology 38:745–755

    PubMed  CAS  Google Scholar 

  159. Kim DG, You KR, Liu MJ, Choi YK, Won YS (2002) GADD153-mediated anticancer effects of N-(4-hydroxyphenyl)retinamide on human hepatoma cells. J Biol Chem 277:38930–38938

    PubMed  CAS  Google Scholar 

  160. Xia Y, Wong NS, Fong WF, Tideman H (2002) Upregulation of GADD153 expression in the apoptotic signaling of N-(4-hydroxyphenyl)retinamide (4HPR). Int J Cancer 102:7–14

    PubMed  CAS  Google Scholar 

  161. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    PubMed  CAS  Google Scholar 

  162. Kim H-J, Chakravarti N, Oridate N, Choe C, Claret F-X, Lotan R (2005) N-(4-Hydroxyphenyl)retinamide-induced apoptosis triggered by reactive oxygen species is mediated by activation of MAPKs in head and neck squamous carcinoma cells. Oncogene 25:2785–2794

    Google Scholar 

  163. Chen YR, Zhou G, Tan TH (1999) c-Jun N-terminal kinase mediates apoptotic signaling induced by N-(4-hydroxyphenyl)retinamide. Mol Pharmacol 56:1271–1279

    PubMed  CAS  Google Scholar 

  164. Chen YR, Tan TH (1999) Lack of correlation in JNK activation and p53-dependent Fas expression induced by apoptotic stimuli. Biochem Biophys Res Commun 256:595–599

    PubMed  CAS  Google Scholar 

  165. Seo SR, Chong SA, Lee SI et al (2001) Zn2+-induced ERK activation mediated by reactive oxygen species causes cell death in differentiated PC12 cells. J Neurochem 78:600–610

    PubMed  CAS  Google Scholar 

  166. Stanciu M, Wang Y, Kentor R et al (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 275:12200–12206

    PubMed  CAS  Google Scholar 

  167. Shimada K, Nakamura M, Ishida E, Kishi M, Konishi N (2003) Requirement of c-jun for testosterone-induced sensitization to N-(4-hydroxyphenyl)retinamide-induced apoptosis. Mol Carcinog 36:115–122

    PubMed  CAS  Google Scholar 

  168. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    PubMed  CAS  Google Scholar 

  169. Marchetti P, Zamzami N, Joseph B et al (1999) The novel retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphtalene carboxylic acid can trigger apoptosis through a mitochondrial pathway independent of the nucleus. Cancer Res 59:6257–6266

    PubMed  CAS  Google Scholar 

  170. Cuello M, Coats AO, Darko I et al (2004) N-(4-hydroxyphenyl) retinamide (4HPR) enhances TRAIL-mediated apoptosis through enhancement of a mitochondrial-dependent amplification loop in ovarian cancer cell lines. Cell Death Differ 11:527–541

    PubMed  CAS  Google Scholar 

  171. Holmes WF, Soprano DR, Soprano KJ (2003) Comparison of the mechanism of induction of apoptosis in ovarian carcinoma cells by the conformationally restricted synthetic retinoids CD437 and 4-HPR. J Cell Biochem 89:262–278

    PubMed  CAS  Google Scholar 

  172. Hursting SD, Shen JC, Sun XY, Wang TT, Phang JM, Perkins SN (2002) Modulation of cyclophilin gene expression by N-4-(hydroxyphenyl)retinamide: association with reactive oxygen species generation and apoptosis. Mol Carcinog 33:16–24

    PubMed  CAS  Google Scholar 

  173. Baines C, Kaiser R, Purcell N et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    PubMed  CAS  Google Scholar 

  174. Goldmacher V (2002) vMIA, a viral inhibitor of apoptosis targeting mitochondria. Biochimie 84:177–185

    PubMed  CAS  Google Scholar 

  175. Hsu DK, Hammes SR, Kuwabara I, Greene WC, Liu FT (1996) Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside-binding lectin, galectin-3. Am J Pathol 148:1661–1670

    PubMed  CAS  Google Scholar 

  176. Broekemeier K, Pfeiffer DR (1995) Inhibition of the mitochondrial permeability transition by cyclosporin A during long time frame experiments: relationship between pore opening and the activity of mitochondrial phospholipases. Biochemistry 34:16440–16449

    PubMed  CAS  Google Scholar 

  177. Hail N Jr, Youssef EM, Lotan R (2001) Evidence supporting a role for mitochondrial respiration in apoptosis induction by the synthetic retinoid CD437. Cancer Res 61:6698–6702

    PubMed  CAS  Google Scholar 

  178. Serkova N, Klawitter J, Niemann CU (2003) Organ-specific response to inhibition of mitochondrial metabolism by cyclosporine in the rat. Transpl Int 16:748–755

    PubMed  CAS  Google Scholar 

  179. Henke W, Nickel E, Jung K (1992) Cyclosporine A inhibits ATP net uptake of rat kidney mitochondria. Biochem Pharmacol 43:1021–1024

    PubMed  CAS  Google Scholar 

  180. Hokanson JF, Mercier JG, Brooks GA (1995) Cyclosporine A decreases rat skeletal muscle mitochondrial respiration in vitro. Am J Respir Crit Care Med 151:1848–1851

    PubMed  CAS  Google Scholar 

  181. Zhou LL, Zhou LY, Luo KQ, Chang DC (2005) Smac/DIABLO and cytochrome c are released from mitochondria through a similar mechanism during UV-induced apoptosis. Apoptosis 10:289–299

    PubMed  CAS  Google Scholar 

  182. Martinou JC, Desagher S, Antonsson B (2000) Cytochrome c release from mitochondria: all or nothing. Nat Cell Biol 2:41–43

    Google Scholar 

  183. Khodjakov A, Rieder C, Mannella CA, Kinnally KW (2004) Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells? Mitochondrion 3:217–227

    PubMed  CAS  Google Scholar 

  184. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, R GD (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162

    PubMed  CAS  Google Scholar 

  185. Scorrano L, Ashiya M, Buttle K et al (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67

    PubMed  CAS  Google Scholar 

  186. Andoh T, Lee SY, Chiueh CC (2000) Preconditioning regulation of bcl-2 and p66shc by human NOS1 enhances tolerance to oxidative stress. FASEB J 14:2144–2146

    PubMed  CAS  Google Scholar 

  187. Bojes HK, Datta K, Xu J et al (1997) Bcl-xL overexpression attenuates glutathione depletion in FL5.12 cells following interleukin-3 withdrawal. Biochem J 325:315–319

    PubMed  CAS  Google Scholar 

  188. Crawford MJ, Krishnamoorthy RR, Rudick VL et al (2001) Bcl-2 overexpression protects photooxidative stress-induced apoptosis of photoreceptor cells via NF-κB preservation. Biochem Biophys Res 281:1304–1312

    CAS  Google Scholar 

  189. Sonoda Y, Watanabe S, Matsumoto Y, Aizu-Yokota E, Kasahara T (1999) FAK is the upstream signal protein of the phosphatidylinositol 3-kinase-Akt survival pathway in hydrogen peroxide-induced apoptosis of a human glioblastoma cell line. J Biol Chem 274:10566–10570

    PubMed  CAS  Google Scholar 

  190. Longoni B, Boschi E, Demontis GC, Ratto GM, Mosca F (2001) Apoptosis and adaptive responses to oxidative stress in human endothelial cells exposed to cyclosporin A correlate with BCL-2 expression levels. FASEB J 15:731–740

    PubMed  CAS  Google Scholar 

  191. Shen JC, Wang TT, Chang S, Hursting SD (1999) Mechanistic studies of the effects of the retinoid N-(4-hydroxyphenyl)retinamide on prostate cancer cell growth and apoptosis. Mol Carcinog 24:160–168

    PubMed  CAS  Google Scholar 

  192. Wang TT, Phang JM (1996) Effect of N-(4-hydroxyphenyl) retinamide on apoptosis in human breast cancer cells. Cancer Lett 107:65–71

    PubMed  CAS  Google Scholar 

  193. Xiong J, Chen J, Chernenko G et al (2003) Antisense BAG-1 sensitizes HeLa cells to apoptosis by multiple pathways. Biochem Biophys Res Commun 312:585–591

    PubMed  CAS  Google Scholar 

  194. Zou C, Liebert M, Zou C, Grossman HB, Lotan R (2001) Identification of effective retinoids for inhibiting growth and inducing apoptosis in bladder cancer cells. J Urol 165:986–992

    PubMed  CAS  Google Scholar 

  195. You KR, Shin MN, Park RK, Lee SO, Kim DG (2001) Activation of caspase-8 during N-(4-hydroxyphenyl)retinamide-induced apoptosis in Fas-defective hepatoma cells. Hepatology 34:1119–1127

    PubMed  CAS  Google Scholar 

  196. DiPietrantonio A, Hsieh TC, Wu JM (1996) Differential effects of retinoic acid (RA) and N-(4-hydroxyphenyl) retinamide (4-HPR) on cell growth, induction of differentiation, and changes in p34cdc2, Bcl-2, and actin expression in the human promyelocytic HL-60 leukemic cells. Biochem Biophys Res Commun 224:837–842

    PubMed  CAS  Google Scholar 

  197. Nakashima T, Miura M, Hara M (2000) Tetrocarcin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res 60:1229–1235

    PubMed  Google Scholar 

  198. Wang J-L, Liu D, Zhang Z-J et al (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 97:7124–7129

    PubMed  CAS  Google Scholar 

  199. Reed JC (2002) Apoptosis-targeted therapies for cancer. Cancer Cell 3:17–22

    Google Scholar 

  200. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    PubMed  CAS  Google Scholar 

  201. Sun SY, Yue P, Kelloff GJ et al (2001) Identification of retinamides that are more potent than N-(4-hydroxyphenyl)retinamide in inhibiting growth and inducing apoptosis of human head and neck and lung cancer cells. Cancer Epidemiol Biomarkers Prev 10:595–601

    PubMed  CAS  Google Scholar 

  202. Kalli KR, Devine KE, Cabot MC et al (2003) Heterogeneous role of caspase-8 in fenretinide-induced apoptosis in epithelial ovarian carcinoma cell lines. Mol Pharmacol 64:1434–1443

    PubMed  CAS  Google Scholar 

  203. Puduvalli VK, Li JT, Chen L, McCutcheon IE (2005) Induction of apoptosis in primary meningioma cultures by fenretinide. Cancer Res 65:1547–1553

    PubMed  CAS  Google Scholar 

  204. Inoue S, Snowden RT, Dyer MJ, Cohen GM (2004) CDDO induces apoptosis via the intrinsic pathway in lymphoid cells. Leukemia 18:948–952

    PubMed  CAS  Google Scholar 

  205. Hail N Jr, Lotan R (2004) Apoptosis induction by the natural product cancer chemopreventive agent deguelin is mediated through the inhibition of mitochondrial respiration. Apoptosis 9:437–447

    PubMed  CAS  Google Scholar 

  206. Hail N Jr, Lotan R (2005) Mitochondria as novel targets for pro-apoptotic synthetic retinoids. In: Packer L, Obermüller-Jevic U, Kraemer K et al (eds) Carotenoids and Retinoids: Molecular Aspects and Health Issues. AOCS Press, Champaign, IL, pp 229–243

    Google Scholar 

  207. Clifford JL, Sabichi AL, Zou C et al (2001) Effects of novel phenylretinamides on cell growth and apoptosis in bladder cancer. Cancer Epidemiol Biomarkers Prev 10:391–395

    PubMed  CAS  Google Scholar 

  208. Shiekh MS, Shao ZM, Li XS et al (1993) N-(4-Hydroxyphenyl) retinamide (4HPR)-mediated biological actions involve retinoid receptor-independent pathways in human breast carcinoma. Carcinogenesis 16:2477–2486

    Google Scholar 

  209. Herbert BS, Sanders BG, Kline K (1999) N-(4-hydroxyphenyl) retinamide activation of transforming growth factor-β and induction of apoptosis in human breast cancer cells. Nutr Cancer 34:121–132

    PubMed  CAS  Google Scholar 

  210. Jinno H, Steiner MG, Mehta RG, Osborne MP, Telang NT (1999) Inhibition of aberrant proliferation and induction of apoptosis in HER-2/neu oncogene transformed human mammary epithelial cells by N-(4-hydroxyphenyl)retinamide. Carcinogenesis 20:229–236

    PubMed  CAS  Google Scholar 

  211. Yang X, Hao Y, Ding Z, Pater A (2000) BAG-1 promotes apoptosis induced by N-(4-hydroxyphenyl)retinamide in human cervical carcinoma cells. Exp Cell Res 256:491–499

    PubMed  CAS  Google Scholar 

  212. Kitareewan S, Spinella MJ, Allopenna J, Reczek PR, Dmitrovsky E (1999) 4HPR triggers apoptosis but not differentiation in retinoid sensitive and resistant human embryonal carcinoma cells through an RARγ independent pathway. Oncogene 18:5747–5755

    PubMed  CAS  Google Scholar 

  213. Saitoh Y, Goto T, Puduvalli VK et al (1999) Induction of apoptosis by N-(4-hydroxyphenyl)retinamide in glioma cells. Int J Oncol 15:499–509

    PubMed  CAS  Google Scholar 

  214. Puduvalli VK, Saito Y, Xu R, Kouraklis GP, Levin VA, Kyritsis AP (1999) Fenretinide activates caspases and induces apoptosis in gliomas. Clin Cancer Res 5:2230–2235

    PubMed  CAS  Google Scholar 

  215. Oridate N, Lotan D, Xu XC, Hong WK, Lotan R (1996) Differential induction of apoptosis by all-trans-retinoic acid and N-(4-hydroxyphenyl)retinamide in human head and neck squamous cell carcinoma cell lines. Clin Cancer Res 2:855–863

    PubMed  CAS  Google Scholar 

  216. Ohlmann CH, Jung C, Jaques G (2002) Is growth inhibition and induction of apoptosis in lung cancer cell lines by fenretinide [N-(4-hydroxyphenyl)retinamide] sufficient for cancer therapy? Int J Cancer 100:520–526

    PubMed  CAS  Google Scholar 

  217. Kalemkerian GP, Slusher R, Ramalingam S, Gadgeel S, Mabry M (1995) Growth inhibition and induction of apoptosis by fenretinide in small-cell lung cancer cell lines. J Natl Cancer Inst 87:1674–1680

    PubMed  CAS  Google Scholar 

  218. Kalemkerian GP, Ou X (1999) Activity of fenretinide plus chemotherapeutic agents in small-cell lung cancer cell lines. Cancer Chemother Pharmacol 43:145–150

    PubMed  CAS  Google Scholar 

  219. Pagnan G, Montaldo PG, Pastorino F et al (1999) GD2-mediated melanoma cell targeting and cytotoxicity of liposome-entrapped fenretinide. Int J Cancer 81:268–274

    PubMed  CAS  Google Scholar 

  220. Montaldo PG, Pagnan G, Pastorino F et al (1999) N-(4-Hydroxyphenyl) retinamide is cytotoxic to melanoma cells in vitro through induction of programmed cell death. Int J Cancer 81:262–267

    PubMed  CAS  Google Scholar 

  221. Di Vinci A, Geido E, Infusini E, Giaretti W (1994) Neuroblastoma cell apoptosis induced by the synthetic retinoid N-(4-hydroxyphenyl)retinamide. Int J Cancer 59:422–426

    PubMed  CAS  Google Scholar 

  222. Mariotti A, Marcora E, Bunone G et al (1994) N-(4-hydroxyphenyl)retinamide: a potent inducer of apoptosis in human neuroblastoma cells. J Natl Cancer Inst 86:1245–1247

    PubMed  CAS  Google Scholar 

  223. Ponzoni M, Bocca P, Chiesa V et al (1995) Differential effects of N-(4-hydroxyphenyl)retinamide and retinoic acid in neuroblastoma cells: apoptosis versus differentiation. Cancer Res 55:853–861

    PubMed  CAS  Google Scholar 

  224. Roberson KM, Penland SN, Padilla GM et al (1997) Fenretinide: induction of apoptosis and endogenous transforming growth factor β in PC-3 prostate cancer cells. Cell Growth Differ 8:101–111

    PubMed  CAS  Google Scholar 

  225. Hsieh TC, Wu JM (1997) Effects of fenretinide (4-HPR) on prostate LNCaP cell growth, apoptosis, and prostate-specific gene expression. Prostate 33:97–104

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hail Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hail, N., Kim, H.J. & Lotan, R. Mechanisms of fenretinide-induced apoptosis. Apoptosis 11, 1677–1694 (2006). https://doi.org/10.1007/s10495-006-9289-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-9289-3

Keywords

Navigation