Skip to main content
Log in

N-(4-Hydroxyphenyl)retinamide (4-HPR) Induces Leukemia Cell Death via Generation of Reactive Oxygen Species

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The role of reactive oxygen species (ROS) in the cytotoxicity of N-(4-hydroxyphenyl)retinamide (4-HPR) was studied with use of the B-precursor lymphoblastic leukemia cell line YCUB-2. The increase in intracellular ROS measured with 2′-7′-dichlorodihydrofluorescein diacetate after 3 hours’ incubation was 3.7-fold with 1 μM 4-HPR and 5.8-fold with 5 μM 4-HPR. The rate of apoptosis after 48 hours’ incubation was 9.8% and 56.4% in comparison with untreated cells. Hydroethidine, which is a more specific indicator of superoxide anion radical level, did not effectively detect 4-HPR-induced ROS. The antioxidant 3-methyl-1-phenyl-2-pyrazolin-5-one suppressed 4-HPR-induced ROS production and apoptosis. The cytotoxicity of 4-HPR was analyzed in 4 other leukemia/lymphoma lines (CCRF-HSB2, Molt-4, KG-1, HL-60). We found that the cytotoxicity of 4-HPR correlated with the amount of ROS produced in cell lines, except in HL-60 cells. The intracellular glutathione level varied among the 5 cell lines, the highest levels occurring in Molt-4 and KG-1, which were less sensitive to 4-HPR. Suppression of glutathione by buthionine sulfoximine enhanced the level of 4-HPR-induced ROS production and apoptosis in Molt-4. Our findings suggest that ROS play a significant role in the antileukemia effect of 4-HPR and that the glutathione level in leukemias may be associated the sensitivity of the cells to 4-HPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction.Apoptosis. 2000;5:415–418.

    Article  PubMed  CAS  Google Scholar 

  2. Groninger E, Meeuwsen-De Boer GJ, De Graaf SS, Kamps WA, De BontES. Vincristine induced apoptosis in acute lymphoblastic leukaemia cells: a mitochondrial controlled pathway regulated by reactive oxygen species?Int J Oncol. 2002;21:1339–1345.

    PubMed  CAS  Google Scholar 

  3. Sugimoto K, Tamayose K, Sasaki M, Hayashi K, Oshimi K. Low- dose doxorubicin-induced necrosis in Jurkat cells and its acceleration and conversion to apoptosis by antioxidants.Br J Haematol. 2002;1 18:229–238.

    Article  Google Scholar 

  4. Iacobini M, Menichelli A, Palumbo G, Multari G, Werner B, Del Principe D. Involvement of oxygen radicals in cytarabine-induced apoptosis in human polymorphonuclear cells.Biochem Pharmacol. 2001;61:1033–1040.

    Article  PubMed  CAS  Google Scholar 

  5. Mansat-de Mas V, Bezombes C, Quillet-Mary A, et al. Implication of radical oxygen species in ceramide generation, c-Jun N-terminal kinase activation and apoptosis induced by daunorubicin.Mol Pharmacol. 1999;56:867–874.

    Article  Google Scholar 

  6. Reynolds CP, Lemons RS. Retinoid therapy of childhood cancer.Hematol Oncol Clin North Am. 2001;15:867–910.

    Article  PubMed  CAS  Google Scholar 

  7. Garewal HS, List A, Meyskens F, Buzaid A, Greenberg B, Katakkar S. Phase II trial of fenretinide [N-(4-hydroxyphenyl) retinamide] in myelodysplasia: possible retinoid-induced disease acceleration.Leuk Res. 1989;13:339–343.

    Article  PubMed  CAS  Google Scholar 

  8. O’Donnell PH, Guo WX, Reynolds CP, Maurer BJ. N-(4- Hydroxyphenyl)retinamide increases ceramide and is cytotoxic to acute lymphoblastic leukemia cell lines, but not to non-malignant lymphocytes.Leukemia. 2002;16:902–910.

    Article  PubMed  Google Scholar 

  9. Wu JM, DiPietrantonio AM, Hsieh TC. Mechanism of fenretinide (4-HPR)-induced cell death.Apoptosis. 2001;6:377–388.

    Article  PubMed  CAS  Google Scholar 

  10. Takahashi H, Goto H, Eunabiki T, et al. Expression of two types of E2A-HLF fusion proteins in YCUB-2, a novel cell line established from B-lineage leukemia with t(17;19).Leukemia. 2001;15:995–997.

    Article  PubMed  CAS  Google Scholar 

  11. Anderson CP, Tsai JM, Meek WE, et al. Depletion of glutathione by buthionine sulfoxine is cytotoxic for human neuroblastoma cell lines via apoptosis.Exp Cell Res. 1999;246:183–192.

    Article  PubMed  CAS  Google Scholar 

  12. Bestwick CS, Milne L. Quercetin modifies reactive oxygen levels but exerts only partial protection against oxidative stress within HL-60 cells.Biochim Biophys Acta. 2001;1528:49–59.

    Article  PubMed  CAS  Google Scholar 

  13. Benov L, Sztejnberg L, Fridovich I. Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical.Free Radic Biol Med. 1998;25:826–831.

    Article  PubMed  CAS  Google Scholar 

  14. Darzynkiewicz Z, Bruno S, Del Bino G, et al. Features of apoptotic cells measured by flow cytometry.Cytometry. 1992;13:795–808.

    Article  PubMed  CAS  Google Scholar 

  15. Ikeda T, Xia YX, Kaneko M, Sameshima H, Ikenoue T. Effect of the free radical scavenger, 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), on hypoxia-ischemia-induced brain injury in neonatal rats.Neurosci Lett. 2002;329:33–36.

    Article  PubMed  CAS  Google Scholar 

  16. Stull ND, Polan DP, Iacovitti L. Antioxidant compounds protect dopamine neurons from death due to oxidative stress in vitro.Brain Res. 2002;931:181–185.

    Article  PubMed  CAS  Google Scholar 

  17. Asumendi A, Morales MC, Alvarez A, Arechaga J, Perez-Yarza G. Implication of mitochondria-derived ROS and cardiolipin peroxidation in N-(4-hydroxyphenyl)retinamide-induced apoptosis.Br J Cancer. 2002;86:1951–1956.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hursting SD, Shen JC, Sun XY, Wang TT, Phang JM, Perkins SN. Modulation of cyclophilin gene expression by N-4- (hydroxyphenyl)retinamide: association with reactive oxygen species generation and apoptosis.Mol Carcinog. 2002;33:16–24.

    Article  PubMed  CAS  Google Scholar 

  19. Suzuki S, Higuchi M, Proske RJ, Oridate N, Hong WK, Lotan R. Implication of mitochondria-derived reactive oxygen species, cytochrome C and caspase-3 in N-(4-hydroxyphenyl)retinamide- induced apoptosis in cervical carcinoma cells.Oncogene. 1999;18:6380–63877.

    Article  PubMed  CAS  Google Scholar 

  20. You KR, Wen J, Lee ST, Kim DG. Cytochrome c oxidase subunit III: a molecular marker for N-(4-hydroxyphenyl)retinamise-induced oxidative stress in hepatoma cells.J Biol Chem. 2002;277:3870–3877.

    Article  PubMed  CAS  Google Scholar 

  21. Hail N Jr, Lotan R. Mitochondrial respiration is uniquely associated with the prooxidant and apoptotic effects of N-(4-hydroxyphenyl)retinamide.J Biol Chem. 2001;276:45614–45621.

    Article  PubMed  CAS  Google Scholar 

  22. Sun SY, Li W, Yue P, Lippman SM, Hong WK, Lotan R. Mediation of N-(4-hydroxyphenyl)retinamide-induced apoptosis in human cancer cells by different mechanisms.Cancer Res. 1999;59:2493–2498.

    PubMed  CAS  Google Scholar 

  23. Wagner BA, Buettner GR, Oberley LW, Darby CJ, Burns CP. Myeloperoxidase is involved in H2O2-induced apoptosis of HL-60 human leukemia cells.J Biol Chem. 2000;275:22461–22469.

    Article  PubMed  CAS  Google Scholar 

  24. Maurer BJ, Metelitsa LS, Seeger RC, Cabot MC, Reynolds CP. Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)-retinamide in neuroblastoma cell lines.J Natl Cancer Inst. 1999;91:1138–1146.

    Article  PubMed  CAS  Google Scholar 

  25. Wolf D, Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells.Proc Natl Acad Sci USA. 1985;82:790–794.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Shiohara M, Akashi M, Gombart AF, Yang R, Koeffler HP. Tumor necrosis factor alpha: posttranscriptional stabilization of WAF1 mRNA in p53-deficient human leukemic cells.J Cell Physiol. 1996; 166:568–576.

    Article  PubMed  CAS  Google Scholar 

  27. Andrieu-Abadie N, Gouaze V, Salvayre R, Levade T. Ceramide in apoptosis signaling: relationship with oxidative stress.Free Radic BiolMed. 2001;31:717–728.

    Article  CAS  Google Scholar 

  28. Corda S, Laplace C, Vicaut E, Duranteau J. Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide.Am J Respir Cell Mol Biol. 2001;24:762–768.

    Article  PubMed  CAS  Google Scholar 

  29. Phillips DC, Allen K, Griffiths HR. Synthetic ceramides induce growth arrest or apoptosis by altering cellular redox status.Arch Biochem Biophys. 2002;407:15–24.

    Article  PubMed  CAS  Google Scholar 

  30. Lavrentiadou SN, Chan C, Kawcak T, et al. Ceramide-mediated apoptosis in lung epithelial cells is regulated by glutathione.Am J Respir Cell Mol Biol. 2001;25:676–684.

    Article  PubMed  CAS  Google Scholar 

  31. Lewandowicz GM, Britt P, Elgie AW, et al. Cellular glutathione content, in vitro chemoresponse, and the effect of BSO modulation in samples derived from patients with advanced ovarian cancer.Gynecol Oncol. 2002;85:298–304.

    Article  PubMed  CAS  Google Scholar 

  32. Gamcsik MP, Dubay GR, Cox BR. Increased rate of glutathione synthesis from cystine in drug-resistant MCF-7 cells.Biochem Pharmacol. 2002;63:843–851.

    Article  PubMed  CAS  Google Scholar 

  33. Tsukamoto N, Chen J, Yoshida A. Enhanced expressions of glucose- 6-phosphate dehydrogenase and cytosolic aldehyde dehydrogenase and elevation of reduced glutathione level in cyclophosphamide- resistant human leukemia cells.Blood Cells Mol Dis. 1998;24:231–2388.

    Article  PubMed  CAS  Google Scholar 

  34. Tanner B, Hengstler JG, Dietrich B, et al. Glutathione, glutathione S-transferase alpha and pi, and aldehyde dehydrogenase content in relationship to drug resistance in ovarian cancer.Gynecol Oncol. 1997;65:54–62.

    Article  PubMed  CAS  Google Scholar 

  35. Richardson ME, Siemann DW. DNA damage in cyclophosphamide- resistant tumor cells: the role of glutathione.Cancer Res. 1995;55:1691–16955.

    PubMed  CAS  Google Scholar 

  36. Anderson CP, Reynolds CP. Synergistic cytotoxicity of buthionine sulfoximine (BSO) and intensive melphalan (L-PAM) for neuroblastoma cell lines established at relapse after myeloablative therapy.Bone Marrow Transplant. 2002;30:135–140.

    Article  PubMed  CAS  Google Scholar 

  37. Gartenhaus RB, Prachand SN, Paniaqua M, Li Y, Gordon LI. Arsenic trioxide cytotoxicity in steroid and chemotherapy-resistant myeloma cell lines: enhancement of apoptosis by manipulation of cellular redox state.Clin Cancer Res. 2002;8:566–572.

    PubMed  CAS  Google Scholar 

  38. Sipos EP, Witham TF, Ratan R, et al. L-Buthionine sulfoximine potentiates the antitumor effect of 4-hydroperoxycyclophosphamide when administered locally in a rat glioma model.Neurosurgery. 2001;48:392–400.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Goto, H., Takahashi, H., Fujii, H. et al. N-(4-Hydroxyphenyl)retinamide (4-HPR) Induces Leukemia Cell Death via Generation of Reactive Oxygen Species. Int J Hematol 78, 219–225 (2003). https://doi.org/10.1007/BF02983798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02983798

Key words

Navigation