Skip to main content

Emerging Trends in Green Polymer Based Composite Materials: Properties, Fabrication and Applications

  • Chapter
  • First Online:
Graphene Based Biopolymer Nanocomposites

Abstract

Composite materials showed improved properties compared to metal and polymer materials that made the composites used as parts of the structures. On the other side, fiber-reinforced polymers are primarily manufactured from synthetic fibers, like glass or paper, and petro-chemical thermosetting resin or matrix. An emerging field of high-performance natural fibers, especially Bast fibers (including flax, hemp, and jute), is gaining interest in this context, and is immediately attractive. Therefore, the industry includes many significant innovations at every stage of composite production which extends from the fibers and their precursors or preforms to the manufacturing processes and associated industries. There are plenty of developments on the market across the value chain, with most advancement in the composites industry concentrating on performance enhancement and cost benefits. This chapter includes an overview of emerging trends in fabrication and characterization of green polymer-based composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Summerscales J, Dissanayake NPJ, Virk AS, Hall W (2010) Fibers as reinforcements composites Part A 41:1329–1335

    Google Scholar 

  2. Thostenson ET, Ren Z, Chou T-W (2001) Compos Sci Technol 61(13):1899–1912

    Article  CAS  Google Scholar 

  3. Célino A, Fréour S, Jacquemin F, Cesari P (2014) Frontiers in chemistry, vol 1, pp 1–12

    Google Scholar 

  4. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321. https://www.sciencemag.org/content/321/5887/385

  5. Scharfenberg S, Rocklin DZ, Chialvo C, Weaver RL, Goldbart PM, Mason N (2011) Appl Phys Lett 98

    Google Scholar 

  6. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Progr Polym Sci 35(11):1350–1375

    Google Scholar 

  7. Jang BZ, Zhamu A (2008) J Mater Sci 43(15):5092–5101

    Article  CAS  Google Scholar 

  8. Hansma PK, Turner PJ, Ruoff RS. Nanotechnology 18(4)

    Google Scholar 

  9. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) J Phys Chem C 111(21):7565–7569

    Article  CAS  Google Scholar 

  10. Todor M-P, Bulei C, Heput T, Kiss I (2018) IOP Conf Ser Mater Sci Eng 294:1–9

    Google Scholar 

  11. Todor M-P, Bulei C, Kiss I (2018) IOP Conf Ser Mater Sci Eng 393:1–6

    Google Scholar 

  12. Shen M-Y, Chang T-Y, Hsieh T-H, Li Y-L, Chiang C-L, Yang H, Yip M-C (2013). J Nanomat. https://doi.org/10.1155/2013/565401

    Article  Google Scholar 

  13. Sarker F, Karim N, Afroj S, Koncherry V, Novoselov KS, Potluri P (2018) ACS Appl Mater Interf 10:34502–34512

    Article  CAS  Google Scholar 

  14. Sarker F, Potluri P, Afroj S, Koncherry V, Novoselov KS, Karim N (2019) ACS Appl Mater Interf 11(23):21166–21176. doi: https://doi.org/10.1021/acsami.9b04696

  15. Chen J, Huang Z, Lv W, Wang CC (2017) Polym Compos. doi: https://doi.org/10.1002/pc.24433

  16. Idumah CI, Hassan A (2017) J Nat Fib doi: https://doi.org/10.1080/15440478.2016.1277817

  17. Kamaraj M, Anush Dodson E, Datta S (2019) Adv Compos Mater. doi: https://doi.org/10.1080/09243046.2019.1709679

  18. Hallad SA, Banapurmath NR, Patil V, Ajarekar VS, Patil A, Godi MT, Shettar AS (2018) IOP Conf Ser Mater Sci Eng 376:012072. doi: https://doi.org/10.1088/1757-899X/376/1/012072

  19. Ramesh Kumar SC, Shivanand HK, Vidayasagar HN, Nagabhushan V (2018) AIP conference proceedings 1943, 020115. doi: https://doi.org/10.1063/1.5029691

  20. Bharadiya PS, Singh MK, Mishra S (2018) JOM. Miner Metal Mater Soc. https://doi.org/10.1007/s11837-018-3239-8

  21. Ramesh Kumar S, Shivananad HK, Madegowda B (2018) Nanjundaswamy: (IJERMCE) 3(5). ISSN (Online) 2456-1290

    Google Scholar 

  22. Abd-Elhamid AI, Nayl AA, El Shanshory AA, Solimana HMA, Alyc HF (2019) RSC Adv 9:5770

    Google Scholar 

  23. Preetam SB, Satyendra M (2019) Res Dev Mater Sci 10(5). RDMS.000749.2019. doi: https://doi.org/10.31031/RDMS.2019.10.000749

  24. Rathinasabapathi G, Jason Ronaldo M, Manoj SP, Mohamed Arif H, Mohamed Asif MI (2019) IRJET 6(4)

    Google Scholar 

  25. Costa UO, Nascimento LFC, Garcia JM, Monteiro SN, da Luz FS, Pinheiro WA, da Costa Garcia Filho F (2019) Polymers 11:1356: doi: https://doi.org/10.3390/polym11081356

  26. Danga C-Y, Shena X-J, Niea H-J, Yanga S, Shena J-X, Yanga X-H, Shao-Yun Fu (2019) Compos B 168:488–495. doi: https://doi.org/10.1016/j.compositesb.2019.03.080

    Article  CAS  Google Scholar 

  27. Bharath KN, Basavaraj S (2016) Sci Eng Compos Mater 23:2

    Google Scholar 

  28. Cherif C (2016) Textile materials for lightweight constructions. Technol Methods Mater Proper

    Google Scholar 

  29. Hausding J, Diestel O (2016) Chapter: Pre-impregnated textile semi-finished Products (Prepregs), pp 361–379

    Google Scholar 

  30. Zimniewska M, Myalski J, Koziol M, Mankowski J, Bogacz E (2012) J Nat Fib 9(4)

    Google Scholar 

  31. Hinrichsen J (2000) CAES. 19th European conference on materials for aerospace applications, Munich, pp 6–8

    Google Scholar 

  32. Avila AF, Morais DTS (2005) Compos Sci Technol 65(6):827–838

    Article  CAS  Google Scholar 

  33. Otaka M (1997) Hand lay-up molding process. Japanese Patent JP 09,314,686

    Google Scholar 

  34. Patnaik A, Biswas S, Deo B, Satapathy A (2012) Composite polymer 32(4):665–674

    Google Scholar 

  35. Saba N, Fong TC, Liew CKE et al (2015) Development of reinforced polymer composites for natural fibre. Springer, Cham, pp 155–175

    Google Scholar 

  36. Mishra BV (2016) Composite polymer 37(1):270–278

    Google Scholar 

  37. Garcia EJ, Wardle BL, John Hart A, Yamamoto N (2008) Compos Sci Technol 68(9):2034–2041

    Article  CAS  Google Scholar 

  38. Lamontia MA, Gruber MB, Smoot MA et al (1995) J Thermoplast Compos Mater 8(1):15–36

    Article  Google Scholar 

  39. Misri S, Sapuan SM, Leman Z, Ishak MR (2015) Mater Des 65:953–960

    Article  CAS  Google Scholar 

  40. Mertiny P, Ellyin F, Hothan A (2004) Compos Sci Technol 64(1):1–9

    Article  Google Scholar 

  41. Cohen D (1997) Compos a Appl Sci Manuf 28(12):1035–1047

    Article  Google Scholar 

  42. Toledo Filho RD, Silva FdA, Fairbairn EMR, de Almeida Melo Filho J (2009) Constr Build Mater 23(6):2409–2420

    Google Scholar 

  43. Prabu VA, Manikandan V, Uthayakumar M, Kalirasu S (2012) Mater Phys Mechan 15(2):173–179

    CAS  Google Scholar 

  44. Chen Y, Zhang L, Du L (2003) Ind Eng Chem Res 42(26):6786–6794

    Article  CAS  Google Scholar 

  45. Chapman MR, Watson RM, Anderson DA (2006) US Patent 2,006,108,058

    Google Scholar 

  46. Liu L, Wang W, Liu Z (2006) Chinese Patent 1(775):498

    Google Scholar 

  47. Otten V, Siebrecht D (2006) US Patent 2,006,186,580

    Google Scholar 

  48. Sharma S, Kumar P, Chandra R (2016) J Compos Mater. 51:3299–3313

    Article  Google Scholar 

  49. Devillard M, Hsiao KT, Gokce A et al (2003) J Compos Mater 37(17):1525–1541

    Article  CAS  Google Scholar 

  50. Kokta BV, Maldas D, Daneault C, Wand P (1990) J Vinyl Technol 12(3):146–153

    Google Scholar 

  51. Lv C, Xue Q, Xia D (2012) Appl Surf Sci 258:2077–2082

    Article  CAS  Google Scholar 

  52. Zahavi E, Torbilo V (1996) CRC Press, Boca Raton

    Google Scholar 

  53. Graham TS (2002) Industrial metrology: surfaces and roughness. Springer, Berlin

    Google Scholar 

  54. Davim JP, Reis P (2005) J Mater Process Technol 160:160

    Article  CAS  Google Scholar 

  55. Termonia Y (1990) Tensile strength of discontinuous fibre-reinforced composites. J Mater Sci 259(11):4644–4653

    Article  Google Scholar 

  56. Hill RG (1968) Exp Mech 8:75

    Article  Google Scholar 

  57. Lantz RB (1969) Boron epoxy laminate test method. J Compos Mater 3:642

    Article  CAS  Google Scholar 

  58. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442. doi: https://doi.org/10.1038/nature04969

  59. Xu Y, Hong W, Bai H, Li C, Shi G (2009) Carbon 47. https://www.sciencedirect.com/science/article/pii/S0008622309005296.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, P.P., Chaudhary, V., Mishra, S. (2021). Emerging Trends in Green Polymer Based Composite Materials: Properties, Fabrication and Applications. In: Sharma, B., Jain, P. (eds) Graphene Based Biopolymer Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-15-9180-8_1

Download citation

Publish with us

Policies and ethics