Skip to main content

Signaling in the Rhizosphere for Better Plant and Soil Health

  • Chapter
  • First Online:
Rhizosphere Microbes

Abstract

The rhizosphere is a hot spot for bidirectional plant-microbe interaction that occurs through the exchange of signals between both the partners. Due to the sessile nature of plants, it utilizes crying-for-help strategies to combat various biotic and abiotic challenges by producing a wide array of root exudates and root volatile compounds in the rhizosphere. Whereas microbe releases various microbial volatile organic compounds (MVOCs), phytohormones, quorum-sensing compounds, and establish a relationship with plants. Such signal compounds determine the structure, abundance, and richness of the rhizomicrobiome (rhizobiome). We know the role of specific plant-microbe interactions, e.g., Rhizobium and legumes, mycorrhizae with roots of higher plants, and some plant growth-promoting rhizobacteria (PGPR) and plant growth-promoting fungi (PGPF) with plants.

Nevertheless, several unknown signals and their role in specific interactions have yet to be understood. In this chapter, (i) we will discuss the role of plant-microbe signaling in shaping the rhizomicrobiome population, (ii) chemo-attraction of beneficial PGPR and PGPF (iii), the role of microbe-plant signaling in priming and eliciting the induced systemic response (ISR) and systemic acquired resistance (SAR), (iv) modification of host plant gene expression, and regulation of hormones (salicylic acid (SA), jasmonic acid (JA), and ethylene (ET)) and their role in biotic and abiotic stress management, and (vi) intra- and inter-specific signal exchanges of quorum sensing (QS) molecules, volatile organic compounds, and microbial phytohormones are described. We will also discuss the role of plant and microbial signal in rhizosphere functioning and sustainability as an alternative solution for increased plant fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz SM (2013) Extracellular metabolites produced by a novel strain. Bacillus alvei NRC-14: 5. Multiple plant-growth promoting properties. J Bas Appl Sci Res 3:670–682

    Google Scholar 

  • Abdel-Lateif KS (2017) Trichoderma as a biological control weapon against soil has borne plant pathogens. Afr J Biotechnol 16:2299–2306

    Article  Google Scholar 

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Plant Signal Behav 7(6):636–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Viljoen AM, Chenia HY (2015) The impact of plant volatiles on bacterial quorum sensing. Lett Appl Microbiol 60:8–19

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Matsuzaki KI, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824

    Article  CAS  PubMed  Google Scholar 

  • Akram W, Anjum T, Ali B (2016) Phenylacetic acid is ISR determinant produced by Bacillus fortis IAGS162, which involves extensive re-modulation in metabolomics of tomato to protect against Fusarium wilt. Front Plant Sci 7:498

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreo-Jimenez B, Ruyter-Spira C, Bouwmeester HJ, Lopez-Raez JA (2015) Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant Soil 394:1–19

    Article  CAS  Google Scholar 

  • Annapurna K, Kumar A, Kumar LV, Govindasamy V, Bose P, Ramadoss D (2013) PGPR-induced systemic resistance (ISR) in plant disease management. In: Bacteria in agrobiology: disease management. Springer, Berlin, Heidelberg, pp 405–425

    Chapter  Google Scholar 

  • Asari S, Tarkowská D, Rolčík J, Novák O, Palmero DV, Bejai S, Meijer J (2017) Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta 245:15–30

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    CAS  PubMed  Google Scholar 

  • Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7(1):79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L, Weisskopf L (2014) The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J 80(5):758–771

    Article  CAS  PubMed  Google Scholar 

  • Bakker PAHM, Ran LX, Pieterse CMJ, Van Loon LC (2003) Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can J Plant Pathol 25(1):5–9

    Article  Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360(1–2):1–13

    Article  CAS  Google Scholar 

  • Bakker PA, Pieterse CM, de Jonge R, Berendsen RL (2018) The soil-borne legacy. Cell 172(6):1178–1180

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Dumova VA, Shaposhnikov AI, Ladatko AG, Davies WJ (2014) Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol Biochem 74:84–91

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Fabbri C, Eberl L, Weisskopf L (2011) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microbiol 77(3):1000–1008

    Article  CAS  PubMed  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74(4):874–880

    Article  CAS  PubMed  Google Scholar 

  • Brameyer S, Bode HB, Heermann R (2015) Languages and dialects: bacterial communication beyond homoserine lactones. Trends Microbiol 23(9):521–523

    Article  CAS  PubMed  Google Scholar 

  • Buhian WP, Bensmihen S (2018) Mini-review: nod factor regulation of phytohormone signaling and homeostasis during Rhizobia-legume symbiosis. Front Plant Sci 9:1247

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler LG (1995) Chemical communication between the parasitic weed Striga and its crop host. In: Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and application, ACS Symp. Ser. 582. American Chemical Society, Washington, DC, pp 158–168

    Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM (2015) Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant-Microbe Interact 28(9):1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MG (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20(5):283–290

    Article  CAS  PubMed  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48(5):489–499

    Article  Google Scholar 

  • Choi HW, Klessig DF (2016) DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol 16(1):232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi HK, Song GC, Yi HS, Ryu CM (2014) Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J Chem Ecol 40(8):882–892

    Article  CAS  PubMed  Google Scholar 

  • Clúa J, Roda C, Zanetti M, Blanco F (2018) Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Gen Dent 9(3):125

    Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87(5):455–462

    Article  CAS  Google Scholar 

  • Cordero P, Príncipe A, Jofré E, Mori G, Fischer S (2014) Inhibition of the phytopathogenic fungus Fusarium proliferatum by volatile compounds produced by Pseudomonas. Arch Microbiol 196(11):803–809

    Article  CAS  PubMed  Google Scholar 

  • Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H, Van Wezel GP, Raaijmakers JM (2015) Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front Microbiol 6:1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Cotton TA, Pétriacq P, Cameron DD, Al Meselmani M, Schwarzenbacher R, Rolfe SA, Ton J (2019) Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME J 13(7):1647–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Alessandro MARCO, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J, Turlings TC (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37(4):813–826

    Article  PubMed  CAS  Google Scholar 

  • Deslandes L, Rivas S (2012) Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci 17(11):644–655

    Article  CAS  PubMed  Google Scholar 

  • Dukare AS, Paul S (2018) Effect of chitinolytic biocontrol bacterial inoculation on the soil microbiological activities and Fusarium population in the rhizosphere of pigeonpea (Cajanas cajan). Ann Plant Prot Sci 26(1):98–103

    Article  Google Scholar 

  • Dukare AS, Prasanna R, Nain L, Saxena AK (2013) Optimization and evaluation of microbe fortified composts as biocontrol agents against phytopathogenic fungi. J Microbiol Biotechnol Food Sci 2(5):2272–2276

    Google Scholar 

  • Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, Vishwakarma RK (2019) Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr 58(2):1–16

    Google Scholar 

  • Fira D, Dimkić I, Berić T, Lozo J, Stanković S (2018) Biological control of plant pathogens by Bacillus species. J Biotechnol 285:44–55

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111(5):769–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbeva P, Hordijk C, Gerards S, De Boer W (2014) Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol Ecol 87(3):639–649

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, De Salamone IEG, Nelson LM et al (2016) Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 6:23310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guiñazú LB, Andrés JA, Del Papa MF, Pistorio M, Rosas SB (2010) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46(2):185–190

    Article  Google Scholar 

  • Gupta S, Pandey S (2019) Unravelling the biochemistry and genetics of ACC deaminase-An enzyme alleviating the biotic and abiotic stress in plants. Plant Gene 18:100175

    Article  CAS  Google Scholar 

  • Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, De La Cruz HR, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51(1):75–83

    Article  CAS  Google Scholar 

  • Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH et al (2006) GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringaepv. tabaci in tobacco. Mol Plant-Microbe Interact 19(8):924–930

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Faraz A, Faizan M (2017) Root exudates: composition and impact on plant–microbe interaction. In: Ahmad I (ed) Biofilms in plant and soil health. John Wiley & Sons, Chichester, UK, pp 179–193

    Chapter  Google Scholar 

  • Hernández MI, Chailloux M (2004) Las micorrizasarbusculares y las bacteriasrizosferic as como alternative a al anutricion mineral deltomate. Des Cult 25(2):5–12

    Google Scholar 

  • Hernández-Reyes C, Schenk ST, Neumann C, Kogel KH, Schikora A (2014) N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens. Microb Biotechnol 7(6):580–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horiuchi JI, Prithiviraj B, Bais HP, Kimball BA, Vivanco JM (2005) Soil nematodes mediate positive interactions between legume plants and Rhizobium bacteria. Planta 222(5):848–857

    Article  CAS  PubMed  Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6(1):19–26

    Article  Google Scholar 

  • Hunziker L, Bönisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81(3):821–830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hussain A, Hasnain S (2009) Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr J Microbiol Res 3(11):704–712

    CAS  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact 20(6):619–626

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Khan A, You Y, Kim J, Kamran M, Lee I (2014) Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. J Microbiol Biotechnol 24(1):106–112

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Tuzun S, Kuć JA (1992) Proposed definitions related to induced disease resistance. Biocontrol Sci Tech 2(4):349–351

    Article  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845

    Article  PubMed  PubMed Central  Google Scholar 

  • Korenblum E, Dong Y, Szymanski J, Panda S, Jozwiak A, Massalha H et al (2020) Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc Natl Acad Sci 117(7):3874–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV et al (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291

    Article  CAS  PubMed  Google Scholar 

  • Kudoyarova GR, Vysotskaya LB, Arkhipova TN, Kuzmina LY, Galimsyanova NF, Sidorova LV et al (2017) Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiol Plant 39(11):253

    Article  CAS  Google Scholar 

  • Kumar S (2013) Trichoderma: a biological weapon for managing plant diseases and promoting sustainability. Internat J Agri Sci Med Veter 1(3):106–121

    Google Scholar 

  • Kwon YS, Ryu CM, Lee S, Park HB, Han KS, Lee JH, Bae DW (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232(6):1355–1370

    Article  CAS  PubMed  Google Scholar 

  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8(7):298–300

    Article  CAS  PubMed  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M et al (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349(6250):860–864

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Lee J (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34(4):426–444

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Farag MA, Park HB, Kloepper JW, Lee SH, Ryu CM (2012) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS One 7(11):e48744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Brettell LE (2019) Plant defense by VOC-induced microbial priming. Trends Plant Sci 24(3):187–189

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97(20):9155–9164

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang N, Qiu M, Feng H, Vivanco JM, Shen Q, Zhang R (2014) Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS Microbiol Lett 353(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Lohitha SR, Bhaskara RBV, Sivaprasad Y, Prathyusha M, Sujitha A, Krishna T (2016) Molecular characterization and antagonistic potential of phenazine-1-carboxylic acid producing Pseudomonas fluorescens isolates from economically important crops in South India. Int J Biol Sci 1:30–40

    Google Scholar 

  • López-Ráez JA, Shirasu K, Foo E (2017) Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends Plant Sci 22(6):527–537

    Article  PubMed  CAS  Google Scholar 

  • Luginbuehl LH, Oldroyd GE (2017) Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Curr Biol 27(17):R952–R963

    Article  CAS  PubMed  Google Scholar 

  • Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54(2):263–272

    Article  CAS  PubMed  Google Scholar 

  • MacLean AM, Bravo A, Harrison MJ (2017) Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. Plant Cell 29(10):2319–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzola M (2007) Manipulation of rhizosphere bacterial communities to induce suppressive soils. J Nematol 39(3):213

    PubMed  PubMed Central  Google Scholar 

  • McGuiness PN, Reid JB, Foo E (2019) The role of gibberellins and brassinosteroids in nodulation and arbuscular mycorrhizal associations. Front Plant Sci 10:269

    Article  PubMed  PubMed Central  Google Scholar 

  • Meier IC, Finzi AC, Phillips RP (2017) Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol Biochem 106:119–128

    Article  CAS  Google Scholar 

  • Meldau DG, Meldau S, Hoang LH, Underberg S, Wünsche H, Baldwin IT (2013) Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25(7):2731–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meziane H, Van Der Sluis I, Van Loon LC, Höfte M, Bakker PA (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6(2):177–185

    Article  PubMed  Google Scholar 

  • Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA (2018) The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Moshynets OV, Babenko LM, Rogalsky SP, Iungin OS, Foster J, Kosakivska IV, Spiers AJ (2019) Priming winter wheat seeds with the bacterial quorum-sensing signal N-hexanoyl-L-homoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield. PLoS One 14(2):e0209460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro MO, Piva AC, Simionato AS, Spago FR, Modolon F, Emiliano J et al (2019) Bioactive compounds produced by biocontrol agents driving plant health. In: Microbiome in plant health and disease. Springer, Singapore, pp 337–374

    Chapter  Google Scholar 

  • Neilands JB (1989) Siderophore systems of bacteria and fungi. Metal ions and bacteria. John Wiley & Sons, Inc, New York, NY, pp 141–163

    Google Scholar 

  • Nelson MS, Sadowsky MJ (2015) Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Front Plant Sci 6:491

    Article  PubMed  PubMed Central  Google Scholar 

  • Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 103(3):1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandya ND, Desai PV (2014) Screening and characterization of GA3 producing Pseudomonas monteilii and its impact on plant growth promotion. Int J Curr Microbiol App Sci 3:110–115

    Google Scholar 

  • Park JY, Oh SA, Anderson AJ, Neiswender J, Kim JC, Kim YC (2011) Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett Appl Microbiol 52(5):532–537

    Article  CAS  PubMed  Google Scholar 

  • Park YS, Dutta S, Ann M, Raaijmakers JM, Park K (2015) Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun 461(2):361–365

    Article  CAS  PubMed  Google Scholar 

  • Patil S, Bheemaraddi MC, Shivannavar CT, Gaddad MS (2014) Biocontrol activity of siderophore producing Bacillus subtilis CTS-G24 against wilt and dry root rot causing fungi in chickpea. IOSR J Agri Veterin Sci 7(9):63–68

    Article  Google Scholar 

  • Paul D, Sarma YR (2006) Plant growth promoting rhizhobacteria (PGPR)-mediated root proliferation in black pepper (Piper nigrum L.) as evidenced through GS Root software. Arch Phytopathol Plant Protect 39(4):311–314

    Article  CAS  Google Scholar 

  • Paul S et al (2017) Plant growth-promoting rhizobacteria for abiotic stress alleviation in crops. In: Adhya T, Mishra B, Annapurna K, Verma D, Kumar U (eds) Advances in soil microbiology: recent trends and future prospects, Microorganisms for sustainability, vol 4. Springer, Singapore, pp 57–79

    Chapter  Google Scholar 

  • Prinsen E, Costacurta A, Michiels K, Vanderleyden J, Van Onckelen H (1993) Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol Plant-Microbe Interact 6:609–615

    Article  CAS  Google Scholar 

  • Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravanbakhsh M, Sasidharan R, Voesenek LA, Kowalchuk GA, Jousset A (2018) Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome 6(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  • Reid DE, Li D, Ferguson BJ, Gresshoff PM (2013) Structure–function analysis of the Gm RIC1 signal peptide and CLE domain required for nodulation control in soybean. J Exp Bot 64(6):1575–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148(3):1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paul W, P., & Bais, H.P. (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Communicat Integrat Biol 3(2):130–138

    Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321(1–2):363–383

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100(8):4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131(1):15–26

    Article  CAS  Google Scholar 

  • Salomon MV, Bottini R, de Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P (2014) Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiol Plant 151(4):359–374

    Article  CAS  PubMed  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169(1):18–29

    Article  CAS  PubMed  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41

    Article  CAS  PubMed  Google Scholar 

  • Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G et al (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454(7204):595–599

    Article  CAS  PubMed  Google Scholar 

  • Schenk ST, Hernández-Reyes C, Samans B, Stein E, Neumann C, Schikora M, Schikora A (2014) N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 26(6):2708–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schikora A, Schenk ST, Hartmann A (2016) Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol Biol 90(6):605–612

    Article  CAS  PubMed  Google Scholar 

  • Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P (2018) Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J 12(5):1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma MP, Adholeya A (2004) Effect of arbuscular mycorrhizal fungi and phosphorus fertilization on the post vitro growth and yield of micropropagated strawberry grown in a sandy loam soil. Can J Bot 82(3):322–328

    Article  Google Scholar 

  • Sharma S, Shukla KP, Singh V, Singh J, Devi S, Tewari A (2013) Plant–Microbe symbiosis: perspectives and applications. In: Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 119–145

    Chapter  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30(4):205–240

    Article  CAS  PubMed  Google Scholar 

  • Song G, Ryu CM (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14(5):9803–9819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC et al (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci 115(22):E5213–E5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumar P, Legue V, Vayssieres A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions. Plant Cell Environ 36(5):909–919

    Article  CAS  PubMed  Google Scholar 

  • Ul Hassan T, Bano A (2019) Construction of IAA-deficient mutants of Pseudomonas moraviensis and their comparative effects with wild type strains as bio-inoculant on wheat in saline sodic soil. Geomicrobiol J 36(4):376–384

    Article  CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC, Bakker PAHM (2005) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 39–66

    Chapter  Google Scholar 

  • Veliz-Vallejos DF, van Noorden GE, Yuan M, Mathesius U (2014) A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. Front Plant Sci 5:551

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkateshwaran M, Cosme A, Han L, Banba M, Satyshur KA, Schleiff E et al (2012) The recent evolution of a symbiotic ion channel in the legume family altered ion conductance and improved functionality in calcium signaling. Plant Cell 24(6):2528–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21(3):187–198

    Article  CAS  PubMed  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73(17):5639–5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Biol 43(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Liu J, Zhu H (2018) Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Front Plant Sci 9:313

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Li J (2016) Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant 9(1):86–100

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Zhang H, Pare P (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4(10):948–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie F, Williams A, Edwards A, Downie JA (2012) A plant arabinogalactan-like glycoprotein promotes a novel type of polar surface attachment by Rhizobium leguminosarum. Mol Plant-Microbe Interact 25(2):250–258

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Zhang N, Huang Q, Raza W, Li R, Vivanco JM, Shen Q (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5:13438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • el Zahar Haichar F, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions below-ground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • van Zeijl A, Liu W, Xiao TT, Kohlen W, Yang WC, Bisseling T, Geurts R (2015) The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis. BMC Plant Biol 15(1):260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21(6):737–744

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Ruyter-Spira C, Bouwmeester HJ (2015) Engineering the plant rhizosphere. Curr Opin Biotechnol 32:136–142

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Guo J, Zhu L, Xiao X, Xie Y, Zhu J, Wang J (2016) Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiol Biochem 105:162–173

    Article  CAS  PubMed  Google Scholar 

  • Zwanenburg B, Pospíšil T, Zeljković SĆ (2016) Strigolactones: new plant hormones in action. Planta 243(6):1311–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Hemant S. Maheshwari acknowledges the Ministry of Agriculture and Farmer Welfare, Govt of India and Director, ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore-452001, India for providing financial assistance for pursuing doctoral studies at the University of Groningen, the Netherlands (ICAR-NS-IF-2017), under the supervision of Dr. J.T.M Elzenga (Professor, Ecophysiology of Plants Lab, University of Groningen, the Netherlands).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant S. Maheshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maheshwari, H.S. et al. (2020). Signaling in the Rhizosphere for Better Plant and Soil Health. In: Sharma, S.K., Singh, U.B., Sahu, P.K., Singh, H.V., Sharma, P.K. (eds) Rhizosphere Microbes. Microorganisms for Sustainability, vol 23. Springer, Singapore. https://doi.org/10.1007/978-981-15-9154-9_6

Download citation

Publish with us

Policies and ethics