Skip to main content

Electrochemical Sensors and Biosensors for the Detection of Cancer Biomarkers and Drugs

  • Chapter
  • First Online:
Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models

Abstract

Cancer has been posing a global health concern due to an increasing number of people who have been struggling day by day. The fight against this global health threat can be accomplished with efficient early diagnosis and theranostic strategies. Cancer biomarker detection and anticancer drug monitoring utilizing the unique features of analytical techniques constitute a vital part of developing powerful cancer diagnosis and treatment methodologies. Hence, electrochemical sensors and biosensors offer practical, sensitive, selective and accurate detection of cancer biomarkers and anticancer drugs with low-cost and portable devices for on-site and in vivo analysis by holding a potential to be an alternative to conventional techniques. A general consideration about the electrochemical sensors and biosensors for the cancer diagnosis and treatment has been given in this context by presenting basic principles of electrochemical sensor and biosensor fabrication and their applications in recent years. Besides, it has been attempted to trigger readers to gain knowledge about the requirement and potency of electrochemical sensing and biosensing strategies in terms of cancer diagnosis, treatment and drug development studies by discussing pros and cons of electrochemical sensors and biosensors and predicting future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15(2):81

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  4. Lima HRS et al (2018) Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosens Bioelectron 108:27–37

    Article  CAS  PubMed  Google Scholar 

  5. Perfézou M, Turner A, Merkoçi A (2012) Cancer detection using nanoparticle-based sensors. Chem Soc Rev 41(7):2606–2622

    Article  PubMed  Google Scholar 

  6. Huang X et al (2017) Nanotechnology-enhanced no-wash biosensors for in vitro diagnostics of cancer. ACS Nano 11(6):5238–5292

    Article  CAS  PubMed  Google Scholar 

  7. World Health Organization (2017) Guide to cancer early diagnosis. World Health Organization, Geneva

    Google Scholar 

  8. Tan YK, Fielding JW (2006) Early diagnosis of early gastric cancer. Eur J Gastroenterol Hepatol 18(8):821–829

    Article  PubMed  Google Scholar 

  9. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mantovani A et al (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  11. Bierie B, Moses HL (2010) Transforming growth factor beta (TGF-β) and inflammation in cancer. Cytokine Growth Factor Rev 21(1):49–59

    Article  CAS  PubMed  Google Scholar 

  12. Topkaya SN, Azimzadeh M, Ozsoz M (2016) Electrochemical biosensors for cancer biomarkers detection: recent advances and challenges. Electroanalysis 28(7):1402–1419

    Article  CAS  Google Scholar 

  13. Chinen AB et al (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115(19):10530–10574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cui F, Zhou Z, Zhou HS (2019) Measurement and analysis of cancer biomarkers based on electrochemical biosensors. J Electrochem Soc 167(3):037525

    Article  Google Scholar 

  15. Tadini-Buoninsegni F, Palchetti I (2020) Label-free bioelectrochemical methods for evaluation of anticancer drug effects at a molecular level. Sensors 20(7):1812

    Article  CAS  PubMed Central  Google Scholar 

  16. Ediriweera MK, Tennekoon KH, Samarakoon SR (2019) In vitro assays and techniques utilized in anticancer drug discovery. J Appl Toxicol 39(1):38–71

    Article  CAS  PubMed  Google Scholar 

  17. Ahmadian E et al (2020) Monitoring of drug resistance towards reducing the toxicity of pharmaceutical compounds: past, present and future. J Pharm Biomed Anal 186:113265

    Article  CAS  PubMed  Google Scholar 

  18. McKeating KS, Aubé A, Masson J-F (2016) Biosensors and nanobiosensors for therapeutic drug and response monitoring. Analyst 141(2):429–449

    Article  CAS  PubMed  Google Scholar 

  19. Li Z et al (2016) Recent developments of three-dimensional paper-based electrochemical devices for cancer cell detection and anticancer drug screening. Curr Pharm Biotechnol 17(9):802–809

    Article  CAS  PubMed  Google Scholar 

  20. Aydin EB, Aydin M, Sezginturk MK (2019) Biosensors in drug discovery and drug analysis. Curr Anal Chem 15(4):467–484

    Article  CAS  Google Scholar 

  21. Rahi A, Karimian K, Heli H (2016) Nanostructured materials in electroanalysis of pharmaceuticals. Anal Biochem 497:39–47

    Article  CAS  PubMed  Google Scholar 

  22. Farghaly O, Hameed RA, Abu-Nawwas A-AH (2014) Electrochemical analysis techniques: a review on recent pharmaceutical applications. Int J Pharm Sci Rev Res 25:37

    CAS  Google Scholar 

  23. Damborska D et al (2017) Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta 184(9):3049–3067

    Article  CAS  Google Scholar 

  24. Li J, Li S, Yang CF (2012) Electrochemical biosensors for cancer biomarker detection. Electroanalysis 24(12):2213–2229

    Article  CAS  Google Scholar 

  25. Yang G et al (2019) Recent advances in biosensor for detection of lung cancer biomarkers. Biosens Bioelectron 141:111416

    Article  CAS  PubMed  Google Scholar 

  26. Cavalheiro ÉTG et al (2012) Bioelectroanalysis of pharmaceutical compounds. Bioanal Rev 4(1):31–53

    Article  Google Scholar 

  27. Kurbanoglu S et al (2019) Modern assay techniques for cancer drugs: electroanalytical and liquid chromatography methods. Crit Rev Anal Chem 49(4):306–323

    Article  CAS  PubMed  Google Scholar 

  28. Myung JH et al (2016) Recent advances in nanotechnology-based detection and separation of circulating tumor cells. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(2):223–239

    Article  PubMed  Google Scholar 

  29. Afyf A et al (2016) Flexible antenna array for early breast cancer detection using radiometric technique. Int J Biol Biomed Eng 10:10–17

    Google Scholar 

  30. Liu Z, Lan X (2019) Microfluidic radiobioassays: a radiometric detection tool for understanding cellular physiology and pharmacokinetics. Lab Chip 19(14):2315–2339

    Article  CAS  PubMed  Google Scholar 

  31. Sanvicens N et al (2011) Biosensors for pharmaceuticals based on novel technology. TrAC Trends Anal Chem 30(3):541–553

    Article  CAS  Google Scholar 

  32. Nigović B, Sadiković M, Jurić S (2016) Electrochemical sensing of mesalazine and its N-acetylated metabolite in biological samples using functionalized carbon nanotubes. Talanta 147:50–58

    Article  PubMed  CAS  Google Scholar 

  33. Varol TÖ, Anik Ü (2019) Fabrication of multi-walled carbon nanotube–metallic nanoparticle hybrid nanostructure based electrochemical platforms for sensitive and practical colchicine detection. New J Chem 43(34):13437–13446

    Article  Google Scholar 

  34. Anik Ü (2017) Electrochemical medical biosensors for POC applications. In: Medical biosensors for point of care (POC) applications. Elsevier, Amsterdam, pp 275–292

    Chapter  Google Scholar 

  35. Anik Ü, Timur S (2016) Towards the electrochemical diagnosis of cancer: nanomaterial-based immunosensors and cytosensors. RSC Adv 6(113):111831–111841

    Article  CAS  Google Scholar 

  36. Xiao F, Wang L, Duan H (2016) Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. Biotechnol Adv 34(3):234–249

    Article  CAS  PubMed  Google Scholar 

  37. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21(10):1887–1892

    Article  CAS  PubMed  Google Scholar 

  38. Ortega MA et al (2019) Muscle-on-a-chip with an on-site multiplexed biosensing system for in situ monitoring of secreted IL-6 and TNF-α. Lab Chip 19(15):2568–2580

    Article  CAS  PubMed  Google Scholar 

  39. Shin SR et al (2016) Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal Chem 88(20):10019–10027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 32(7):363–371

    Article  CAS  PubMed  Google Scholar 

  41. Justino CI et al (2015) Recent developments in recognition elements for chemical sensors and biosensors. TrAC Trends Anal Chem 68:2–17

    Article  CAS  Google Scholar 

  42. Hulanicki A, Glab S, Ingman F (1991) Chemical sensors: definitions and classification. Pure Appl Chem 63(9):1247–1250

    Article  Google Scholar 

  43. Kurbanoglu S et al (2019) Chemical nanosensors in pharmaceutical analysis. In: New developments in nanosensors for pharmaceutical analysis. Elsevier, Amsterdam, pp 141–170

    Chapter  Google Scholar 

  44. Sharifi M et al (2019) Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens Bioelectron 126:773–784

    Article  CAS  PubMed  Google Scholar 

  45. Thevenot DR et al (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71(12):2333–2348

    Article  CAS  Google Scholar 

  46. Wang J (2006) Analytical electrochemistry, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  47. Marmiroli N et al (2008) Methods for detection of GMOs in food and feed. Anal Bioanal Chem 392(3):369

    Article  CAS  PubMed  Google Scholar 

  48. Pihíková D, Kasák P, Tkac J (2015) Glycoprofiling of cancer biomarkers: label-free electrochemical lectin-based biosensors. Open Chem 13(1):636–655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yun Y-H et al (2009) Tiny medicine: nanomaterial-based biosensors. Sensors 9(11):9275–9299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bettazzi F et al (2017) Biosensors and related bioanalytical tools. Compr Anal Chem 77:1–33

    Article  Google Scholar 

  51. Sandhyarani N (2019) Surface modification methods for electrochemical biosensors. In: Electrochemical biosensors. Elsevier, Amsterdam, pp 45–75

    Chapter  Google Scholar 

  52. Kuralay F (2019) Nanomaterials-based enzyme biosensors for electrochemical applications: recent trends and future prospects. In: New developments in nanosensors for pharmaceutical analysis. Elsevier, Amsterdam, pp 381–408

    Chapter  Google Scholar 

  53. Scholz F (2010) Electroanalytical methods, vol 1. Springer, Berlin

    Book  Google Scholar 

  54. Thévenot DR et al (2001) Electrochemical biosensors: recommended definitions and classification. Anal Lett 34(5):635–659

    Article  Google Scholar 

  55. Scholz F (2015) Voltammetric techniques of analysis: the essentials. ChemTexts 1(4):17

    Article  Google Scholar 

  56. Cardoso AR et al (2016) Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosens Bioelectron 80:621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen S (2007) Practical electrochemical cells. In: Handbook of electrochemistry. Elsevier, Amsterdam, pp 33–56

    Chapter  Google Scholar 

  58. Rusling JF (2013) Multiplexed electrochemical protein detection and translation to personalized cancer diagnostics. Anal Chem 85(11):5304–5310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Merkoçi A (2013) Nanoparticles based electroanalysis in diagnostics applications. Electroanalysis 25(1):15–27

    Article  CAS  Google Scholar 

  60. Bellassai N, Spoto G (2016) Biosensors for liquid biopsy: circulating nucleic acids to diagnose and treat cancer. Anal Bioanal Chem 408(26):7255–7264

    Article  CAS  PubMed  Google Scholar 

  61. Gholivand MB, Ahmadi E, Mavaei M (2019) A novel voltammetric sensor based on graphene quantum dots-thionine/nano-porous glassy carbon electrode for detection of cisplatin as an anti-cancer drug. Sensors Actuators B Chem 299:126975

    Article  CAS  Google Scholar 

  62. Shoja Y et al (2019) Electrochemical molecularly bioimprinted siloxane biosensor on the basis of core/shell silver nanoparticles/EGFR exon 21 L858R point mutant gene/siloxane film for ultra-sensing of gemcitabine as a lung cancer chemotherapy medication. Biosens Bioelectron 145:111611

    Article  CAS  PubMed  Google Scholar 

  63. Rezvani Jalal N et al (2020) In situ growth of metal–organic framework HKUST-1 on graphene oxide nanoribbons with high electrochemical sensing performance in imatinib determination. ACS Appl Mater Interfaces 12(4):4859–4869

    Article  CAS  PubMed  Google Scholar 

  64. Li Y et al (2020) Facile synthesis of ZnMn2O4@ rGO microspheres for ultrasensitive electrochemical detection of hydrogen peroxide from human breast cancer cells. ACS Appl Mater Interfaces 12(3):3430–3437

    Article  CAS  PubMed  Google Scholar 

  65. Zhao A et al (2020) Functionalized graphene fiber modified by dual nanoenzyme: towards high-performance flexible nanohybrid microelectrode for electrochemical sensing in live cancer cells. Sensors Actuators B Chem 310:127861

    Article  CAS  Google Scholar 

  66. Du L et al (2019) Folic acid-functionalized zirconium metal-organic frameworks based electrochemical impedance biosensor for the cancer cell detection. Sensors Actuators B Chem 301:127073

    Article  CAS  Google Scholar 

  67. Bao T et al (2019) Target-driven cascade-amplified release of loads from DNA-gated metal-organic frameworks for electrochemical detection of cancer biomarker. ACS Appl Mater Interfaces 12(2):2087–2094

    Article  PubMed  CAS  Google Scholar 

  68. Biomarkers Definitions Working Group et al (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95

    Article  Google Scholar 

  69. Bohunicky B, Mousa SA (2011) Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl 4:1

    CAS  Google Scholar 

  70. Diamandis EP (2010) Cancer biomarkers: can we turn recent failures into success? J Natl Cancer Inst 102(19):1462–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6(2):140–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dixit CK et al (2016) Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics. Analyst 141(2):536–547

    Article  CAS  PubMed  Google Scholar 

  73. Wang L, Rong Q, Ma Z (2016) Construction of electrochemical immunosensing interface for multiple cancer biomarkers detection. Electroanalysis 28(8):1692–1699

    Article  CAS  Google Scholar 

  74. Ma Z, Liu N (2015) Design of immunoprobes for electrochemical multiplexed tumor marker detection. Expert Rev Mol Diagn 15(8):1075–1083

    Article  CAS  PubMed  Google Scholar 

  75. Keshavarz M, Behpour M, Rafiee-pour H-A (2015) Recent trends in electrochemical microRNA biosensors for early detection of cancer. RSC Adv 5(45):35651–35660

    Article  CAS  Google Scholar 

  76. Kosack CS, Page A-L, Klatser PR (2017) A guide to aid the selection of diagnostic tests. Bull World Health Organ 95(9):639

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yáñez-Sedeño P, Campuzano S, Pingarrón J (2019) Pushing the limits of electrochemistry toward challenging applications in clinical diagnosis, prognosis, and therapeutic action. Chem Commun 55(18):2563–2592

    Article  Google Scholar 

  78. Ghindilis AL et al (1998) Immunosensors: electrochemical sensing and other engineering approaches. Biosens Bioelectron 13(1):113–131

    Article  CAS  PubMed  Google Scholar 

  79. Campuzano S, Pedrero M, Pingarrón JM (2017) Non-invasive breast cancer diagnosis through electrochemical biosensing at different molecular levels. Sensors 17(9):1993

    Article  CAS  PubMed Central  Google Scholar 

  80. Mollarasouli F, Kurbanoglu S, Ozkan SA (2019) The role of electrochemical immunosensors in clinical analysis. Biosensors 9(3):86

    Article  CAS  PubMed Central  Google Scholar 

  81. Warsinke A, Benkert A, Scheller FW (2000) Electrochemical immunoassays. Fresenius J Anal Chem 366(6–7):622–634

    Article  CAS  PubMed  Google Scholar 

  82. Wang Y et al (2008) Electrochemical sensors for clinic analysis. Sensors 8(4):2043–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Avrameas S, Ternynck T, Guesdon JL (1978) Coupling of enzymes to antibodies and antigens. Scand J Immunol 8:7–23

    Article  Google Scholar 

  84. Janeway CA et al (1999) Immunobiology: the immune system in health and disease. Garland Publishing, New York

    Google Scholar 

  85. Luo X, Davis JJ (2013) Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 42(13):5944–5962

    Article  CAS  PubMed  Google Scholar 

  86. Gogola JL et al (2019) Label-free electrochemical immunosensor for quick detection of anti-hantavirus antibody. J Electroanal Chem 842:140–145

    Article  CAS  Google Scholar 

  87. Mikuła E et al (2018) Highly sensitive electrochemical biosensor based on redox-active monolayer for detection of anti-hemagglutinin antibodies against swine-origin influenza virus H1N1 in sera of vaccinated mice. BMC Vet Res 14(1):328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Aronoff-Spencer E et al (2016) Detection of hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. Biosens Bioelectron 86:690–696

    Article  CAS  PubMed  Google Scholar 

  89. Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors—principles and applications to clinical chemistry. Clin Chim Acta 314(1–2):1–26

    Article  CAS  PubMed  Google Scholar 

  90. Zhang X, Ju H, Wang J (2011) Electrochemical sensors, biosensors and their biomedical applications. Academic Press, Amsterdam

    Google Scholar 

  91. Rapp BE, Gruhl FJ, Länge K (2010) Biosensors with label-free detection designed for diagnostic applications. Anal Bioanal Chem 398(6):2403–2412

    Article  CAS  PubMed  Google Scholar 

  92. Okuno J et al (2007) Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens Bioelectron 22(9–10):2377–2381

    Article  CAS  PubMed  Google Scholar 

  93. Mao K et al (2012) Label-free electrochemical immunosensor based on graphene/methylene blue nanocomposite. Anal Biochem 422(1):22–27

    Article  CAS  PubMed  Google Scholar 

  94. Jang HD et al (2015) 3D label-free prostate specific antigen (PSA) immunosensor based on graphene–gold composites. Biosens Bioelectron 63:546–551

    Article  CAS  PubMed  Google Scholar 

  95. Jia X et al (2014) A label-free immunosensor based on graphene nanocomposites for simultaneous multiplexed electrochemical determination of tumor markers. Biosens Bioelectron 53:160–166

    Article  CAS  PubMed  Google Scholar 

  96. Elshafey R et al (2013) Label-free impedimetric immunosensor for ultrasensitive detection of cancer marker murine double minute 2 in brain tissue. Biosens Bioelectron 39(1):220–225

    Article  CAS  PubMed  Google Scholar 

  97. Chikkaveeraiah BV et al (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6(8):6546–6561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Weng S et al (2013) Label-free electrochemical immunosensor based on K3 [Fe (CN) 6] as signal for facile and sensitive determination of tumor necrosis factor-alpha. Sensors Actuators B Chem 184:1–7

    Article  CAS  Google Scholar 

  99. Giannetto M et al (2017) Competitive amperometric immunosensor for determination of p53 protein in urine with carbon nanotubes/gold nanoparticles screen-printed electrodes: a potential rapid and noninvasive screening tool for early diagnosis of urinary tract carcinoma. Anal Chim Acta 991:133–141

    Article  CAS  PubMed  Google Scholar 

  100. Xu T et al (2014) Simultaneous electrochemical detection of multiple tumor markers using metal ions tagged immunocolloidal gold. Biosens Bioelectron 56:174–179

    Article  CAS  PubMed  Google Scholar 

  101. Kalyoncu D, Buyuksunetci YT, Anık Ü (2019) Development of a Sandwich Immunosensor for concurrent detection of carcinoembryonic antigen (CEA), vascular endothelial growth factor (VEGF) and α-fetoprotein (AFP) biomarkers. Mater Sci Eng C 101:88–91

    Article  CAS  Google Scholar 

  102. Ahmad SAA, Zaini MS, Kamarudin MA (2019) An electrochemical sandwich immunosensor for the detection of HER2 using antibody-conjugated PbS quantum dot as a label. J Pharm Biomed Anal 174:608–617

    Article  PubMed  CAS  Google Scholar 

  103. Sun D et al (2019) Electrochemical immunosensors with AuPt-vertical graphene/glassy carbon electrode for alpha-fetoprotein detection based on label-free and sandwich-type strategies. Biosens Bioelectron 132:68–75

    Article  PubMed  CAS  Google Scholar 

  104. Fowler JM et al (2008) Recent developments in electrochemical immunoassays and immunosensors. In: Electrochemical sensors, biosensors and their biomedical applications. Academic Press, Amsterdam, pp 115–143

    Chapter  Google Scholar 

  105. Shi P et al (2020) Non-covalent modification of glassy carbon electrode with isoorientin and application to alpha-fetoprotein detection by fabricating an immunosensor. Sensors Actuators B Chem 305:127494

    Article  CAS  Google Scholar 

  106. Zhang X et al (2018) Sandwich-type electrochemical immunosensor based on Au@ Ag supported on functionalized phenolic resin microporous carbon spheres for ultrasensitive analysis of α-fetoprotein. Biosens Bioelectron 106:142–148

    Article  CAS  PubMed  Google Scholar 

  107. Khoshroo A, Mazloum-Ardakani M, Forat-Yazdi M (2018) Enhanced performance of label-free electrochemical immunosensor for carbohydrate antigen 15-3 based on catalytic activity of cobalt sulfide/graphene nanocomposite. Sensors Actuators B Chem 255:580–587

    Article  CAS  Google Scholar 

  108. Zhang X et al (2020) Design of organic/inorganic nanocomposites for ultrasensitive electrochemical detection of a cancer biomarker protein. Talanta 212:120794

    Article  CAS  PubMed  Google Scholar 

  109. Paimard G et al (2020) An Impedimetric Immunosensor modified with electrospun core-shell nanofibers for determination of the carcinoma embryonic antigen. Sensors Actuators B Chem 311:127928

    Article  CAS  Google Scholar 

  110. Butmee P et al (2020) An ultrasensitive immunosensor based on manganese dioxide-graphene nanoplatelets and core shell Fe3O4@ Au nanoparticles for label-free detection of carcinoembryonic antigen. Bioelectrochemistry 132:107452

    Article  CAS  PubMed  Google Scholar 

  111. Saadati A et al (2020) A novel biosensor for the monitoring of ovarian cancer tumor protein CA 125 in untreated human plasma samples using a novel nano-ink: a new platform for efficient diagnosis of cancer using paper based microfluidic technology. Anal Methods 12(12):1639–1649

    Article  CAS  Google Scholar 

  112. Chauhan D, Nohwal B, Pundir C (2020) An electrochemical CD59 targeted noninvasive immunosensor based on graphene oxide nanoparticles embodied pencil graphite for detection of lung cancer. Microchem J 156:104957

    Article  CAS  Google Scholar 

  113. Zeng Y et al (2018) A sensitive label-free electrochemical immunosensor for detection of cytokeratin 19 fragment antigen 21-1 based on 3D graphene with gold nanoparticle modified electrode. Talanta 178:122–128

    Article  CAS  PubMed  Google Scholar 

  114. Jalil O, Pandey CM, Kumar D (2020) Electrochemical biosensor for the epithelial cancer biomarker EpCAM based on reduced graphene oxide modified with nanostructured titanium dioxide. Microchim Acta 187:1–9

    Article  CAS  Google Scholar 

  115. Guerrero S et al (2020) Design of electrochemical immunosensors using electro-click chemistry. Application to the detection of IL-1β cytokine in saliva. Bioelectrochemistry 133:107484

    Article  CAS  PubMed  Google Scholar 

  116. Aydın EB (2020) Highly sensitive impedimetric immunosensor for determination of interleukin 6 as a cancer biomarker by using conjugated polymer containing epoxy side groups modified disposable ITO electrode. Talanta 215:120909

    Article  PubMed  CAS  Google Scholar 

  117. Pachauri N et al (2020) Silver molybdate nanoparticles based immunosensor for the non-invasive detection of Interleukin-8 biomarker. Mater Sci Eng C 113:110911

    Article  CAS  Google Scholar 

  118. Xu W et al (2018) A signal-decreased electrochemical immunosensor for the sensitive detection of LAG-3 protein based on a hollow nanobox-MOFs/AuPt alloy. Biosens Bioelectron 113:148–156

    Article  CAS  PubMed  Google Scholar 

  119. Ma E et al (2020) Electrochemical immunosensors for sensitive detection of neuron-specific enolase based on small-size trimetallic Au@ Pd^Pt nanocubes functionalized on ultrathin MnO2 nanosheets as signal labels. ACS Biomater Sci Eng 6(3):1418–1427

    Article  CAS  PubMed  Google Scholar 

  120. Amani J et al (2018) An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection. Anal Biochem 548:53–59

    Article  CAS  PubMed  Google Scholar 

  121. Ehzari H, Amiri M, Safari M (2020) Enzyme-free sandwich-type electrochemical immunosensor for highly sensitive prostate specific antigen based on conjugation of quantum dots and antibody on surface of modified glassy carbon electrode with core–shell magnetic metal-organic frameworks. Talanta 210:120641

    Article  CAS  PubMed  Google Scholar 

  122. Thunkhamrak C et al (2020) Highly sensitive voltammetric immunosensor for the detection of prostate specific antigen based on silver nanoprobe assisted graphene oxide modified screen printed carbon electrode. Talanta 208:120389

    Article  CAS  PubMed  Google Scholar 

  123. Valverde A et al (2020) Carbon/inorganic hybrid nanoarchitectures as carriers for signaling elements in electrochemical immunosensors: first biosensor for the determination of the inflammatory and metastatic processes biomarker RANK-ligand. ChemElectroChem 7(3):810–820

    Article  CAS  Google Scholar 

  124. Li Y et al (2017) Ultrasensitive electrochemical immunosensor for quantitative detection of SCCA using Co3O4@ CeO2-Au@ Pt nanocomposite as enzyme-mimetic labels. Biosens Bioelectron 92:33–39

    Article  CAS  PubMed  Google Scholar 

  125. Du Y, Dong S (2017) Nucleic acid biosensors: recent advances and perspectives. Anal Chem 89(1):189–215

    Article  CAS  PubMed  Google Scholar 

  126. Wang J (2002) Electrochemical nucleic acid biosensors. Anal Chim Acta 469(1):63–71

    Article  CAS  Google Scholar 

  127. Fang L-X, Cao J-T, Huang K-J (2015) A sensitive electrochemical biosensor for specific DNA sequence detection based on flower-like VS2, graphene and Au nanoparticles signal amplification. J Electroanal Chem 746:1–8

    Article  CAS  Google Scholar 

  128. Lee H-E, Kang YO, Choi S-H (2014) Electrochemical-DNA biosensor development based on a modified carbon electrode with gold nanoparticles for influenza A (H1N1) detection: effect of spacer. Int J Electrochem Sci 9(12):6793–6808

    CAS  Google Scholar 

  129. Shakoori Z et al (2015) Electrochemical DNA biosensor based on gold nanorods for detecting hepatitis B virus. Anal Bioanal Chem 407(2):455–461

    Article  CAS  PubMed  Google Scholar 

  130. Palek E, Fojta M (2001) Peer reviewed: detecting DNA hybridization and damage. Analyt Chem 73:74A–83A

    Article  Google Scholar 

  131. Wang K et al (2015) Dual-probe electrochemical DNA biosensor based on the “Y” junction structure and restriction endonuclease assisted cyclic enzymatic amplification for detection of double-strand DNA of PML/RARα related fusion gene. Biosens Bioelectron 71:463–469

    Article  CAS  PubMed  Google Scholar 

  132. Jin H et al (2012) Circulating methylated DNA as biomarkers for cancer detection. In: Methylation-from DNA, RNA and histones to diseases and treatment

    Google Scholar 

  133. Carr O et al (2020) Genosensor made with a self-assembled monolayer matrix to detect MGMT gene methylation in head and neck cancer cell lines. Talanta 210:120609

    Article  CAS  PubMed  Google Scholar 

  134. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

    Article  CAS  PubMed  Google Scholar 

  135. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  CAS  PubMed  Google Scholar 

  136. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mitchell PS et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci 105(30):10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kilic T et al (2018) microRNA biosensors: opportunities and challenges among conventional and commercially available techniques. Biosens Bioelectron 99:525–546

    Article  CAS  PubMed  Google Scholar 

  139. Faraoni I et al (2009) miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792(6):497–505

    Article  CAS  PubMed  Google Scholar 

  140. Salimi A, Kavosi B, Navaee A (2019) Amine-functionalized graphene as an effective electrochemical platform toward easily miRNA hybridization detection. Measurement 143:191–198

    Article  Google Scholar 

  141. Ge Z et al (2014) Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal Chem 86(4):2124–2130

    Article  CAS  PubMed  Google Scholar 

  142. Tran H et al (2013) Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens Bioelectron 49:164–169

    Article  CAS  PubMed  Google Scholar 

  143. Kaplan M et al (2017) A novel method for sensitive microRNA detection: electropolymerization based doping. Biosens Bioelectron 92:770–778

    Article  CAS  PubMed  Google Scholar 

  144. Cheng F-F et al (2014) Bimetallic Pd–Pt supported graphene promoted enzymatic redox cycling for ultrasensitive electrochemical quantification of microRNA from cell lysates. Analyst 139(16):3860–3865

    Article  CAS  PubMed  Google Scholar 

  145. Erdem A et al (2020) Voltammetric detection of miRNA hybridization based on electroactive indicator-cobalt phenanthroline. Int J Biol Macromol 158:819–825

    Article  CAS  PubMed  Google Scholar 

  146. Kutluk H et al (2020) Impact of assay format on miRNA sensing: electrochemical microfluidic biosensor for miRNA-197 detection. Biosens Bioelectron 148:111824

    Article  CAS  PubMed  Google Scholar 

  147. Povedano E et al (2019) A novel zinc finger protein-based amperometric biosensor for miRNA determination. Anal Bioanal Chem 412(21):5031–5041

    Article  PubMed  CAS  Google Scholar 

  148. Jirakova L et al (2019) Multiplexed immunosensing platform coupled to hybridization chain reaction for electrochemical determination of microRNAs in clinical samples. Electroanalysis 31(2):293–302

    Article  CAS  Google Scholar 

  149. Yang C et al (2014) Multiplexed and amplified electronic sensor for the detection of microRNAs from cancer cells. Anal Chem 86(23):11913–11918

    Article  CAS  PubMed  Google Scholar 

  150. Wegman DW, Krylov SN (2011) Direct quantitative analysis of multiple miRNAs (DQAMmiR). Angew Chem Int Ed 50(44):10335–10339

    Article  CAS  Google Scholar 

  151. Huang R, He N, Li Z (2018) Recent progresses in DNA nanostructure-based biosensors for detection of tumor markers. Biosens Bioelectron 109:27–34

    Article  CAS  PubMed  Google Scholar 

  152. Ma J et al (2019) An electrochemical sensor for Oct4 detection in human tissue based on target-induced steric hindrance effect on a tetrahedral DNA nanostructure. Biosens Bioelectron 127:194–199

    Article  CAS  PubMed  Google Scholar 

  153. Xu S et al (2020) One DNA circle capture probe with multiple target recognition domains for simultaneous electrochemical detection of miRNA-21 and miRNA-155. Biosens Bioelectron 149:111848

    Article  CAS  PubMed  Google Scholar 

  154. Wang Y et al (2019) Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosens Bioelectron 136:84–90

    Article  CAS  PubMed  Google Scholar 

  155. Farzin L et al (2019) Employing AgNPs doped amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers for target induced strand displacement-based electrochemical aptasensing of CA125 in ovarian cancer patients. Mater Sci Eng C 97:679–687

    Article  CAS  Google Scholar 

  156. Liu N et al (2019) Electrochemical aptasensor for ultralow fouling cancer cell quantification in complex biological media based on designed branched peptides. Anal Chem 91(13):8334–8340

    Article  CAS  PubMed  Google Scholar 

  157. Wang H et al (2020) Competitive electrochemical aptasensor based on a cDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1. Anal Chim Acta 1094:18–25

    Article  CAS  PubMed  Google Scholar 

  158. Bezerra G et al (2019) Electrochemical aptasensor for the detection of HER2 in human serum to assist in the diagnosis of early stage breast cancer. Anal Bioanal Chem 411(25):6667–6676

    Article  CAS  PubMed  Google Scholar 

  159. Huang R et al (2019) A sensitive Aptasensor based on a hemin/G-Quadruplex-assisted signal amplification strategy for electrochemical detection of gastric cancer exosomes. Small 15(19):1900735

    Article  CAS  Google Scholar 

  160. Jalalvand AR (2019) Fabrication of a novel and ultrasensitive label-free electrochemical aptasensor for detection of biomarker prostate specific antigen. Int J Biol Macromol 126:1065–1073

    Article  CAS  PubMed  Google Scholar 

  161. Su X et al (2020) One-pot synthesized AuNPs/MoS2/rGO nanocomposite as sensitive electrochemical aptasensing platform for nucleolin detection. J Electroanal Chem 859:113868

    Article  CAS  Google Scholar 

  162. Gu C et al (2019) Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens Bioelectron 134:8–15

    Article  CAS  PubMed  Google Scholar 

  163. An Y et al (2019) An ultrasensitive electrochemical aptasensor for the determination of tumor exosomes based on click chemistry. Biosens Bioelectron 142:111503

    Article  CAS  PubMed  Google Scholar 

  164. Negahdary M, Moradi A, Heli H (2019) Application of electrochemical aptasensors in detection of cancer biomarkers. Biomed Res Ther 6:3315–3324

    Article  Google Scholar 

  165. He L et al (2019) Bifunctional bioplatform based on NiCo Prussian blue analogue: label-free impedimetric aptasensor for the early detection of carcino-embryonic antigen and living cancer cells. Sensors Actuators B Chem 298:126852

    Article  CAS  Google Scholar 

  166. Shekari Z, Zare HR, Falahati A (2019) Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Microchim Acta 186(8):530

    Article  CAS  Google Scholar 

  167. Sun D et al (2019) Aptamer-based electrochemical cytosensors for tumor cell detection in cancer diagnosis: a review. Anal Chim Acta 1082:1–17

    Article  CAS  PubMed  Google Scholar 

  168. Purohit B et al (2019) Cancer cytosensing approaches in miniaturized settings based on advanced nanomaterials and biosensors. In: Nanotechnology in modern animal biotechnology. Elsevier, Amsterdam, pp 133–147

    Chapter  Google Scholar 

  169. Yaman YT et al (2018) Peptide nanoparticles (PNPs) modified disposable platform for sensitive electrochemical cytosensing of DLD-1 cancer cells. Biosens Bioelectron 104:50–57

    Article  CAS  PubMed  Google Scholar 

  170. Lian M et al (2017) A self-assembled peptide nanotube–chitosan composite as a novel platform for electrochemical cytosensing. Sensors Actuators B Chem 251:86–92

    Article  CAS  Google Scholar 

  171. Kirbay FO et al (2018) Biofunctionalization of PAMAM-montmorillonite decorated poly (Ɛ-caprolactone)-chitosan electrospun nanofibers for cell adhesion and electrochemical cytosensing. Biosens Bioelectron 109:286–294

    Article  CAS  PubMed  Google Scholar 

  172. Gu C et al (2018) Ultrasensitive and versatile homogeneous electrochemical cytosensing platform based on target-induced displacement reaction for “signal-on” bioassay. Sensors Actuators B Chem 270:1–8

    Article  CAS  Google Scholar 

  173. Tian L et al (2018) An ultrasensitive electrochemical cytosensor based on the magnetic field assisted binanozymes synergistic catalysis of Fe3O4 nanozyme and reduced graphene oxide/molybdenum disulfide nanozyme. Sensors Actuators B Chem 260:676–684

    Article  CAS  Google Scholar 

  174. Dervisevic M et al (2017) Highly sensitive detection of cancer cells with an electrochemical cytosensor based on boronic acid functional polythiophene. Biosens Bioelectron 90:6–12

    Article  CAS  PubMed  Google Scholar 

  175. Wang Q et al (2018) Electrochemical cytosensor for detection of cell surface sialic acids based on 3D biointerface. Electrochim Acta 282:923–930

    Article  CAS  Google Scholar 

  176. Sugawara K, Kuramitz H, Kadoya T (2018) Label-free cytosensing of cancer cells based on the interaction between protein and an electron-transfer carbohydrate-mimetic peptide. Anal Chim Acta 1040:166–176

    Article  CAS  PubMed  Google Scholar 

  177. Zhang H et al (2019) 3D carbon nanosphere and gold nanoparticle-based voltammetric cytosensor for cell line A549 and for early diagnosis of non-small cell lung cancer cells. Microchim Acta 186(1):39

    Article  CAS  Google Scholar 

  178. Tepeli Y et al (2015) An electrochemical cytosensor based on a PAMAM modified glassy carbon paste electrode. RSC Adv 5(66):53973–53978

    Article  CAS  Google Scholar 

  179. Ou D et al (2019) A novel cytosensor for capture, detection and release of breast cancer cells based on metal organic framework PCN-224 and DNA tetrahedron linked dual-aptamer. Sensors Actuators B Chem 285:398–404

    Article  CAS  Google Scholar 

  180. Shen C et al (2019) Electrochemical detection of circulating tumor cells based on DNA generated electrochemical current and rolling circle amplification. Anal Chem 91(18):11614–11619

    Article  CAS  PubMed  Google Scholar 

  181. Yang J et al (2020) In situ-generated multivalent aptamer network for efficient capture and sensitive electrochemical detection of circulating tumor cells in whole blood. Anal Chem 92(11):7893–7899

    Article  CAS  PubMed  Google Scholar 

  182. Hasanzadeh M, Shadjou N, de la Guardia M (2015) Recent advances in nanostructures and nanocrystals as signal-amplification elements in electrochemical cytosensing. TrAC Trends Anal Chem 72:123–140

    Article  CAS  Google Scholar 

  183. Uslu B, Ozkan SA (2011) Electroanalytical methods for the determination of pharmaceuticals: a review of recent trends and developments. Anal Lett 44(16):2644–2702

    Article  CAS  Google Scholar 

  184. Siddiqui MR, AlOthman ZA, Rahman N (2017) Analytical techniques in pharmaceutical analysis: a review. Arab J Chem 10:S1409–S1421

    Article  CAS  Google Scholar 

  185. Salvati E, Stellacci F, Krol S (2015) Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine 10(23):3495–3512

    Article  CAS  PubMed  Google Scholar 

  186. Meneghello A et al (2018) Biosensing technologies for therapeutic drug monitoring. Curr Med Chem 25(34):4354–4377

    Article  CAS  PubMed  Google Scholar 

  187. Karthik R et al (2017) A facile graphene oxide based sensor for electrochemical detection of prostate anti-cancer (anti-testosterone) drug flutamide in biological samples. RSC Adv 7(41):25702–25709

    Article  CAS  Google Scholar 

  188. Karthik R et al (2017) A highly sensitive and selective electrochemical determination of non-steroidal prostate anti-cancer drug nilutamide based on f-MWCNT in tablet and human blood serum sample. J Colloid Interface Sci 487:289–296

    Article  CAS  PubMed  Google Scholar 

  189. Abbasghorbani M (2018) Fe3O4 loaded single wall carbon nanotubes and 1-methyl-3-octylimidazlium chloride as two amplifiers for fabrication of highly sensitive voltammetric sensor for epirubicin anticancer drug analysis. J Mol Liq 266:176–180

    Article  CAS  Google Scholar 

  190. Brahman PK et al (2017) An electrochemical sensing platform for trace recognition and detection of an anti-prostate cancer drug flutamide in biological samples. RSC Adv 7(60):37898–37907

    Article  CAS  Google Scholar 

  191. Aliakbarinodehi N, De Micheli G, Carrara S (2016) Enzymatic and nonenzymatic electrochemical interaction of abiraterone (antiprostate cancer drug) with multiwalled carbon nanotube bioelectrodes. Anal Chem 88(19):9347–9350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hashkavayi AB, Raoof JB (2017) Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe3O4@ SiO2/DABCO modified screen printed electrode for highly selective detection of epirubicin. Biosens Bioelectron 91:650–657

    Article  CAS  PubMed  Google Scholar 

  193. Hajian R et al (2017) DNA-binding studies of valrubicin as a chemotherapy drug using spectroscopy and electrochemical techniques. J Pharm Anal 7(3):176–180

    Article  PubMed  PubMed Central  Google Scholar 

  194. Karimi-Maleh H et al (2018) Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug. Appl Surf Sci 441:55–60

    Article  CAS  Google Scholar 

  195. Sengiz C et al (2015) Multiwalled carbon nanotubes-chitosan modified single-use biosensors for electrochemical monitoring of drug-DNA interactions. Electroanalysis 27(8):1855–1863

    Article  CAS  Google Scholar 

  196. Du Y et al (2017) Preparation of graphene-copper nanocomposite for constructing electrochemical sensor for paclitaxel anti-cancer drug detection in Taxus Chinensis. Int J Electrochem Sci 12:2563–2572

    Article  CAS  Google Scholar 

  197. Afzali M et al (2019) A novel voltammetric sensor based on palladium nanoparticles/carbon nanofibers/ionic liquid modified carbon paste electrode for sensitive determination of anti-cancer drug pemetrexed. J Mol Liq 282:456–465

    Article  CAS  Google Scholar 

  198. Chen T-W et al (2020) Sonochemical synthesis and fabrication of neodymium sesquioxide entrapped with graphene oxide based hierarchical nanocomposite for highly sensitive electrochemical sensor of anti-cancer (raloxifene) drug. Ultrason Sonochem 64:104717

    Article  CAS  PubMed  Google Scholar 

  199. Najari S et al (2018) Electrochemical sensor based on gold nanoparticle-multiwall carbon nanotube nanocomposite for the sensitive determination of docetaxel as an anticancer drug. Ionics 24(10):3209–3219

    Article  CAS  Google Scholar 

  200. Zahed FM et al (2018) Silver nanoparticles decorated polyaniline nanocomposite based electrochemical sensor for the determination of anticancer drug 5-fluorouracil. J Pharm Biomed Anal 161:12–19

    Article  CAS  PubMed  Google Scholar 

  201. Alavi-Tabari SA, Khalilzadeh MA, Karimi-Maleh H (2018) Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J Electroanal Chem 811:84–88

    Article  CAS  Google Scholar 

  202. Afzali M, Mostafavi A, Shamspur T (2019) Developing a novel sensor based on ionic liquid molecularly imprinted polymer/gold nanoparticles/graphene oxide for the selective determination of an anti-cancer drug imiquimod. Biosens Bioelectron 143:111620

    Article  CAS  PubMed  Google Scholar 

  203. Dehdashtian S, Hashemi B, Aeenmehr A (2019) The application of perlite/cobalt oxide/reduced graphene oxide (PC-rGO)/metal organic framework (MOF) composite as electrode modifier for direct sensing of anticancer drug idarubicin. IEEE Sensors J 19(24):11739–11745

    Article  CAS  Google Scholar 

  204. Hatamluyi B, Hashemzadeh A, Darroudi M (2020) A novel molecularly imprinted polymer decorated by CQDs@ HBNNS nanocomposite and UiO-66-NH2 for ultra-selective electrochemical sensing of Oxaliplatin in biological samples. Sensors Actuators B Chem 307:127614

    Article  CAS  Google Scholar 

  205. Zaidi SA (2019) Effective imprinting of an anticancer drug, 6-thioguanine, via mussel-inspired self-polymerization of dopamine over reduced graphene oxide. Analyst 144(7):2345–2352

    Article  CAS  PubMed  Google Scholar 

  206. Liu Y et al (2018) An electrochemical sensor based on a molecularly imprinted polymer for determination of anticancer drug mitoxantrone. Sensors Actuators B Chem 255:544–551

    Article  CAS  Google Scholar 

  207. Zhang Q et al (2017) Electrochemical determination of the anticancer drug capecitabine based on a graphene-gold nanocomposite-modified glassy carbon electrode. Int J Electrochem Sci 12:10773–10782

    Article  CAS  Google Scholar 

  208. Prasad BB, Pathak PK (2017) Development of surface imprinted nanospheres using the inverse suspension polymerization method for electrochemical ultra sensing of dacarbazine. Anal Chim Acta 974:75–86

    Article  CAS  PubMed  Google Scholar 

  209. Materon EM et al (2018) Development of a simple electrochemical sensor for the simultaneous detection of anticancer drugs. J Electroanal Chem 827:64–72

    Article  CAS  Google Scholar 

  210. Jandaghi N et al (2020) Cerium-doped flower-shaped ZnO nano-crystallites as a sensing component for simultaneous electrochemical determination of epirubicin and methotrexate. Microchim Acta 187(1):24

    Article  CAS  Google Scholar 

  211. Alavi-Tabari SA et al (2018) An amplified platform nanostructure sensor for the analysis of epirubicin in the presence of topotecan as two important chemotherapy drugs for breast cancer therapy. New J Chem 42(5):3828–3832

    Article  CAS  Google Scholar 

  212. Tzouvadaki I et al (2018) Graphene nanowalls for high-performance chemotherapeutic drug sensing and anti-fouling properties. Sensors Actuators B Chem 262:395–403

    Article  CAS  Google Scholar 

  213. Rezaeifar Z et al (2018) Electrochemical determination of anticancer drug, flutamide in human plasma sample using a microfabricated sensor based on hyperbranchedpolyglycerol modified graphene oxide reinforced hollow fiber-pencil graphite electrode. Mater Sci Eng C 91:10–18

    Article  CAS  Google Scholar 

  214. Hatamluyi B, Es’haghi Z (2017) A layer-by-layer sensing architecture based on dendrimer and ionic liquid supported reduced graphene oxide for simultaneous hollow-fiber solid phase microextraction and electrochemical determination of anti-cancer drug imatinib in biological samples. J Electroanal Chem 801:439–449

    Article  CAS  Google Scholar 

  215. Lima HRS et al (2019) Blend films based on biopolymers extracted from babassu mesocarp (Orbignya phalerata) for the electrochemical detection of methotrexate antineoplastic drug. J Solid State Electrochem 23(11):3153–3164

    Article  CAS  Google Scholar 

  216. Chen T-W et al (2019) A sensitive electrochemical determination of chemotherapy agent using graphitic carbon nitride covered vanadium oxide nanocomposite; sonochemical approach. Ultrason Sonochem 58:104664

    Article  CAS  PubMed  Google Scholar 

  217. Kokulnathan T et al (2019) A cerium vanadate interconnected with a carbon nanofiber heterostructure for electrochemical determination of the prostate cancer drug nilutamide. Microchim Acta 186(8):579

    Article  CAS  Google Scholar 

  218. Karthik R et al (2017) Voltammetric determination of the anti-cancer drug nilutamide using a screen-printed carbon electrode modified with a composite prepared from β-cyclodextrin, gold nanoparticles and graphene oxide. Microchim Acta 184(2):507–514

    Article  CAS  Google Scholar 

  219. Shpigun LK, Andryukhina EY (2018) Electrochemical sensor based on nanocomposite of ionic liquid modified graphene oxide–chitosan and its application for flow injection detection of anticancer thiopurine drugs. Electroanalysis 30(10):2356–2365

    Article  CAS  Google Scholar 

  220. Shashaani H et al (2016) Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells. Biosens Bioelectron 85:363–370

    Article  CAS  PubMed  Google Scholar 

  221. Chen J et al (2018) A graphene oxide-DNA electrochemical sensor based on glassy carbon electrode for sensitive determination of methotrexate. Electroanalysis 30(2):288–295

    Article  CAS  Google Scholar 

  222. Bahner N et al (2018) An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal Bioanal Chem 410(5):1453–1462

    Article  CAS  PubMed  Google Scholar 

  223. Suhito IR et al (2019) Rapid and sensitive electrochemical detection of anticancer effects of curcumin on human glioblastoma cells. Sensors Actuators B Chem 288:527–534

    Article  CAS  Google Scholar 

  224. Idili A et al (2019) Seconds-resolved pharmacokinetic measurements of the chemotherapeutic irinotecan in situ in the living body. Chem Sci 10(35):8164–8170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Hasanzadeh M, Shadjou N (2016) Pharmacogenomic study using bio-and nanobioelectrochemistry: drug–DNA interaction. Mater Sci Eng C 61:1002–1017

    Article  CAS  Google Scholar 

  226. Arshad N, Farooqi SI (2018) Cyclic voltammetric DNA binding investigations on some anticancer potential metal complexes: a review. Appl Biochem Biotechnol 186(4):1090–1110

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuğba Ören Varol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ören Varol, T. (2020). Electrochemical Sensors and Biosensors for the Detection of Cancer Biomarkers and Drugs. In: Tuli, H.S. (eds) Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models. Springer, Singapore. https://doi.org/10.1007/978-981-15-7586-0_2

Download citation

Publish with us

Policies and ethics