Skip to main content

Cyanobacteria-Mediated Bioremediation of Problem Soils

  • Chapter
  • First Online:
Microbial Rejuvenation of Polluted Environment

Abstract

Cyanobacteria (BGA) are prokaryotic photoautotrophs capable of doing photosynthesis and nitrogen fixation simultaneously. The nitrogen fixing blue green algae are well documented for their efficiency of keeping the rice fields fertile. Cyanobacteria is a versatile organism possess different mechanisms to adapt to a broad range of environmental factors. Cyanobacteria are unique microorganisms which occupy and predominate diversified habitats as a result of many general characteristics; some cyanobacteria are like bacteria and others unique to higher plants. Agricultural productivity is greatly enhanced through cyanobacterial biofertilizer technology. The adverse effects of different uses of chemical fertilizers, pesticides and agrochemicals lead to a reduction in soil productivity and environmental quality. As a substitute for chemical fertilizers, and to bioremediate the problem soils caused by various agrochemicals, cyanobacteria are economically viable and sustainable technology in modern agriculture. Cyanobacteria are also recognized as an important agent in the stabilization of soil surfaces by different mechanisms which are prominent agents in the process of aggregate formation and increase in soil fertility. This chapter deals with the ability of cyanobacteria and their mechanisms on reclamation of wide range of problem soils such as saline, alkaline and acid soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Hafez SI, Abo-Elyousr KA, Abdel-Rahim IR (2015) Fungicidal activity of extracellular products of cyanobacteria against Alternaria porri. Eur J Phycol 50:239–245

    Article  CAS  Google Scholar 

  • Abdel-Razek MA, Abozeid AM, Eltholth MM et al (2019) Bioremediation of a pesticide and selected heavy metals in wastewater from various sources using a consortium of microalgae and cyanobacteria. Slov Vet Res 56:61

    Google Scholar 

  • Abed RM, Palinska KA, Köster J (2018) Characterization of microbial mats from a desert Wadi ecosystem in the Sultanate of Oman. Geomicrobiol J 35:601–611

    Article  Google Scholar 

  • Adhikary SP, Pattanaik B (2006) Cyanobacterial biofertilizers for rice: present status and future prospects. In: Rai A (ed) Handbook of microbial biofertilizers. CRC press, Boca Raton, FL, p 433

    Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Alghanmi HA, Jawad HM (2019) Effect of environmental factors on cyanobacteria richness in some agricultural soils. Geomicrobiol J 36:75–84

    Article  CAS  Google Scholar 

  • Arora M, Kaushik A, Rani N, Kaushik C (2010) Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination. J Environ Biol 31:701–704

    CAS  PubMed  Google Scholar 

  • Balakumar T, Ravi V (2001) Catalytic degradation of the herbicide glyphosate by the paddy field isolates of cyanobacteria. In: Algae and their biotechnological potential. Springer, New York, NY, pp 195–206

    Chapter  Google Scholar 

  • Baqué M, Viaggiu E, Scalzi G et al (2013) Endurance of the endolithic desert cyanobacterium Chroococcidiopsis under UVC radiation. Extremophiles 17:161–169

    Article  PubMed  CAS  Google Scholar 

  • Becher P, Jüttner F (2006) Insecticidal activity - a new bioactive property of the cyanobacterium Fischerella. Pol J Ecol 54:653

    Google Scholar 

  • Bhunia B, Uday USP, Oinam G et al (2018) Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohydr Polym 179:228–243

    Article  CAS  PubMed  Google Scholar 

  • Cáceres TP, Megharaj M, Naidu R (2008) Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr Microbiol 57:643–646

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Yang L, Xiao L et al (2012) Nitrogen removal by denitrification during cyanobacterial bloom in Lake Taihu. J Freshw Ecol 27:243–258

    Article  CAS  Google Scholar 

  • Diengdoh OL, Syiem MB, Pakshirajan K et al (2017) Zn2+ sequestration by Nostoc muscorum: study of thermodynamics, equilibrium isotherms, and biosorption parameters for the metal. Environ Monit Assess 189:314

    Article  PubMed  CAS  Google Scholar 

  • El-Bestawy EA, El-Salam AZA, Mansy AE-RH (2007) Potential use of environmental cyanobacterial species in bioremediation of lindane-contaminated effluents. Int Biodeterior Biodegradation 59:180–192

    Article  CAS  Google Scholar 

  • El-Mougy NS, Abdel-Kader MM (2013) Effect of commercial cyanobacteria products on the growth and antagonistic ability of some bioagents under laboratory conditions. J Pathog 2013:838329

    PubMed  PubMed Central  Google Scholar 

  • Engwa GA, Ferdinand PU, Nwalo FN et al (2019) Mechanism and health effects of heavy metal toxicity in humans. In: Poisoning in the modern world-new tricks for an old dog? IntechOpen, Rijeka

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Gallon J, Stal L (1992) N2 fixation in non-heterocystous cyanobacteria: an overview. In: Marine pelagic cyanobacteria: trichodesmium and other diazotrophs. Springer, New York, NY, pp 115–139

    Chapter  Google Scholar 

  • Gupta S, Dikshit AK (2010) Biopesticides: an ecofriendly approach for pest control. J Biopest 3:186

    Google Scholar 

  • Habib MA (2008) Review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Huertas MJ, López-Maury L, Giner-Lamia J et al (2014) Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Lifestyles 4:865–886. https://doi.org/10.3390/life4040865

    Article  Google Scholar 

  • Ibrahim WM, Karam MA, El-Shahat RM et al (2014) Biodegradation and utilization of organophosphorus pesticide malathion by Cyanobacteria. Biomed Res Int 2014:392682–392682. https://doi.org/10.1155/2014/392682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igiri BE, Okoduwa SI, Idoko GO et al (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018:2568038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaushal S, Singh Y, Khattar J et al (2017) Phycobiliprotein production by a novel cold desert cyanobacterium Nodularia sphaerocarpa PUPCCC 420.1. J Appl Phycol 29:1819–1827

    Article  CAS  Google Scholar 

  • Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2:a000315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61:234–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latef AAHA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233

    Article  CAS  Google Scholar 

  • Lee SE, Kim JS, Kennedy IR et al (2003) Biotransformation of an organochlorine insecticide, endosulfan, by anabaena species. J Agric Food Chem 51:1336–1340. https://doi.org/10.1021/jf0257289

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhou K, Qin Wet al. (2019a) A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment Contam 28:380–394

    Article  CAS  Google Scholar 

  • Li H, Zhao Q, Huang H (2019b) Current states and challenges of salt-affected soil remediation by cyanobacteria. Sci Total Environ 669:258

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Natesan R, Shanmugasundaram S (1989) Extracellular phosphate solubilization by the cyanobacterium Anabaena ARM310. J Biosci 14:203–208

    Article  CAS  Google Scholar 

  • Nisha R, Kaushik A, Kaushik C (2007) Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138:49–56

    Article  CAS  Google Scholar 

  • Park CH, Li XR, Jia RL et al (2017) Combined application of cyanobacteria with soil fixing chemicals for rapid induction of biological soil crust formation. Arid Land Res Manag 31:81–93

    Article  CAS  Google Scholar 

  • Perera I, Subashchandrabose SR, Venkateswarlu K et al (2018) Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota. Appl Microbiol Biotechnol 102:7351–7363

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Powell H, Kerbby N, Rowell P (1991) Natural tolerance of cyanobacteria to the herbicide glyphosate. New Phytol 119:421–426

    Article  CAS  Google Scholar 

  • Prasanna R, Kumar V, Kumar Set al. (2002) Methane production in rice soil is inhibited by cyanobacteria. Microbiol Res 157:1–6

    Article  PubMed  Google Scholar 

  • Rampelotto PH (2013) Extremophiles and extreme environment. Life 3:482–485. https://doi.org/10.3390/life3030482

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi F, Li H, Liu Y et al (2017) Cyanobacterial inoculation (cyanobacterisation): perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal. Earth-Sci Rev 171:28–43

    Article  Google Scholar 

  • Sahu D, Priyadarshani I, Rath B (2012) Cyanobacteria–as potential biofertilizer. CIB Tech J Microbiol 1:20–26

    Google Scholar 

  • Sajjaphan K, Shapir N, Judd AK et al (2002) Novel psbA1 gene from a naturally occurring atrazine-resistant cyanobacterial isolate. Appl Environ Microbiol 68:1358–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh JS, Kumar A, Rai AN et al (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Bruggen AHC, He MM, Shin K et al (2018) Environmental and health effects of the herbicide glyphosate. Sci Total Environ 616–617:255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Kuila A (2019) Bioremediation of heavy metals by microbial process. Environ Technol Innov 14:100369. https://doi.org/10.1016/j.eti.2019.100369

    Article  Google Scholar 

  • Vítek P, Ascaso C, Artieda O et al (2017) Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert. Sci Rep 7:11116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallace A (1994) Soil acidification from use of too much fertilizer. Commun Soil Sci Plan 25:87–92. https://doi.org/10.1080/00103629409369010

    Article  CAS  Google Scholar 

  • Yandigeri MS, Yadav AK, Srinivasan R et al (2011) Studies on mineral phosphate solubilization by cyanobacteria Westiellopsis and Anabaena. Microbiology 80:558

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabarinathan, K.G., Gomathy, M., Kumar, D.A., Kannan, R., Aiyanathan, K.E.A. (2021). Cyanobacteria-Mediated Bioremediation of Problem Soils. In: Panpatte, D.G., Jhala, Y.K. (eds) Microbial Rejuvenation of Polluted Environment. Microorganisms for Sustainability, vol 25. Springer, Singapore. https://doi.org/10.1007/978-981-15-7447-4_5

Download citation

Publish with us

Policies and ethics