Skip to main content

Abstract

Natural ecosystems are encroached by human activities in terms of urbanization, industrialization, and uncontrolled utilization of natural resources. In addition to the methods to reduce contamination, algal soil bioremediation can also overcome the necessity of nutrition. Apart from this Cyanobacteria can generate renewable energy by fixing atmospheric CO2. The potential of bioremediation depends on the diversified enzymatic machinery of the various algal species. Cyanobacteria can significantly remediate the contaminated sites incorporated with domestic wastes, crude oils, industrial effluents, and heavy metals. Cyanobacteria are used as experimental organisms in various approaches meant for improving soil fertility by removing the major pollutants like pesticides and inorganic fertilizers. In Cyanobacteria treated soils the accumulation of heavy metals and other pollutants was reported in low levels compared to untreated soils. Therefore, the antioxidant requirement was also reported low. Hence cyanobacteria are currently receiving extensive attention in soil remediation and sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas A, Khan S, Hussain N, Hanjra MA, Akbar S (2013) Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Phys Chem Earth Parts a/b/c 55–57:43–52

    Article  Google Scholar 

  • Abdelaziz AE, Leite GB, Belhaj MA, Hallenbeck PC (2014) Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresour Technol 157:140–148

    Article  CAS  PubMed  Google Scholar 

  • Abed MM (2010) Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons. Int Biodeterior Biodegradation 64(1):58–64

    Article  CAS  Google Scholar 

  • Abed RMM, Koster J (2005) The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. Int Biodeterior Biodegradation 55:29–37

    Article  CAS  Google Scholar 

  • Al-Hasan RH, Al-Bader DA, Sorkhoh NA, Radwan SS (1998) Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Mar Biol 130:521–527

    Article  CAS  Google Scholar 

  • Apte SK, Fernandes T, Badran H, Ballal A (1998) Expression and possible role of stress-responsive proteins in Anabaena. J Biosci 23(4):399–406

    Article  CAS  Google Scholar 

  • Bergi J, Trivedi R (2020) Bioremediation of Saline Soil by Cyanobacteria. In: Shah M (ed) microbial bioremediation & biodegradation. Springer, Singapore

    Google Scholar 

  • Bhatnagar A, Bhatnagar M, Chinnasamy S, Das KC (2010) Chlorella minutissima–a promising fuel alga for cultivation in municipal wastewaters. Appl Biochem Biotechnol 161(1–8):523–536

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar A, Sillanpaa M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem Eng J 157(2–3):277–296

    Google Scholar 

  • Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW (2014) Bacterial vesicles in marine ecosystems. Science 343(6167):183–186

    Article  CAS  PubMed  Google Scholar 

  • Busenlehner LS, Pennella MA, Giedroc DP (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27(2–3):131–143

    Article  CAS  PubMed  Google Scholar 

  • Caceres TP, Megharaj M, Malik S, Beer M, Naidu R (2009) Hydrolysis of fenamiphos and its toxic oxidation products by Microbacterium sp. in pure culture and groundwater. Bioresour Technol 100:2732–2736

    Article  CAS  PubMed  Google Scholar 

  • Cáceres TP, Megharaj M, Naidu R (2008) Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr Microbiol 57(6):643–646

    Article  PubMed  CAS  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Cerniglia C, Baalen C, Gibson, David (1980) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., Strain JCM. Microbiology 116(2):485–494

    Google Scholar 

  • Chaillan F, Gugger M, Saliot A, Couté A, Oudot J (2006) Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat. Chemosphere 62(10):1574–1582

    Article  CAS  PubMed  Google Scholar 

  • Chandra R, Dubey NK, Kumar V (2017a) Phytoremediation of environmental pollutants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Chandra R, Kumar V (2017a) Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilized distillery sludge as a prospective tool for in-situ phytoremediation of industrial waste. Environ Sci Pollut Res 24:2605–2619

    Article  CAS  Google Scholar 

  • Chandra R, Kumar V (2017b) Phytoremediation: a green sustainable technology for industrial waste management. In: Chandra R, Dubey NK, Kumar V (eds) Phytoremediation of environmental pollutants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Chandra R, Kumar V, Singh K (2017b) Hyperaccumulator versus nonhyperaccumulator plants for environmental waste management. In: Chandra R, Dubey NK, Kumar V (eds) Phytoremediation of environmental pollutants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Chandra R, Kumar V, Tripathi S, Sharma P (2018) Heavy metal phytoextraction potential of native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in situ phytoremediation. Ecol Eng 111:143–156

    Article  Google Scholar 

  • Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in Biodegradation and Bioremediation of Industrial Waste. CRC Press, Boca Raton, FL, pp 1–29

    Chapter  Google Scholar 

  • Chaurasia AK, Apte SK (2009) Overexpression of the groESL operon enhances the heat and salinity stress tolerance of the nitrogen-fixing cyanobacterium Anabaena sp. Strain PCC 7120. Appl Environ Microbiol 75(18): 6008

    Google Scholar 

  • Cimini D, Rosa MD, Schiraldi C (2012) Production of glucuronic acid-based polysaccharides by microbial fermentation for biomedical applications. Biotechnol J 7(2):237–250

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Sun T, Chen L, Zhang W (2020) Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Biotechnol Adv 43:107578

    Article  CAS  PubMed  Google Scholar 

  • Cui ZL, Li SP, Fu GP (2001) Isolation of methyl parathion degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925

    Article  CAS  Google Scholar 

  • Dellamatrice PM, Silva-Stenico ME, Moraes LA, Fiore MF, Monteiro RT (2017) Degradation of textile dyes by cyanobacteria. Brazilian J microbio. publication of the Brazilian Society for Microbiology, 48(1):25–31. https://doi.org/10.1016/j.bjm.2016.09.012

  • De Philippis R, Paperi R, Sili C (2007) Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria. Biodegradation 18:181–187

    Article  CAS  PubMed  Google Scholar 

  • Derbalah ASH, Wakatsuki H, Yamazaki T, Sakugawa H (2004) Photodegradation kinetics of fenitrothion in various aqueous media and its effect on steroid hormones biosynthesis. Geochem J 38:201–213

    Article  CAS  Google Scholar 

  • Dubey SK, Dubey J, Viswas AJ, Tiwari P (2011) Studies on cyanobacterial biodiversity in paper mill and pharmaceutical industrial effluents. Br Biotechnol 1(3):61–67

    Article  Google Scholar 

  • El-Bestawy E (2008) Treatment of mixed domestic–industrial wastewater using cyanobacteria. J Ind Microbiol Biotechnol 11(35):1503–1516

    Article  CAS  Google Scholar 

  • FAO, ITPS (2015) Status of the world’s soil resources (SWSR)—main report. Food and agriculture organization of the united nations and intergovernmental technical panel on soils, Rome, Italy

    Google Scholar 

  • Flaibani A, Olsen Y, Painter TJ (1989) Polysaccharides in desert reclamation: compositions of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydr Res 190:235–248

    Article  CAS  Google Scholar 

  • Gamila HA, Ibrahim MBM, Abd El-Ghafar HH (2003) The role of cyanobacterial isolated strains in the biodegradation of crude oil. Int J Environ Stud 60:435–444

    Article  CAS  Google Scholar 

  • Gao Y, Chen S, Hu M, Hu Q, Luo J, Li Y (2012) Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS ONE 7(6):e38137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK, Chaudhary KK, Kumar M, Negi A, Rai H (2012) Bioremediation and cyanobacteria: an overview. Bionano Frontier 9:190–196

    Article  CAS  Google Scholar 

  • Hamouda RAEF, Sorour NM, Yeheia DS (2016) Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions. Int Biodeterior Biodegrad 112:128–134

    Article  CAS  Google Scholar 

  • Hapke HJ (1996) Heavy metal transfer in the food chain to humans. In: Rodriguez-Barrueco C (eds) Fertilizers and environment. Developments in Plant and Soil Sciences, vol 66. Springer, Dordrecht

    Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim MW, Essa MA (2010) Tolerance and utilization of organophosphorus insecticide by nitrogen fixing Cyanobacteria. Egypt J Bot 27:225–240

    Google Scholar 

  • Ibrahim WM, Karam MA, El-Shahat RM, Adway AA (2014) Biodegradation and utilization of organophosphorus pesticide malathion by Cyanobacteria. BioMed Res Int 392682

    Google Scholar 

  • Jha MN, Mishra SK (2005) Biological responses of cyanobacteria to insecticides and their insecticide degrading potential. Bull Environ Contam Toxicol 75(2):374–381

    Article  CAS  PubMed  Google Scholar 

  • Kapoor M, Rajagopal R (2011) Enzymatic bioremediation of organophosphorus insecticides by recombinant organophos phorous hydrolase. Int Biodeterior Biodegrad 65:896–901

    Article  CAS  Google Scholar 

  • Karatay SE, Dönmez G (2011) Microbial oil production from thermophile cyanobacteria for bio diesel production. Appl Energy 88(11):3632–3635

    Article  CAS  Google Scholar 

  • King P, Rakesh N, Beenalahari S, Prasanna Kumar Y, Prasad VS (2007) Removal of lead from aqueous solution using Syzygium cumini L. equilibrium and kinetic studies. J Hazard Mater 142(1–2):340–347

    Google Scholar 

  • Krishnan U (2017) Impact of heavy metal in fish on consumer centric market. Int J Agri Sci 35(9):45428–4532

    Google Scholar 

  • Kumar R, Kranthi S, Nitharwal M, Jat SL, Monga D (2012) Influence of pesticides and application methods on pest and predatory arthropods associated with cotton. Phyto- Parasitica 40:417–424

    CAS  Google Scholar 

  • Lacorte S, Barcelo D (1994) Rapid degradation of fenitrothion in estuarine waters. Environ Sci Technol 28(6):1159–1163

    Article  CAS  PubMed  Google Scholar 

  • Lai K, Stolowich NJ, Wild JR (1995) Characterization of P-S bond hydrolysis in organophosphorothioate pesticides by organophosphorus hydrolase. Arch Biochem Biophys 318(1):59–64

    Article  CAS  PubMed  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1995) Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 89:59–66

    Article  CAS  Google Scholar 

  • Lu P, Li Q, Liu H, Feng Z, Yan X, Hong Q, Li S (2013) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1. Bioresour Technol 127:337–342

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Chen B, Lin L, Wang X, Tam NFY, Luan T (2014) Pyrene degradation accelerated by constructed consortium of bacterium and microalga: effects of degradation products on the microalgal growth. Environ Sci Technol 48:13917–13924

    Article  CAS  PubMed  Google Scholar 

  • Maldonado J, Solé A, Puyen ZM, Esteve I (2011) Selection of bioindicators to detect lead pollution in Ebro delta microbial mats, using high-resolution microscopic techniques. Aquat Toxicol 104(1–2):135–144

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga T, Takeyama H, Nakao T, Yamazawa A (1999) Screening of marine microalgae for bioremediation of cadmium-polluted seawater. J Biotechnol 70(1–3):33–38

    Article  CAS  PubMed  Google Scholar 

  • Megharaj M, Venkateswarlu K, Rao AS (1987) Metabolism of monocrotophos and quinalphos by algae isolated from soil. Bull Environ Contam Toxicol 39(2):251–256

    Article  CAS  PubMed  Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99:8137–8142

    Article  CAS  PubMed  Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Waterresearch 40(15):2799–2815

    Google Scholar 

  • Nadal M, Schuhmacher M, Domingo JL (2007) Levels of metals, PCBs, PCNs and PAHs in soils of a highly industrialized chemical/petrochemical area: temporal trend. Chemosphere 66(2):267–276

    Article  CAS  PubMed  Google Scholar 

  • Nanda S, Sarangi PK, Jayanthi A (2010) Cyanobacterial remediation of industrial effluents I. Tannery Effluents. NY Sci J 3(12):32–36

    Google Scholar 

  • Nisha R, Kaushik A, Kaushik CP (2007) Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138:49–56

    Article  CAS  Google Scholar 

  • Ozturk S, Aslim B (2010) Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res 17(3):595–602

    Article  CAS  Google Scholar 

  • Parjo K, Razak RA (2015) Phycoremediation of wastewaters and potential hydrocarbon from microalgae: a review. Adv Environ Biol 9:1–8

    Google Scholar 

  • Park D, Yun YS, Park JM (2005) Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere 60:1356–1364

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microb 48(5):378–384

    Article  CAS  Google Scholar 

  • Peramuna A, Summers ML (2014) Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme. Arch Microbiol 196(12):881–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Posewitz MC (2014) Engineering Pathways to Biofuels in Photoautotrophic Microorganisms Biofuels 5(1):67–78

    Google Scholar 

  • Radwan SS, Al-Hasan RH, Salamah S, Al-Dabbous S (2002) Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. Int Biodeterior Biodegrad 9:50–55

    Google Scholar 

  • Rai AN, Soderback E, Bergman B (2000) Cyanobacterium-plant symbioses. New Phytol 147:449–481

    Article  CAS  PubMed  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Ribeiro JP, Lopes J, Fachini A (2008) Cleansing contaminated seawaters using marine cyanobacteria: evaluation of trace metal removal from the medium. Int J Environ Anal Chem 88(10):701–710

    Article  CAS  Google Scholar 

  • Ruffing AM (2014) Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as host. Front Bioeng Biotech 2:17

    Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101(1):58–64

    Article  CAS  PubMed  Google Scholar 

  • Rukhman V, Anati R, Melamed-Frank M, Adir N (2005) The MntC crystal structure suggests that import of Mn2+ in cyanobacteria is redox controlled. J Mol Biol 348(4):961–969

    Article  CAS  PubMed  Google Scholar 

  • Salman JM, Abdul-Adel E (2015) Potential use of cyanophyta species Oscillatoria limnetica in bioremediation of organo phosphorus herbicide glyphosate. Mesop Environ J 1:15–26

    Google Scholar 

  • Sawayama S, Rao KK, Hall DO (1998) Nitrate and phosphate ion removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor. Appl Microbiol Biotechnol 49:463–468

    Article  CAS  Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423

    Article  CAS  Google Scholar 

  • Shukia SP, Singh JS, Kashyap S, Giri DD, Kashyap AK (2008) Antarctic cyanobacteria as a source of phycocyanin: an assessment. Ind J Marine Sci 37:446–449

    CAS  Google Scholar 

  • Singh NK, Dhar DW (2010) Cyanobacterial reclamation of salt-affected soil. In: Lichtfouse E (eds) Genetic engineering, Biofertilisation, soil quality and organic farming. Sustainable Agriculture Reviews, vol 4. Springer, Dordrecht

    Google Scholar 

  • Singh B, Kaur J, Singh K (2014) Microbial degradation of an organophosphate pesticide, malathion. Crit Rev Microbiol 40(2):146–154

    Article  CAS  PubMed  Google Scholar 

  • Singh DP, Khattar JI, Nadda J, Singh Y, Garg A, Kaur N, Gulati A (2011) Chlorpyrifos degradation by the cyanobacterium Synechocystis sp. strain PUPCCC 64. Environ Sci Pollut Res Int 18(8):1351–1359

    Google Scholar 

  • Singh J, Kalamdhad AS (2011) Effects of heavy metals on soil, plants, human health and aquatic life. Int J Res Chem Environ 1:15–21

    Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Climate Change Environ Sustain 2:133–137

    Google Scholar 

  • Singh V, Singh DV (2015) Cyanobacteria modulated changes and its impact on bioremediation of saline-alkaline soils. Bangladesh J Bot 44(4):653–658

    Article  Google Scholar 

  • Smolen JM, Stone AT (1998) Metal (hydr)oxide surface catalyzed hydrolysis of chlorpyrifos-methyl, chlorpyrifos methyl oxon, and paraoxon. Soil Sci Soc Am J 62:636–643

    Article  CAS  Google Scholar 

  • Soontharapirakkul K, Promden W, Yamada N, Kageyama H, Incharoensakdi A, Iwamoto-Kihara A, Takabe T (2011) Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1F0-ATP synthase with a potential role in salt-stress tolerance. J Biol Chem 286(12):10169–10176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorkhoh NA, Al-Hasan RH, Khanafer M, Radwan SS (1995) Establishment of oil-degrading bacteria associated with cyanobacteria in oil-polluted soil. J Appl Bacteriol 78(2):194–199

    Article  CAS  PubMed  Google Scholar 

  • Steinhoff FS, Karlberg M, Graeve M, Wulff A (2015) Cyanobacteria in Scandinavian coastal waters—a potential source for biofuels and fatty acids? Algal Res 5:42–51

    Article  Google Scholar 

  • Su HY, Chou HH, Chow TJ, Lee TM, Chang JS, Huang WL, Chen HJ (2017) Improvement of outdoor culture efficiency of cyanobacteria by over-expression of stress tolerance genes and its implication as bio-refinery feedstock. Bioresour Technol 244(2):1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Subashchandrabose S, Ramakrishnan B, Mallavarapu M, Kadiyala V, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnol Adv 29:896–907

    Article  CAS  PubMed  Google Scholar 

  • Swapnil P, Rai AK (2018) Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na2SO4 mixture)-stressed cyanobacterium Anabaena fertilissima. Protoplasma 255(3):963–976

    Article  CAS  PubMed  Google Scholar 

  • Tiwari B, Chakraborty S, Srivastava AK, Mishra AK (2017) Biodegradation and rapid removal of methyl parathion by the paddy field cyanobacterium Fischerella sp. Algal Res 25:285–296

    Article  Google Scholar 

  • Tiwari S, Parihar P, Patel A, Singh R, Prasad SH (2019) Metals in Cyanobacteria: physiological and molecular regulation. In: Tiwari DN, Rai AN (eds) Mishra AK. Cyanobacteria, Academic Press, pp 261–276

    Google Scholar 

  • Tsunekawa K, Shijuku T, Hayashimoto M, Kojima Y, Onai K, Morishita M, Ishiura M, Kuroda T, Nakamura T, Kobayashi H, Sato M, Toyooka K, Matsuoka K, Omata T, Uozumi N (2009) Identification and characterization of the Na+/H+ antiporter Nhas3 from the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem 284 (24):16513–16521

    Google Scholar 

  • Verrecchia EP, Freytet P, Verrecchia KE, Dumont JL (1995) Spherulites in calcrete laminar crusts: biogenic CaC03 precipitation as a major contributor to crust formation. J Sediment Res A 65:690–700

    Google Scholar 

  • Vijayan PN, Abdulhameed S (2020) Cyanobacterial Degradation of Organophosphorus Pesticides. In: Zakaria Z., Boopathy R, Dib J (eds) Valorisation of agro-industrial residues—Volume I: biological approaches. Applied Environmental Science and Engineering for a Sustainable Future. Springer. Cham

    Google Scholar 

  • Wahlen BD, Willis RM, Seefeldt LC (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102(3):2724–2730

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan R (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101(8):2623–2628

    Article  CAS  PubMed  Google Scholar 

  • Wolfe NL, Zepp RG, Gordon JA, Baughman GL, Cline DM (1977) Kinetics of chemical degradation of malathion in water. Environ Sci Technol 11:88–93

    Article  CAS  Google Scholar 

  • Zhongli C, Shunpeng L, Guoping F (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67(10):4922–4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zulpa G, Zaccaro MC, Boccazzi F, Parada JL, Storni M (2003) Bioactivity of intra and extracellular substances from cyanobacteria and lactic acid bacteria on “wood blue stain” fungi. Biol Control 27(3):345–348

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Zahoor Gul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sultana, U., Vanamala, P., Gul, M.Z. (2022). Cyanobacteria for Bioremediation of Contaminated Soil. In: Malik, J.A. (eds) Microbial and Biotechnological Interventions in Bioremediation and Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-031-08830-8_9

Download citation

Publish with us

Policies and ethics