Skip to main content

Hybrid Nanohydrogels: Design and Applications

  • Chapter
  • First Online:
Nano Hydrogels

Abstract

Hydrogels are composed of three-dimensional cross-linked polymer networks with hydrophilic nature, which can therefore absorb large quantities of water within the spaces available among the polymer chains. Hydrogels can provide good mechanical support and/or a hydrated environment that offer good cytocompatibility and controlled release of molecules. During the last decade, vast amount of research has been focused in the development of hybrid nanohydrogels which include the incorporation of a secondary nanosized component to the hydrogel matrix in order to provide additional reinforcement or tailor a specific application such as imparting biological functions in tissue engineering, drug delivery and gene therapies. This chapter provides a fresh insight into some of the recent developments in hybrid nanohydrogels, describing some physical and chemical cross-linking approaches to form strong networks. Moreover, the use of synthetic and biological molecules to impart desired properties is also described, focusing mainly in tissue engineering and drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: a review. J Adv Res 6:105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  Google Scholar 

  2. Zou H, Wu S, Shen J (2008) Polymer/Silica nanocomposites: preparation, characterization, properties . Chem Rev 108:3893–3957. https://doi.org/10.1021/cr068035q

    Article  CAS  Google Scholar 

  3. Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236

    Article  Google Scholar 

  4. Hunt JA, Chen R, van Veen T, Bryan N (2014) Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B 5319–5338

    Google Scholar 

  5. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer (Guildf) 49:1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027

    Article  CAS  Google Scholar 

  6. Parhi R (2017) Cross-linked hydrogel for pharmaceutical applications: a review. Adv Pharm Bull 7:515–530. https://doi.org/10.15171/apb.2017.064

    Article  CAS  Google Scholar 

  7. Dong W, Huang C, Wang Y, Sun Y, Ma P, Chen M (2013) Superior mechanical properties of double-network hydrogels reinforced by carbon nanotubes without organic modification. Int J Mol Sci 14:22380–22394. https://doi.org/10.3390/ijms141122380

    Article  CAS  Google Scholar 

  8. Chen Q, Chen H, Zhu L, Zheng J (2015) Fundamentals of double network hydrogels. J Mater Chem B 3:3654–3676. https://doi.org/10.1039/C5TB00123D

    Article  CAS  Google Scholar 

  9. Geng Y, Lin XY, Pan P, Shan G, Bao Y, Song Y, Wu ZL, Zheng Q (2016) Hydrophobic association mediated physical hydrogels with high strength and healing ability. Polymer (Guildf) 100:60–68. https://doi.org/10.1016/j.polymer.2016.08.022

    Article  CAS  Google Scholar 

  10. Visser J, Melchels FPW, Jeon JE, Van Bussel EM, Kimpton LS, Byrne HM, Dhert WJA, Dalton PD, Hutmacher DW, Malda J (2015) Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun 6:1–10. https://doi.org/10.1038/ncomms7933

    Article  CAS  Google Scholar 

  11. Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 441–453

    Google Scholar 

  12. Faghihi S, Karimi A, Jamadi M, Imani R, Salarian R (2014) Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model. Mater Sci Eng C 38:299–305. https://doi.org/10.1016/j.msec.2014.02.015

    Article  CAS  Google Scholar 

  13. Zhang Y, Huang R, Peng S, Ma Z (2015) MWCNTs/cellulose hydrogels prepared from NaOH/urea aqueous solution with improved mechanical properties. J Chem. 10.1155/2015/413497

    Google Scholar 

  14. Lvov Y, Wang W, Zhang L, Fakhrullin R (2015) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28:1227–1250. https://doi.org/10.1002/adma.201502341

    Article  CAS  Google Scholar 

  15. Tao D, Higaki Y, Ma W, Takahara A (2015) Halloysite nanotube/polyelectrolyte hybrids as adsorbents for the quick removal of dyes from aqueous solution. Chem Lett 44:1572–1574. https://doi.org/10.1246/cl.150727

    Article  CAS  Google Scholar 

  16. Park K-L, Ma W, Higaki Y, Takahara A (2017) Mechanically enhanced hyaluronic acid hybrid hydrogels with halloysite nanotubes. Chem Lett 46:1217–1219. https://doi.org/10.1246/cl.170484

    Article  CAS  Google Scholar 

  17. Yang J, Zhao J-J, Xu F, Sun R-C (2013) Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals: insight into morphologies and interactions. ACS Appl Mater Interfaces 5:12960–12967. https://doi.org/10.1021/am403669n

    Article  CAS  Google Scholar 

  18. Yang J, Han CR, Zhang XM, Xu F, Sun RC (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47:4077–4086. https://doi.org/10.1021/ma500729q

    Article  CAS  Google Scholar 

  19. Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262. https://doi.org/10.1007/s10570-013-0007-3

    Article  CAS  Google Scholar 

  20. Wang W, Zhang X, Teng A, Liu A (2017) Mechanical reinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration. Int J Biol Macromol 103:226–233. https://doi.org/10.1016/j.ijbiomac.2017.05.027

    Article  CAS  Google Scholar 

  21. Bian H, Wei L, Lin C, Ma Q, Dai H, Zhu JY (2018) Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sustain Chem Eng 6:4821–4828. https://doi.org/10.1021/acssuschemeng.7b04172

    Article  CAS  Google Scholar 

  22. Yang X, Abe K, Biswas SK, Yano H (2018) Extremely stiff and strong nanocomposite hydrogels with stretchable cellulose nanofiber/poly(vinyl alcohol) networks. Cellulose 25:6571–6580. https://doi.org/10.1007/s10570-018-2030-x

    Article  CAS  Google Scholar 

  23. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879. https://doi.org/10.1021/cr000108x

    Article  CAS  Google Scholar 

  24. Shirzaei Sani E, Portillo-Lara R, Spencer A, Yu W, Geilich BM, Noshadi I, Webster TJ, Annabi N (2018) Engineering adhesive and antimicrobial hyaluronic acid/elastin-like polypeptide hybrid hydrogels for tissue engineering applications. ACS Biomater Sci Eng 4:2528–2540. https://doi.org/10.1021/acsbiomaterials.8b00408

    Article  CAS  Google Scholar 

  25. Chen Y, Zhou X, Lin Q, Jiang D (2014) Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose 21:2679–2693

    Article  CAS  Google Scholar 

  26. Tanpichai S, Oksman K (2016) Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery. Compos Part Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2016.06.002

    Article  Google Scholar 

  27. Feng Z, Hakkarainen M, Grützmacher H, Chiappone A, Sangermano M (2019) Photocrosslinked chitosan hydrogels reinforced with chitosan-derived nano-graphene oxide. Macromol Chem Phys 1900174. 10.1002/macp.201900174

    Google Scholar 

  28. Liu J, Chen C, He C, Zhao J, Yang X, Wang H (2012) Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano 6:8194–8202

    Article  CAS  Google Scholar 

  29. Mihranyan A (2013) Viscoelastic properties of cross-linked polyvinyl alcohol and surface-oxidized cellulose whisker hydrogels. Cellulose 20:1369–1376

    Article  CAS  Google Scholar 

  30. Zhang H, Zhang F, Wu J (2013) Physically crosslinked hydrogels from polysaccharides prepared by freeze thaw technique. React Funct Polym 73:923–928

    Article  CAS  Google Scholar 

  31. Butylina S, Geng S, Oksman K (2016) Properties of as-prepared and freeze-dried hydrogels made from poly(vinyl alcohol) and cellulose nanocrystals using freeze-thaw technique. Eur Polym J 81:386–396. https://doi.org/10.1016/j.eurpolymj.2016.06.028

    Article  CAS  Google Scholar 

  32. Zhang L, Zhipeng W, Xu C, Li Y, Gao J, Wang W, Liu Y (2011) High strength graphene oxide/polivinyl alcohol composite hydrogels. J Mater Chem 21:10399–10406

    Article  CAS  Google Scholar 

  33. Abouzeid RE, Khiari R, Beneventi D, Dufresne A (2018) Biomimetic mineralization of three-dimensional printed alginate/TEMPO-oxidized cellulose nanofibril scaffolds for bone tissue engineering. Biomacromol 19:4442–4452

    Article  CAS  Google Scholar 

  34. Gaharwar AK, Kishore V, Rivera C, Bullock W, Wu C-J, Akkus O, Schmidt G (2012) Physically crosslinked nanocomposites from silicate-crosslinked PEO. Macromol Biosci 12:779–793

    Article  CAS  Google Scholar 

  35. Agrahari V, Agrahari V, Mitra AK (2016) Nanocarrier fabrication and macromolecule drug delivery: challenges and opportunities. Ther Deliv 7:257–278. https://doi.org/10.4155/tde-2015-0012

    Article  CAS  Google Scholar 

  36. Dai H, Chen Q, Qin H, Guan Y, Shen D, Hua Y, Tang Y, Xu J (2006) A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules 39:6584–6589. https://doi.org/10.1021/ma060486p

    Article  CAS  Google Scholar 

  37. Joglekar M, Trewyn BG (2013) Polymer-based stimuli-responsive nanosystems for biomedical applications. Biotechnol J 8:931–945. https://doi.org/10.1002/biot.201300073

    Article  CAS  Google Scholar 

  38. Dalwadi C, Patel G (2015) Application of nanohydrogels in drug delivery systems: recent patents review. Recent Pat Nanotechnol 9:17–25. https://doi.org/10.2174/1872210509666150101151521

    Article  CAS  Google Scholar 

  39. Wu H-Q, Wang C-C (2016) Biodegradable smart nanogels: a new platform for targeting drug delivery and biomedical diagnostics. Langmuir 32:6211–6225. https://doi.org/10.1021/acs.langmuir.6b00842

    Article  CAS  Google Scholar 

  40. Sattari M, Fathi M, Daei M, Erfan-Niya H, Barar J, Entezami AA (2017) Thermoresponsive graphene oxide—starch micro/nanohydrogel composite as biocompatible drug delivery system. BioImpacts 7:167–175. https://doi.org/10.15171/bi.2017.20

    Article  CAS  Google Scholar 

  41. Roointan A, Farzanfar J, Mohammadi-Samani S, Behzad-Behbahani A, Farjadian F (2018) Smart pH responsive drug delivery system based on poly(HEMA-co-DMAEMA) nanohydrogel. Int J Pharm 552:301–311. https://doi.org/10.1016/j.ijpharm.2018.10.001

    Article  CAS  Google Scholar 

  42. Jaiswal MK, Gogoi M, Dev Sarma H, Banerjee R, Bahadur D (2014) Biocompatibility, biodistribution and efficacy of magnetic nanohydrogels in inhibiting growth of tumors in experimental mice models. Biomater Sci 2:370–380. https://doi.org/10.1039/C3BM60225G

    Article  CAS  Google Scholar 

  43. Duncan R, Gaspar R (2011) Nanomedicine(s) under the Microscope. Mol Pharm 8:2101–2141. https://doi.org/10.1021/mp200394t

    Article  CAS  Google Scholar 

  44. Chen X, Cheng X, Soeriyadi AH, Sagnella SM, Lu X, Scott JA, Lowe SB, Kavallaris M, Gooding JJ (2014) Stimuli-responsive functionalized mesoporous silica nanoparticles for drug release in response to various biological stimuli. Biomater Sci 2:121–130. https://doi.org/10.1039/C3BM60148J

    Article  CAS  Google Scholar 

  45. Yadav P, Yadav H, Shah VG, Shah G, Dhaka G (2015) Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review. J Clin Diagn Res 9:21–25. https://doi.org/10.7860/JCDR/2015/13907.6565

    Article  CAS  Google Scholar 

  46. Gopi S, Amalraj A, Sukumaran NP, Haponiuk JT, Thomas S (2018) Biopolymers and their composites for drug delivery: a brief review. Macromol Symp 380:1800114. https://doi.org/10.1002/masy.201800114

    Article  CAS  Google Scholar 

  47. Zhu K, Ye T, Liu J, Peng Z, Xu S, Lei J, Deng H, Li B (2013) Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. Int J Pharm 441:721–727. https://doi.org/10.1016/j.ijpharm.2012.10.022

    Article  CAS  Google Scholar 

  48. Li Z, Xu W, Zhang C, Chen Y, Li B (2015) Self-assembled lysozyme/carboxymethylcellulose nanogels for delivery of methotrexate. Int J Biol Macromol 75:166–172. https://doi.org/10.1016/j.ijbiomac.2015.01.033

    Article  CAS  Google Scholar 

  49. He L, Liang H, Lin L, Shah BR, Li Y, Chen Y, Li B (2015) Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. Colloids Surf B Biointerfaces 126:288–296. https://doi.org/10.1016/j.colsurfb.2014.12.024

    Article  CAS  Google Scholar 

  50. Shen J-M, Xu L, Lu Y, Cao H-M, Xu Z-G, Chen T, Zhang H-X (2012) Chitosan-based luminescent/magnetic hybrid nanogels for insulin delivery, cell imaging, and antidiabetic research of dietary supplements. Int J Pharm 427:400–409. https://doi.org/10.1016/j.ijpharm.2012.01.059

    Article  CAS  Google Scholar 

  51. Wu W, Shen J, Banerjee P, Zhou S (2010) Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31:8371–8381. https://doi.org/10.1016/j.biomaterials.2010.07.061

    Article  CAS  Google Scholar 

  52. Prusty K, Swain SK (2018) Nano silver decorated polyacrylamide/dextran nanohydrogels hybrid composites for drug delivery applications. Mater Sci Eng C 85:130–141. https://doi.org/10.1016/j.msec.2017.11.028

    Article  CAS  Google Scholar 

  53. Wang H, Dai T, Zhou S, Huang X, Li S, Sun K, Zhou G, Dou H (2017) Self-assembly assisted fabrication of dextran-based nanohydrogels with reduction-cleavable junctions for applications as efficient drug delivery systems. Sci Rep 7:40011

    Article  CAS  Google Scholar 

  54. Badakhshanian E, Hemmati K, Ghaemy M (2016) Enhancement of mechanical properties of nanohydrogels based on natural gum with functionalized multiwall carbon nanotube: study of swelling and drug release. Polymer (Guildf) 90:282–289. https://doi.org/10.1016/j.polymer.2016.03.028

    Article  CAS  Google Scholar 

  55. D’Arrigo G, Navarro G, Di Meo C, Matricardi P, Torchilin V (2014) Gellan gum nanohydrogel containing anti-inflammatory and anti-cancer drugs: a multi-drug delivery system for a combination therapy in cancer treatment. Eur J Pharm Biopharm 87:208–216. https://doi.org/10.1016/j.ejpb.2013.11.001

    Article  CAS  Google Scholar 

  56. Fathi M, Entezami AA, Arami S, Rashidi M-R (2015) Preparation of N-Isopropylacrylamide/itaconic acid magnetic nanohydrogels by modified starch as a crosslinker for anticancer drug carriers. Int J Polym Mater Polym Biomater 64:541–549. https://doi.org/10.1080/00914037.2014.996703

    Article  CAS  Google Scholar 

  57. Poorgholy N, Massoumi B, Ghorbani M, Jaymand M, Hamishehkar H (2018) Intelligent anticancer drug delivery performances of two poly(N-isopropylacrylamide)-based magnetite nanohydrogels. Drug Dev Ind Pharm 44:1254–1261. https://doi.org/10.1080/03639045.2018.1442845

    Article  CAS  Google Scholar 

  58. Jayaramudu T, Raghavendra GM, Varaprasad K, Raju KM, Sadiku ER, Kim J (2016) 5-Fluorouracil encapsulated magnetic nanohydrogels for drug-delivery applications. J Appl Polym Sci 133:43921. https://doi.org/10.1002/app.43921

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Valencia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valencia, L., Aguilar-Sánchez, A., Enríquez, J., Díaz, R. (2021). Hybrid Nanohydrogels: Design and Applications. In: Jose, J., Thomas, S., Thakur, V.K. (eds) Nano Hydrogels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7138-1_7

Download citation

Publish with us

Policies and ethics