Skip to main content

Revealing the Features of the Oxidative Enzyme Production by White-Rot Basidiomycetes During Fermentation of Plant Raw Materials

  • Chapter
  • First Online:
Microbial Enzymes and Biotechniques

Abstract

White rot basidiomycetes (WRB), belonging to one of the most diverse and important groups of living organisms, have the unique ability to completely degrade lignin through an oxidative process catalyzed by extracellular and non-specific lignin-modifying enzymes (LME) consisting of laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidase with the assistance of several auxiliary enzymes. Because LME are capable of oxidizing a wide variety of natural and synthetic compounds, these enzymes have received tremendous attention for a variety of industrial and biotechnological applications. Consequently, the demand for these enzymes has increased in recent years, leading to the search for cost-effective production systems. To increase LME yields, various approaches and strategies, such as exploitation of cheap plant raw materials as growth substrates, optimization of fermentation media and cultivation conditions, and development of better bioprocess technologies, have been widely exploited. Literature date evidence that many factors influence the synthesis and secretion of LME and their isoenzymes, but the effects of these factors differ among the fungal species and we still have to understand the whole spectrum of mechanisms that modulate LME production. In this chapter, we summarize recent literature reports and our data on the physiological features of LME production by WRB, focusing on the diversity, common characteristics, and unique properties of individual fungi as well as on several approaches and strategies that provide enhanced (or reduced) secretion of laccases and peroxidases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adekunle AE, Zhang C, Guo C, Liu CZ (2017) Laccase production from Trametes versicolor in solid-state fermentation of steam-exploded pretreated cornstalk. Waste Biomass Valoriz 8:153–159

    Article  CAS  Google Scholar 

  • Afreen S, Anwer R, Singh RK, Fatma T (2018) Extracellular laccase production and its optimization from Arthrospira maxima catalyzed decolorization of synthetic dyes. Saudi J Biol Sci 25:1446–1453

    Article  CAS  PubMed  Google Scholar 

  • Akpinar M, Urek RO (2017) Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization. Biotech 7:98

    Google Scholar 

  • Almeida PH, Oliviera ACC, De Sousa GPN, Friedrich JC, Linde GA et al (2018) Decolorization of remazol brilliant blue R with laccase from Lentinus crinitus grown in agro-industrial by-products. An Acad Bras Cienc 90:3463–3473

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2004) Increase of laccase activities during interspecific interactions of white-rot fungi. FEMS Microbiol Ecol 50:245–253

    Article  CAS  PubMed  Google Scholar 

  • Bertrand B, Martínez-Morales F, Trejo-Hernández MR (2013) Fungal laccases: induction and production. Rev Mex Ing Quim 12:473–488

    CAS  Google Scholar 

  • Bertrand B, Martínez-Morales F, Tinoco R, Rojas-Trejo S, Serrano-Carreón L, Trejo-Hernández MR (2014) Induction of laccases in Trametes versicolor by aqueous wood extracts. World J Microbiol Biotechnol 30:135–142

    Article  CAS  PubMed  Google Scholar 

  • Bertrand B, Martínez-Morales F, Trejo-Hernández MR (2017) Upgrading laccase production and biochemical properties: strategies and challenges. Biotechnol Prog 33:1015–1034

    Article  CAS  PubMed  Google Scholar 

  • Bettin F, Montanari Q, Calloni R, Gaio TA, Silveira MM, Dillon AJP (2008) Production of laccases in submerged process by Pleurotus sajor-caju PS-2001 in relation to carbon and organic nitrogen sources, antifoams and Tween 80. J Ind Microbiol Biotechnol 36:1–9

    Article  CAS  PubMed  Google Scholar 

  • Birhanlı E, Yeşilada O (2017) The effect of various inducers and their combinations with copper on laccase production of Trametes versicolor pellets in a repeated-batch process. Turk J Biol 41:587–599

    Article  CAS  Google Scholar 

  • Bodke PM, Senthilarasu G, Raghukumar S (2012) Screening diverse fungi for laccases of varying properties. Indian J Microbiol 52:247–250

    Article  CAS  PubMed  Google Scholar 

  • Bronikowski A, Hagedoorn PL, Koschorreck K, Urlacher VB (2017) Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. AMB Express 7:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JA, Alic M, Gold MH (1991) Manganese peroxidase gene-transcription in Phanerochaete chrysosporium– activation by manganese. J Bacteriol 173:4101–4106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambria MT, Ragusa S, Calabrese V, Cambria A (2011) Enhanced laccase production in white-rot fungus Rigidoporus lignosus by the addition of selected phenolic and aromatic compounds. Appl Biochem Biotechnol 163:415–422

    Article  CAS  PubMed  Google Scholar 

  • Chauhan R (2019) Nitrogen sources and trace elements influence laccase and peroxidase enzymes activity of Grammothele fuligo. Vegetos 32:316–323

    Article  Google Scholar 

  • Chi Y, Hatakka A, Maijala P (2007) Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? Int Biodeterior Biodegrad 59:32–39

    Article  CAS  Google Scholar 

  • Chowdhary P, More N, Yadav A, Bharagava RN (2019) Ligninolytic enzymes: an introduction and applications in the food industry. In: Kuddus M (ed) Enzymes in food biotechnology, 1st edn. Academic, Cambridge, pp 181–195

    Chapter  Google Scholar 

  • Coconi-Linares N, Magaña-Ortíz D, Guzmán-Ortiz DA, Fernández F, Loske AM, Gómez-Lim MA (2014) High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 98:9283–9294

    Article  CAS  PubMed  Google Scholar 

  • Conceição TA, Koblitz MGB, Kamida HM, Góes-Neto A (2017) Study of the production of Lentinus crinitus (L.) Fr. lignolytic enzymes grown on agro-industrial waste. Adv Biosci Biotechnol 8:259–272

    Article  CAS  Google Scholar 

  • Crestini C, D’Annibale A, Giovannozzi-Sermani G (1996) Aqueous plant extracts as stimulators of laccase production in liquid cultures of Lentinus edodes. Biotechnol Tech 10:243–248

    Article  CAS  Google Scholar 

  • D’Souza TM, Merritt CS, Reddy CA (1999) Lignin-modifying enzymes of the white-rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol 65:5307–5313

    Article  PubMed  PubMed Central  Google Scholar 

  • Daly P, Peng M, López SC, Lipzen A, Ng V, Singan VR et al (2020) Mixtures of aromatic compounds induce ligninolytic gene expression in the wood-rotting fungus Dichomitus squalens. J Biotechnol 308:35–39

    Article  CAS  PubMed  Google Scholar 

  • Dixit M, Gupta GK, Shukla P (2019) Insights into the resources generation from pulp and paper industry wastes: challenges, perspectives and innovations. Bioresour Technol 297:122496

    Google Scholar 

  • Dong JL, Zhang YW, Zhang RH, Huang WZ, Zhang YZ (2005) Influence of culture conditions on laccase production and isozyme patterns in the white-rot fungus Trametes gallica. J Basic Microbiol 45:190–198

    Article  CAS  PubMed  Google Scholar 

  • Du W, Sun C, Wang J, Xie W, Wang B, Liu X, Zhang Y, Fan Y (2017) Conditions and regulation of mixed culture to promote Shiraia bambusicola and Phoma sp. BZJ6 for laccase production. Sci Rep 7:17801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggert C, Temp U, Eriksson KEL (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elisashvili V, Kachlishvili E (2009) Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. Review. J Biotechnol 144:37–42

    Article  CAS  PubMed  Google Scholar 

  • Elisashvili V, Kachlishvili E, Tsiklauri N, Khardziani T, Bakradze M (2002) Physiological regulation of edible and medicinal higher basidiomycetes lignocellulolytic enzymes activity. Int J Med Mushr 4:159–166

    CAS  Google Scholar 

  • Elisashvili V, Kachlishvili E, Tsiklauri N, Metreveli E, Khardziani T, Agathos SN (2009) Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World J Microbiol Biotechnol 25:331–339

    Article  CAS  Google Scholar 

  • Elisashvili V, Kachlishvili E, Torok T (2014) Overproduction of ligninolytic enzymes. Patent No.: US 8,753,844 B2

    Google Scholar 

  • Elisashvili V, Kachlishvili E, Asatiani MD, Darlington R, Kucharzyk KH (2017) Physiological peculiarities of lignin-modifying enzyme production by the white-rot basidiomycete Coriolopsis gallica strain BCC 142. Microorganisms 5:73

    Article  CAS  PubMed Central  Google Scholar 

  • Fillat Ú, Martín-Sampedro R, Macaya-Sanz D, Martín JA, Ibarra D, Martínez MJ, Eugenio ME (2016) Screening of eucalyptus wood endophytes for laccase activity. Process Biochem 51:589–598

    Article  CAS  Google Scholar 

  • Galhaup C, Wagner H, Hinterstoisser B, Haltrich D (2002) Increased production of laccase by the wood degrading basidiomycete Trametes pubescens. Enzym Microb Technol 30:529–536

    Article  CAS  Google Scholar 

  • Hou H, Zhou J, Wang J, Du C, Yan B (2004) Enhancement of laccase production by Pleurotus ostreatus and its us. Process Biochem 39:1415–1419

    Article  CAS  Google Scholar 

  • Janusz G, Rogalski G, Szczodrak J (2007) Increased production of laccase by Cerrena unicolor in submerged liquid cultures. World J Microbiol Biotechnol 23:1459–1464

    Article  CAS  Google Scholar 

  • Janusz G, Kucharzyk KH, Pawlika A, Staszczak M, Paszczynski AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzym Microb Technol 52:1–12

    Article  CAS  Google Scholar 

  • Janusz G, Mazur A, Wielbo J, Koper P, Żebracki K et al (2018) Comparative transcriptomic analysis of Cerrena unicolor revealed differential expression of genes engaged in degradation of various kinds of wood. Microbiol Res 207:256–268

    Article  CAS  PubMed  Google Scholar 

  • Jaouani A, Tabka MG, Penninckx MJ (2006) Lignin modifying enzymes of Coriolopsis polyzona and their role in olive oil mill wastewaters decolourisation. Chemosphere 62:1421–1430

    Article  CAS  PubMed  Google Scholar 

  • Johansson T, Nyman PO, Cullen D (2002) Differential regulation of mnp2, a new manganese peroxidase-encoding gene from the ligninolytic fungus Trametes versicolor PRL 572. Appl Environ Microbiol 68:2077–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kachlishvili E, Penninckx MJ, Tsiklauri N, Elisashvili V (2006) Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World J Microbiol Biotechnol 22:391–397

    Article  CAS  Google Scholar 

  • Kachlishvili E, Metreveli E, Elisashvili V (2014) Modulation of Cerrena unicolor laccase and manganese peroxidase production. Springerplus 3:463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kachlishvili E, Asatiani M, Kobakhidze A, Elisashvili V (2016) Trinitrotoluene and mandarin peels selectively affect lignin-modifying enzyme production in white-rot basidiomycetes. Springerplus 5:252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kachlishvili E, Asatiani MD, Kobakhidze A, Elisashvili V (2018) Evaluation of lignin-modifying enzyme activity of Trametes spp. (Agaricomycetes) isolated from Georgian forests with an emphasis on T. multicolor biosynthetic potential. Int J Med Mushr 20:971–987

    Article  Google Scholar 

  • Kapich AN, Prior BA, Botha A, Galkin S, Lundell T, Hatakka A (2004) Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enzym Microb Technol 34:187–195

    Article  CAS  Google Scholar 

  • Kinnunen A, Maijala P, Järvinen P, Hatakka A (2017) Improved efficiency in screening for lignin-modifying peroxidases and laccases of basidiomycetes. Curr Biotechnol 6:105–115

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion” the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  PubMed  Google Scholar 

  • Klonowska A, Le Petit J, Tron T (2001) Enhancement of minor laccases production in the basidiomycete Marasmius quercophilus C30. FEMS Microbiol Lett 200:25–30

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dangi AK, Shukla P, Baishya D, Khare SK (2019) Thermozymes: adaptive strategies and tools for their biotechnological applications. Bioresour Technol 278:372–382

    Article  CAS  PubMed  Google Scholar 

  • Kumari BSS, Praveen K, Usha KY, Kumar KDG, Reddy GPK, Reddy BR (2019) Ligninolytic behavior of the white-rot fungus Stereum ostrea under influence of culture conditions, inducers and chlorpyrifos. Biotech 9:424

    Google Scholar 

  • Lallawmsanga VV, Passari AK, Muniraj IK, Uthandi S, Hashem A et al (2019) Elevated levels of laccase synthesis by Pleurotus pulmonariusBPSM10 and its potential as a dye decolorizing agent. Saudi J Biol Sci 26:464–468

    Article  CAS  PubMed  Google Scholar 

  • Lee IY, Jung KH, Lee CH, Park YH (1999) Enhanced production of laccase in Trametes versicolor by the addition of ethanol. Biotechnol Lett 21:965–968

    Article  CAS  Google Scholar 

  • Levin L, Melignani E, Ramos AM (2010) Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresour Technol 101:4554–4563

    Article  CAS  PubMed  Google Scholar 

  • Li X, Qiu-Man X, Jing-Sheng C, Ying-Jin Y (2016) Improving the bioremoval of sulfamethoxazole and alleviating cytotoxicity of its biotransformation by laccase producing system under coculture of Pycnoporus sanguineus and Alcaligenes faecalis. Bioresour Technol 220:333–340

    Article  CAS  PubMed  Google Scholar 

  • Lisova ZA, Lisov AV, Leontievsky AA (2010) Two laccase isoforms of the basidiomycete Cerrena unicolor VKMF-3196. Induction, isolation and properties. J Basic Microbiol 50:72–82

    Article  CAS  PubMed  Google Scholar 

  • Liu SH, Tsai SL, Guo PY, Lin CW (2020) Inducing laccase activity in white rot fungi using copper ions and improving the efficiency of azo dye treatment with electricity generation using microbial fuel cells. Chemosphere 243:125304

    Article  CAS  PubMed  Google Scholar 

  • Lomascolo A, Record E, Herpoel-Gimbert I, Delattre M, Robert J et al (2003) Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer. J Appl Microbiol 94:618–624

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Ding S (2010) Effect of Cu2+, Mn2+ and aromatic compounds on the production of laccase isoforms by Coprinus comatus. Mycoscience 51:68–74

    Article  CAS  Google Scholar 

  • Lundell TK, Mäkelä MR, Hilden K (2010) Lignin-modifying enzymes in filamentous basidiomycetes-ecological, functional and phylogenetic review. J Basic Microbiol 50:5–20

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä MR, Lundell T, Hatakka A, Hildén K (2013) Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata. Fungal Biol 117:62–70

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä MR, Bredeweg EL, Magnuson JK, Baker SE, de Vries RP, Hildén K (2016) Fungal ligninolytic enzymes and their applications. Microbiol Spectr 4:FUNK-0017-2016

    Google Scholar 

  • Mansur M, Suárez T, González AE (1998) Differential gene expression in the laccase gene family from basidiomycete I-62 (CECT 20197). Appl Environ Microbiol 64:771–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martani F, Beltrametti F, Porro D, Branduardi P, Lotti M (2017) The importance of fermentative conditions for the biotechnological production of lignin modifying enzymes from white-rot fungi. FEMS Microbiol Lett 364:fnx134

    Article  CAS  Google Scholar 

  • Manubens A, Canessa P, Folch C, Avila M, Salas L, Vicuna R (2007) Manganese affects the production of laccase in the basidiomycete Ceriporiopsis subvermispora. FEMS Microbiol Lett 275:139–145

    Article  CAS  PubMed  Google Scholar 

  • Martinez AT, Ruiz-Duenas FJ, Camarero S, Serrano A, Linde D, Lund H et al (2017) Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv 35:815–831

    Article  CAS  PubMed  Google Scholar 

  • Mekmouche Y, Zhou S, Cusano AM, Record E, Lomascolo A et al (2014) Gram-scale production of a basidiomycetous laccase in Aspergillus niger. J Biosci Bioeng 117:25–27

    Article  CAS  PubMed  Google Scholar 

  • Mikiashvili N, Wasser S, Nevo E, Elisashvili V (2006) Effects of carbon and nitrogen sources on Pleurotus ostreatus ligninolytic enzyme activity. World J Microbiol Biotechnol 22:999–1002

    Article  CAS  Google Scholar 

  • Murugesan K, Kim YM, Jeon JR (2009) Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. J Hazard Mater 168:523–529

    Article  CAS  PubMed  Google Scholar 

  • Myasoedova NM, Chernykh AM, Psurtseva NV, Belova NV, Golovleva LA (2008) New efficient producers of fungal laccases. Appl Biochem Microbiol 44:73–77

    Article  CAS  Google Scholar 

  • Myasoedova NM, Gasanov NB, Chernykh AM, Kolomytseva MP, Golovleva LA (2015) Selective regulation of laccase isoform production by the Lentinus strigosus 1566 fungus. Appl Biochem Microbiol 51:222–229

    Article  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JW, Kang HW, Ha BS, Kim SI, Kim S, Ro HS (2015) Strain-dependent response to Cu2+ in the expression of laccase in Pycnoporus coccineus. Arch Microbiol 197:589–596

    Article  CAS  PubMed  Google Scholar 

  • Peng M, Aguilar-Pontes MV, Hainaut M, Henrissat B, Hilden K et al (2018) Comparative analysis of basidiomycete transcriptomes reveals a core set of expressed genes encoding plant biomass degrading enzymes. Fungal Genet Biol 112:40–46

    Article  CAS  PubMed  Google Scholar 

  • Piscitelli A, Giardina P, Lettera V, Pezzella C, Sannia G, Faraco V (2011) Induction and transcriptional regulation of laccases in fungi. Curr Genomics 12:104–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi-he C, Krügener S, Hirth T, Rupp S, Zibek S (2011) Co-cultured production of lignin-modifying enzymes with white-rot fungi. Appl Biochem Biotechnol 165:700–718

    Article  CAS  PubMed  Google Scholar 

  • Revankar MS, Lele SS (2006) Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Biochem 41:581–588

    Article  CAS  Google Scholar 

  • Savoie JM, Mata G, Billete C (1998) Extracellular laccase production during hyphal interactions between Trichoderma sp. and Shiitake, Lentinula edodes. Appl Microbiol Biotechnol 49:589–593

    Article  CAS  Google Scholar 

  • Schlosser D, Grey R, Fritsche W (1997) Patterns of ligninolytic enzymes in Trametes versicolor. Distribution of extra- and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood. Appl Microbiol Biotechnol 47:412–418

    Article  CAS  Google Scholar 

  • Schneider WDH, Fontana RC, Mendonça S, Siqueira FG, Dillon AJP, Camassola M (2018) High level production of laccases and peroxidases from the newly isolated white-rot basidiomycete Marasmiellus palmivorus VE111 in a stirred-tank bioreactor in response to different carbon and nitrogen sources. Process Biochem 69:1–11

    Article  CAS  Google Scholar 

  • Schneider WDH, Costa PC, Fontana RC, de Siqueira FG, Dillon AJP, Camassola M (2019) Upscale and characterization of lignin-modifying enzymes from Marasmiellus palmivorus VE111 in a bioreactor under parameter optimization and the effect of inducers. J Biotechnol 295:1–8

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj B, Sanjeevirayar A, Rajendran A (2014) Laccase production using mixed substrates containing lignocellulosic materials by Pleurotus ostreatus in submerged liquid culture. Int J Chem Tech Res 15:355–368

    Google Scholar 

  • Sergentani AG, Gonou-Zagou Z, Kapsanaki-Gotsi E, Hatzinikolaou DG (2016) Lignocellulose degradation potential of Basidiomycota from Thrace NE Greece. Int Biodeterior Biodegradation 114:268–277

    Article  CAS  Google Scholar 

  • Singh D, Chen S (2008) The white-rot fungus Phanerochaete chrysosporium: Conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol 81:399–417

    Article  CAS  PubMed  Google Scholar 

  • Soden DM, Dobson AD (2001) Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 147:1755–1763

    Article  CAS  PubMed  Google Scholar 

  • Songulashvili G, Jimenéz-Tobón GA, Jaspers C, Penninckx MJ (2012) Immobilized laccase of Cerrena unicolor for elimination of endocrine disruptor micropollutants. Fungal Biol 116:883–889

    Article  CAS  PubMed  Google Scholar 

  • Stajić M, Vukojević J (2011) Interaction of trace elements and ligninolytic enzymes in Pleurotus eryngii. Biol Trace Elem Res 143:1202–1208

    Article  CAS  PubMed  Google Scholar 

  • Stajić M, Persky L, Friesem D, Hadar Y, Wasser SP, Nevo E (2006) Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzym Microb Technol 38:65–73

    Article  CAS  Google Scholar 

  • Teerapatsakul C, Parra R, Bucke C, Chitradon L (2007) Improvement of laccase production from Ganoderma sp. KU-Alk4 by medium engineering. World J Microbiol Biotechnol 23:1519–1527

    Article  CAS  Google Scholar 

  • Terrón MC, González T, Carbajo JM, Yagüe S, Arana-Cuenca A et al (2004) Structural close-related aromatic compounds have different effects on laccase activity and on lcc gene expression in the ligninolytic fungus Trametes sp. I-62. Fungal Genet Biol 41:954–962

    Article  CAS  PubMed  Google Scholar 

  • Valle JS, Vandenberghe LPS, Oliveira ACC, Tavares MF, Linde GA et al (2015) Effect of different compounds on the induction of laccase production by Agaricus blazei. Genet Mol Res 14:15882–15891

    Article  CAS  PubMed  Google Scholar 

  • Villavicencio EV, Mali T, Mattila HK, Lundell T (2020) Enzyme activity profiles produced on wood and straw by four fungi of different decay strategies. Microorganisms 8:73

    Article  CAS  Google Scholar 

  • Wei F, Hong Y, Liu J, Yuan J, Fang W, Peng H, Xiao Y (2010) Gongronella sp. induces overproduction of laccase in Panus rudis. J Basic Microbiol 150:98–103

    Article  CAS  Google Scholar 

  • Winquist E, Moilanen U, Mettälä A, Leisola M, Hatakka A (2008) Production of lignin modifying enzymes on industrial waste material by solid-state cultivation of fungi. Biochem Eng J 42:128–132

    Article  CAS  Google Scholar 

  • Xiao YZ, Hong YZ, Li JF, Hang J, Tong PG, Fang W, Zhou CZ (2006) Cloning of novel laccase isozyme genes from Trametes sp. AH28-2 and analyses of their differential expression. Appl Microbiol Biotechnol 71:493–501

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Feng L, Han Z, Luo S, Wu A, Xie J (2016) Selection of high laccase-producing Coriolopsis gallica strain T906: mutation breeding, strain characterization, and features of the extracellular laccases. J Microbiol Biotechnol 26:1570–1578

    Article  CAS  PubMed  Google Scholar 

  • Yadav M, Yadav HS (2015) Applications of ligninolytic enzymes to pollutants, wastewater, dyes, soil, coal, paper and polymers. Environ Chem Lett 13:309–318

    Article  CAS  Google Scholar 

  • Yang Y, Wei F, Zhuo R, Fan F, Liu H et al (2013) Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds. PLoS One 8:79307

    Article  CAS  Google Scholar 

  • Yang J, Wang G, Ng TB, Lin J, Ye X (2016) Laccase production and differential transcription of laccase genes in Cerrena sp. in response to metal ions, aromatic compounds, and nutrients. Front Microbiol 6:1558

    PubMed  PubMed Central  Google Scholar 

  • Zhao LH, Chen W, Wang LL, Sun HJ, Zhu Z (2017) Improvement of laccase production by Pleurotus ostreatus by means of agroindustrial waste and fermentation kinetics. Mycosphere 8:147–161

    Article  Google Scholar 

  • Zhu C, Bao G, Huang S (2016) Optimization of laccase production in the white-rot fungus Pleurotus ostreatus (ACCC 52857) induced through yeast extract and copper. Biotechnol Biotechnol Equip 30:270–276

    Article  CAS  Google Scholar 

  • Zhuo R, Yuan P, Yang Y, Zhang S, Ma F, Zhang X (2017) Induction of laccase by metal ions and aromatic compounds in Pleurotus ostreatus HAUCC 162 and decolorization of different synthetic dyes by the extracellular laccase. Biochem Eng J 117:62–72

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Shota Rustaveli National Science Foundation of Georgia (grant number STCU 2017-48) and Science and Technology Center in Ukraine (grant number STCU 7082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Elisashvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elisashvili, V., Asatiani, M.D., Kachlishvili, E. (2020). Revealing the Features of the Oxidative Enzyme Production by White-Rot Basidiomycetes During Fermentation of Plant Raw Materials. In: Shukla, P. (eds) Microbial Enzymes and Biotechniques. Springer, Singapore. https://doi.org/10.1007/978-981-15-6895-4_7

Download citation

Publish with us

Policies and ethics