Skip to main content

Mesenchymal Stem Cell Differentiation Properties and Available Microenvironment

  • Chapter
  • First Online:
Mesenchymal Stem Cell in Veterinary Sciences

Abstract

Mesenchymal stem cells (MSCs) have characteristic properties, the expression of which is being determined by the available microenvironment/niche. Extensive ex vivo studies have been conducted, aimed at understanding the effects of various niche based signals on MSCs. Numerous microenvironment cues studied include the cell, chemical and mechanical, and of the topography. The available conducted studies have mostly focused on limited and isolated cues. An ex vivo system is less extensive with more controllability. In contrast, in vivo system exposes them to an uncontrolled environment of numerous simultaneous cues. The ex vivo results of MSCs therefore may not be recapitulated under in vivo environment unless many simaltaneous cues aping in vivo environment are studied. The current chapter focuses on the MSCs fate under various cues in ex vivo system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arora A, Sriram M, Kothari A, Katti DS (2017) Co-culture of infrapatellar fat pad–derived mesenchymal stromal cells and articular chondrocytes in plasma clot for cartilage tissue engineering. Cytotherapy 19(7):881–894

    Article  CAS  PubMed  Google Scholar 

  • Atala A, Lanza RP (2001) Preface. In: Atala A, Lanza RP (eds) Methods of tissue engineering. Academic Press, San Diego

    Google Scholar 

  • Bageshlooyafshar B, Isangcheshmeh AM, Vakilian S et al (2019) Zinc silicate mineral-coated scaffold improved in vitro osteogenic differentiation of equine adipose-derived mesenchymal stem cells. Res Vet Sci 124:444–451

    Article  CAS  PubMed  Google Scholar 

  • Bertolo A, Steffen F, Malonzo-Marty C, Stoyanov J (2015) Canine mesenchymal stem cell potential and the importance of dog breed: implication for cell-based therapies. Cell Transplant 24(10):1969–1980

    Article  PubMed  Google Scholar 

  • Bornes TD, Jomha NM, Mulet-Sierra A, Adesida AB (2015) Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds. Stem Cell Res Ther 6:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornes TD, Jomha NM, Mulet-Sierra A, Adesida AB (2016) Optimal seeding densities for In Vitro Chondrogenesis of two- and three-dimensional-isolated and -expanded bone marrow-derived Mesenchymal stromal stem cells within a porous collagen scaffold. Tissue Eng Part C Methods 22(3):208–220

    Article  CAS  PubMed  Google Scholar 

  • Bosnakovski D, Mizuno M, Kim G, Ishiguro T, Okumura M, Iwanaga T, Kadosawa T, Fujinaga T (2004) (2004) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Exp Hematol 32(5):502–509

    Article  CAS  PubMed  Google Scholar 

  • Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2005) Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Research 319(2):243–253

    Article  PubMed  Google Scholar 

  • Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2006) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 93(6):1152–1163

    Article  CAS  PubMed  Google Scholar 

  • Bottagisio M, Lovati AB, Lopa S, Moretti M (2015) Osteogenic differentiation of human and ovine bone marrow stromal cells in response to b-Glycerophosphate and monosodium phosphate. Cell Reprogram 17(4):235–242

    Article  CAS  PubMed  Google Scholar 

  • Bwalya EC, Kim S, Fang J, Wijekoon HMS, Hosoya K, Okumura M (2017) Effects of pentosan polysulfate and polysulfated glycosaminoglycan on chondrogenesis of canine bone marrow-derived mesenchymal stem cells in alginate and micromass culture. J Vet Med Sci 79(7):1182–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao L, Liu G, Gan Y, Fan Q, Yang F, Zhang X, Tang T, Dai K (2012) The use of autologous enriched bone marrow MSCs to enhance osteoporotic bone defect repair in long-term estrogen deficient goats. Biomaterials 33(20):5076–5084

    Article  CAS  PubMed  Google Scholar 

  • Cardoso TC, Novais JB, Antello TF, Silva-Frade C, Ferrarezi MC, Ferrari HF, Gameiro R, Flores EF (2012) Susceptibility of neuron-like cells derived from bovine Wharton’s jelly to bovine herpesvirus type 5 infections. BMC Veterinary Research 10(8):242

    Article  Google Scholar 

  • Cheng W, Jin D, Zhao Y (2007) Effect of platelet-rich plasma on proliferation and osteogenic differentiation of bone marrow stem cells in China goats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 21(4):386–389

    CAS  PubMed  Google Scholar 

  • Colosimo A, Russo V, Mauro A, Curini V, Marchisio M, Bernabò N, Alfonsi M, Mattioli M, Barboni B (2013) Prolonged in vitro expansion partially affects phenotypic features and osteogenic potential of ovine amniotic fluid-derived mesenchymal stromal cells. Cytotherapy 15:930–950

    Article  CAS  PubMed  Google Scholar 

  • Cortez J, Bahamonde J, De los Reyes M, Palomino J, Torres CG, Peralta OA (2018) In vitro differentiation of bovine bone marrow-derived mesenchymal stem cells into male germ cells by exposure to exogenous bioactive factors. Reprod Domest Anim 53(3):700–709

    Article  CAS  PubMed  Google Scholar 

  • Das K, Mili B, Madhusoodan AP, Saxena AC, Kumar A, Singh P, Vermae MR, Sarkara M, Bag S (2017) Proliferation of canine bone marrow derived mesenchymal stem cells on different nanomaterial based thin film scaffolds. Tissue Cell 49(2):270–274

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Huang G, Zou L, Nong T, Yang X, Cui J, Wei Y, Yang S, Shi D (2018) Isolation and characterization of buffalo (bubalus bubalis) amniotic mesenchymal stem cells derived from amnion from the first trimester pregnancy. J Vet Med Sci 80(4):710–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desancé M, Contentin R, Bertoni L, Gomez-Leduc T, Branly T, Jacquet S, Betsch J-M, Batho A, Legendre F, Audigié F, Galéra P, Demoor M (2018) Chondrogenic differentiation of defined equine Mesenchymal stem cells derived from umbilical cord blood for use in cartilage repair therapy. Int J Mol Sci 19:537

    PubMed Central  Google Scholar 

  • Dueñas F, Becerra V, Cortes Y, Vidal S, Sáenz L, Palomino J, De Los Reyes M, Peralta OA (2014) Hepatogenic and neurogenic differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses. BMC Vet Res 10:154

    PubMed  PubMed Central  Google Scholar 

  • Elkhenany H, Amelse L, Lafont A, Bourdo S, Caldwell M, Neilsen N, Dervishi E, Derek O, Biris AS, Anderson D, Dhar M (2015) Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J Appl Toxicol 35(4):367–374

    CAS  PubMed  Google Scholar 

  • Elkhenany H, Amelse L, Caldwell M, Abdelwahed R, Dhar M (2016) Impact of the source and serial passaging of goat mesenchymal stem cells on osteogenic differentiation potential: implications for bone tissue engineering. J Anim Sci Biotechnol 7:16

    PubMed  PubMed Central  Google Scholar 

  • Erickson IE, van Veen SC, Sengupta S, Kestle SR, Mauck RL (2011) Cartilage matrix formation by bovine Mesenchymal stem cells in three-dimensional culture is age-dependent. Clin Orthop Relat Res 469:2744–2753

    PubMed  PubMed Central  Google Scholar 

  • Fang J, Wei Y, Teng X, Zhao S, Hua J (2017) Immortalization of canine adipose-derived mesenchymal stem cells and their seminiferous tubule transplantation. J Cell Biochem 119(4):3663–3670

    Article  CAS  Google Scholar 

  • Fischer EM, Layrolle P, Van Blitterswijk CA, De Bruijn JD (2004) Bone formation by Mesenchymal progenitor cells cultured on dense and microporous hydroxyapatite particles. Tissue Eng 9(6):1179–1188

    Article  CAS  Google Scholar 

  • Fisher MB, Henning EA, Söegaard N, Bostrom M, Esterhai JL, Mauck RL (2015) Engineering meniscus structure and function via multi-layered Mesenchymal stem cell-seeded Nanofibrous scaffolds. J Biomech 48(8):1412–1419

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulber J, Maria DA, Silva LCLCD, Massoco CO, Agreste F, Baccarin RYA (2016) Comparative study of equine mesenchymal stem cells from healthy and injured synovial tissues: an in vitro assessment. Stem Cell Res Ther 7(1):35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García Cruz DM, Gomes M, Reis RL, Moratal D, Salmerón-Sánchez M, Gómez Ribelles JL, Mano JF (2010) Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. J Biomed Mat Res Part A. 95A:1182–1193

    Article  CAS  Google Scholar 

  • Ghasemzadeh-Hasankolaei M, Sedighi-Gilani MA, Eslaminejad MB (2014) Induction of ram bone marrow Mesenchymal stem cells into germ cell lineage using transforming growth factor-b superfamily growth factors. Reprod Dom Anim 49:588–598

    Article  CAS  Google Scholar 

  • Ghasemzadeh-Hasankolaei M, Eslaminejad BM, Sedighi-Gilani M (2015) Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis. In Vitro Cell Dev Biol Anim 52(1):49–61

    Article  CAS  PubMed  Google Scholar 

  • Ghasemzadeh-Hasankolai M, Batavani R, Eslaminejad BM, Sedighi-Gilani M (2012) Effect of zinc ions on differentiation of bone marrow-derived Mesenchymal stem cells to male germ cells and some germ cell-specific gene expression in rams. Biol Trace Elem Res 150:137–146

    Article  CAS  PubMed  Google Scholar 

  • Goldman SM, Barabino GA (2016) Hydrodynamic loading in concomitance with exogenous cytokine stimulation modulates differentiation of bovine mesenchymal stem cells towards osteochondral lineages. BMC Biotechnol 16:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregor A, Filová E, Novák M et al (2017) Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng 11(1):31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gugjoo MB, Amarpal (2018) Mesenchymal stem cell research in sheep: current status and future prospects. Small Rum Res 169:46–56

    Article  Google Scholar 

  • Gugjoo MB, Amarpal, Sharma GT, Kinjavdekar P, Aithal HP, Pawde AM (2016) Cartilage tissue engineering: role of mesenchymal stem cells along with growth factors and scaffolds. Indian J Med Res 144(3):339–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gugjoo MB, Amarpal, Abdelbaset-Ismail A, Aithal HP, Kinjavdekar P, Pawde AM, SaiKumar G, Sharma GT (2017) Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits. Biomed Pharmacother 93:1165–1174

    Article  CAS  PubMed  Google Scholar 

  • Gugjoo MB, Amarpal, Chandra V, Wani MY, Dhama K, Sharma GT (2018) Mesenchymal stem cell research in veterinary medicine. Curr Stem Cell Res Ther 13(8):645–657

    Article  CAS  PubMed  Google Scholar 

  • Gugjoo MB, Amarpal, Makhdoomi DM, Sharma GT (2019a) Equine mesenchymal stem cells: properties, sources, characterization and potential therapeutic applications. J Equine Vet Sci 72:16–27

    Article  PubMed  Google Scholar 

  • Gugjoo MB, Amarpal, Fazili MR, Shah RA, Sharma GT (2019b) Mesenchymal stem cell: basic research and potential applications in cattle and buffalo. J Cell Physiol 234(6):8618–8635

    Article  CAS  PubMed  Google Scholar 

  • Gugjoo MB, Amarpal, Sharma GT (2019c) Mesenchymal stem cell basic research and applications in dog medicine. J Cell Physiol 234(10):16779–16811

    Article  CAS  PubMed  Google Scholar 

  • Gugjoo MB, Amarpal, Fazili MR, Gayas MA, Ahmad RA, Dhama K (2019d) Animal mesenchymal stem cell research in cartilage regenerative medicine – a review. Vet Q 39(1):95–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Gugjoo MB, Amarpal AAI, Aithal HP, Kinjavdekar P, Saikumar GS, Sharma GT (2020) Allogeneic Mesenchymal stem cells and growth factors in gel scaffold repair Osteochondral defect in rabbit. Regen Med 14. https://doi.org/10.2217/rme-2018-0138

  • Gupta SK, Kumar R, Mishra NC (2017) Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration. Mat Sci Eng C 71:919–928

    Article  CAS  Google Scholar 

  • Hattori T, Muller C, Gebhard S, Bauer E, Pausch F, Schlund B, Bosl MR, Hess A, Surmann-Schmitt C, von der Mark H et al (2010) SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development 137(6):901–911

    Article  CAS  PubMed  Google Scholar 

  • Hegewald AA, Ringe J, Bartel J (2004) Kr¨uger I, Notter M, Barnewitz D. Kaps C, Sittinger M. hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue Cell 36:431–438

    Article  CAS  PubMed  Google Scholar 

  • Heo S-J, Thorpe SD, Driscoll TP, Duncan RL, Lee DA, Mauck RL (2015) Biophysical regulation of chromatin architecture instills a mechanical memory in Mesenchymal stem cells. Sci Rep 5:16895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu P, Pu Y, Li X, Zhu Z, Zhao Y, Guan W, Ma Y (2015a) Isolation, in vitro culture and identification of a new type of mesenchymal stem cell derived from fetal bovine lung tissues. Mol Med Rep 12:3331–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Zhang Q, Zhang L, Tang X-X, He H-Y (2015b) Basic fibroblast growth factor lentiviral vector-transfected sheep bone marrow mesenchymal stem cells and non-specific osteogenic gene expression. Mol Med Rep 12:267–272

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-Z, Cai J-Q, Lv F-J, Xie H-L, Yang Z-M, Huang Y-C, Deng L (2013) Species variation in the spontaneous calcification of bone marrow-derived mesenchymal stem cells. Cytotherapy 15:323e329

    Article  CAS  Google Scholar 

  • Hwang NS, Varghese S, Li H, Elisseeff J (2011) Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels. Cell Tissue Res 344:499–509

    Article  CAS  PubMed  Google Scholar 

  • Ivirico JL, Salmerón-Sánchez M, Ribelles JL, Pradas MM, Soria JM, Gomes ME, Reis RL, Mano JF (2009) Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. J Biomed Mat Res B Appl Biomater 91(1):277–286

    Article  CAS  Google Scholar 

  • Jäger M, Bachmann R, Scharfstädt A, Krauspe R (2006) Ovine cord blood accommodates multipotent Mesenchymal progenitor cells. In Vivo 20:205–214

    PubMed  Google Scholar 

  • Jedicke N, Struever N, Aggrawal N, Welte T, Manns MP, Malek NP, Zender L, Janciauskiene S, Wuestefeld T (2014) Alpha-1-antitrypsin inhibits acute liver failure in mice. Hepatology 59:2299–2308

    Article  CAS  PubMed  Google Scholar 

  • Jeong JY, Suresh S, Park MN, Jang M, Park S, Gobianand K, You S, Yeon S-H, Lee H-J (2014) Effects of capsaicin on adipogenic differentiation of bovine bone marrow Mesenchymal stem cell. Asian Australas J Anim Sci 27(12):1783–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong JY, Suresh S, Jang M, Park MN, Gobianand K, Seungkwon Y, Yeon S-H, Lee H-J (2015) Epigallocatechin-3-gallate suppresses the lipid deposition through the apoptosis during differentiation in bovine bone marrow mesenchymal stem cells. Cell Biol Int 39:52–64

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, OrtizGonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  • Jo K, Kim Y, Lee SH, Yoon YS, Kim WH, Kweon O-K (2017) Effect of canine cortical bone demineralization on osteogenic differentiation of adipose- derived mesenchymal stromal cells. Heliyon 3(8):e00383

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson I, Perchy D, Liu H (2012) In vitro evaluation of the surface effects on magnesium-yttrium alloy degradation and mesenchymal stem cell adhesion. J Biomed Mat Res Part A 100A:477–485

    Article  CAS  Google Scholar 

  • Kalaszczynska I, Ruminski S, Platek AE, Bissenik I, Zakrzewski P, Noszczyk M, Lewandowska-Szumiel M (2013) Substantial differences between human and ovine mesenchymal stem cells in response to osteogenic media: how to explain and how to manage? Biores Open Access 2(5):356–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katja N, Michaela E, Jochen R, Bernd F, Rudi M, Thomas H et al (2007) BMP7 promotes adipogenic but not osteo−/chondrogenic differentiation of adult human bone marrow-derived stem cells in high-density micro-mass culture. J Cell Biochem 102:3,626–3,637

    Google Scholar 

  • Knippenberg M, Helder M, Doulabi BZ, Semeins CM, Wuisman PIJM, Klein-Nulend J (2005) Adipose tissue-derived Mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on Osteogenic stimulation. Tissue Eng 11(11/12):1780–1787

    Article  CAS  PubMed  Google Scholar 

  • Knippenberg M, Helder M, Doulabi BZ, Semeins CM, Wuisman PIJM, Klein-Nulend J (2006) Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem Biophys Res Commun 342:902–908

    Article  CAS  PubMed  Google Scholar 

  • Kol A, Walker NJ, Galuppo LD, Clark KC, Buerchler S, Bernanke A, Borjesson DL (2012) Autologous point-of-care cellular therapies variably induce equine mesenchymal stem cell migration, proliferation and cytokine expression. Equine Vet J 45(2):193–198

    Article  PubMed  Google Scholar 

  • Kulesza A, Burdzinska A, Szczepanska I, Zarychta-Wisniewska W, Pajak B, Bojarczuk K, Dybowski B, Paczek L (2016) The mutual interactions between Mesenchymal stem cells and myoblasts in an autologous co-culture model. PLoS One 11(8):e0161693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanza R, Langer R, Vacanti JP (2011) Principles of tissue engineering. Academic Press, Cambridge

    Google Scholar 

  • Lara E, Velásquez A, Cabezas J, Rivera N, Pacha P, Rodríguez-Alvarez L, Saravia F, Castro FO (2017) Endometritis and in vitro PGE2 challenge modify properties of cattle endometrial Mesenchymal stem cells and their Transcriptomic profile. Stem Cells Int 2017:4297639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Cha S-H, Kim C-L, Lillehoj HS, Song J-Y, Lee K-W (2015a) Enhanced adipogenic differentiation of bovine bone marrow derived mesenchymal stem cells. J Appl Anim Res 43(1):15–21

    Article  CAS  Google Scholar 

  • Lee WD, Hurtig MB, Pilliar RM, Stanford WL, Kandel RA (2015b) Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells. Osteoarthr Cartil 23(8):1307–1315

    Article  CAS  Google Scholar 

  • Leung VYL, Gao B, Leung KKH, Melhado IG, Wynn SL, Au TYK, Dung NWF, Lau JYB, Mak ACY, Chan D et al (2011) SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet 7(11):e1002356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Ji T, Xu LQ, Hu YJ, Li SY, Zhang CP (2006) Study on the osteogenesis ability of co-culturing bone marrow stromal cells (BMSCs) and small intestinal submucosa. Shanghai Kou Qiang Yi Xue 15(2):167–171

    CAS  PubMed  Google Scholar 

  • Liu H (2011) The effects of surface and biomolecules on magnesium degradation and mesenchymal stem cell adhesion. J Biomed Mat Res Part A 99A:249–260

    Article  CAS  Google Scholar 

  • Mahdavia FS, Salehia A, Seyedjafarib E, Mohammadi-Sangcheshmeha A, Ardeshirylajimi A (2017) Bioactive glass ceramic nanoparticles-coated poly(L-lactic acid) scaffold improved osteogenic differentiation of adipose stem cells in equine. Tissue Cell 49(5):565–572

    Article  CAS  Google Scholar 

  • Martinello T, Bronzini I, Maccatrozzo L, Mollo A, Sampaolesi M, Mascarello F, Decaminada M, Patruno M (2011) Canine adipose-derived-mesenchymal stem cells do not lose stem features after a long-term cryopreservation. Res Vet Sci 91(1):18–24

    Article  CAS  PubMed  Google Scholar 

  • Mauck RL, Yuan X, Tuan RS (2006) Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthr Cartil 14(2):179–189

    Article  CAS  Google Scholar 

  • McCorry MC, Bonassar LJ (2017) Fiber development and matrix production in tissue engineered menisci using bovine Mesenchymal stem cells and Fibrochondrocytes. Connect Tissue Res 58(3–4):329–341

    Article  CAS  PubMed  Google Scholar 

  • McCorry MC, Puetzer JL, Bonassar LJ (2016) Characterization of mesenchymal stem cells and fibrochondrocytes in three-dimensional co-culture: analysis of cell shape, matrix production, and mechanical performance. Stem Cell Res Ther 12(7):39

    Article  CAS  Google Scholar 

  • Meyer U, Meyer T, Handschel J, Wiesmann HP (2009) Fundamentals of tissue engineering and regenerative medicine. Springer, Berlin

    Book  Google Scholar 

  • Nair MB, Varma HK, John A (2009a) Triphasic ceramic coated hydroxyapatite as a niche for goat stem cell-derived osteoblasts for bone regeneration and repair. J Mat Sci Mat Med 20:S251–S258

    Article  CAS  Google Scholar 

  • Nair MB, Varma HK, Menon KV, Shenoy SJ, John A (2009b) Tissue regeneration and repair of goat segmental femur defect with bioactive triphasic ceramic-coated hydroxyapatite scaffold. Biomed Mat Res 91A:855–865

    Article  CAS  Google Scholar 

  • Nakashima Y, Ono T, Yamanoi A, El-Assal ON, Kohno H, Nagasue N (2004) Expression of gap junction protein connexin32 in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Gastroenterol 39:763–768

    Article  CAS  PubMed  Google Scholar 

  • Oh HJ, Park JE, Kim MJ, Hong SG, Ra JC, Jo JY et al (2011) Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75(7):1221–1231

    Article  PubMed  Google Scholar 

  • Okamura LH, Cordero P, Palomino J, Parraguez VH, Torres CG, Peralta OA (2017) Myogenic differentiation potential of Mesenchymal stem cells derived from fetal bovine bone marrow. Anim Biotechnol 29(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Ongaro A, Pellati A, Setti S, Masieri FF, Aquila G, Fini M, Caruso A, De Mattei M (2012) Electromagnetic fields counteract IL-1b activity during chondrogenesis of bovine mesenchymal stem cells. J Tissue Eng Regen Med 9(12):E229–E238

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB (2005) BMP-2 induces the expression of chondrocyte-specific genes bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthr Cartil 13:527e536

    Article  Google Scholar 

  • Peng S-Y, Chou C-W, Kuo Y-H, Shen P-C, Steven Shaw S-W (2017) Potential differentiation of islet like cells from pregnant cow derived placental stem cells. Taiwan J Obstet Gynaecol 56:306–311

    Article  Google Scholar 

  • Pereira-Junior OCM, RahalII SCJ, Lima-Neto F, da Cruz Landim-Alvarenga F, Monteiro FOB (2013) In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells. Acta Cir Bras 28(5):353–360

    Article  PubMed  Google Scholar 

  • Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470

    Article  CAS  PubMed  Google Scholar 

  • Prins H-J, Fernandes H, Rozemuller H, van Blitterswijk C, de Boer J, Martens ACM (2016) Spatial distribution and survival of human and goat mesenchymal stromal cells on hydroxyapatite and β-tricalcium phosphate. J Tissue Eng Reg Med 10:233–244

    Article  CAS  Google Scholar 

  • Qiu P, Bai Y, Liu C, He X, Cao H, Li M, Zhu H, Hua J (2012) A dose-dependent function of follicular fluid on the proliferation and differentiation of umbilical cord mesenchymal stem cells (MSCs) of goat. Histochem Cell Biol 138:593–603

    Article  CAS  PubMed  Google Scholar 

  • Rackwitz L, Djouad F, Janjanin S, Nöth U, Tuan RS (2014) Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro. Osteoarthr Cartil 22(8):1148–1157

    Article  CAS  Google Scholar 

  • Ramirez-Espinosa JJ, Gonzalez-Davalos L, Shimada A, Pina E, Varela-Echavarria A, Mora O (2015) Bovine (Bos taurus) bone marrow mesenchymal cell differentiation to Adipogenic and myogenic lineages. Cells Tissues Organs 201:51–64

    Article  CAS  PubMed  Google Scholar 

  • Randau TM, Schildberg FA, Alini M, Wimmer MD, Haddouti E-M, Gravius S, Ito KJ, Stoddart M (2013) The effect of dexamethasone and Triiodothyronine on terminal differentiation of primary bovine chondrocytes and Chondrogenically differentiated Mesenchymal stem cells. PLoS One 8(8):e72973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman KK, Ayesha Q, Khan AA, Ahmed N, Habibullah CM (2004) Tyrosine aminotransferase and gamma-glutamyl transferase activity in human fetal hepatocyte primary cultures under proliferative conditions. Cell Biochem Funct 22:89–96

    Article  CAS  PubMed  Google Scholar 

  • Reza AMMT, Shiwani S, Singh NK, Lohakare JD, Lee SJ, Jeong DK, Han JY, Rengaraj D, Lee BW (2014) Keratinocyte growth factor and thiazolidinediones and linolenic acid differentiate characterized mammary fat pad adipose stem cells isolated from prepubertal Korean black goat to epithelial and adipogenic lineage. In Vitro Cell Dev Biol–Anim 50:194–206

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues MT, Leonor IB, Gröen N, Viegas CA, Dias IR, Caridade SG, Mano JF, Gomes ME, Reis RL (2014) Bone marrow stromal cells on a 3D bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: the effect of silanol groups. Acta Biomater 10(10):4175–4185

    Article  CAS  PubMed  Google Scholar 

  • Santos VH, Pfeifer JPH, de Souza JB, Milani BHG, de Oliveira RA, Assis MG, Deffune E, Moroz A, Garcia Alves AL (2018) Culture of mesenchymal stem cells derived from equine synovial membrane in alginate hydrogel microcapsules. BMC Vet Res 14:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schop D, Janssen FW, Borgart E, de Bruijn JD, van Dijkhuizen-Radersma R (2008) Expansion of mesenchymal stem cells using a microcarrier-based cultivation system: growth and metabolism. J Tissue Eng Reg Med 2:126–135

    CAS  Google Scholar 

  • Scott EE, Halpert JR (2005) Structure of cytochrome P450 3A4. Trends Biochem Sci 30:5–7

    CAS  PubMed  Google Scholar 

  • Setiawatie EM, Ulfah N, Wahjuningrum DA, Sari DS, Rubianto M (2017) Viability bovine tooth Hydroxyapatite on bone marrow Mesenchymal stem cells. In: International medical device and technology conference. Universiti Teknologi Malaysia, Johor Bahru, pp 78–81

    Google Scholar 

  • Simonaro CM, Sachot S, Ge Y, He X, DeAngelis VA, Eliyahu E, Leong D, Sun HB, Mason JB, Haskins ME, Richardson DW, Schuchman EH (2013) Acid Ceramidase maintains the Chondrogenic phenotype of expanded primary chondrocytes and improves the Chondrogenic differentiation of bone marrow-derived Mesenchymal stem cells. PLoS One 8(4):e62715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soltani L, Rahmani HR, Joupari MD, Ghaneialvar H, Mahdavi AH, Shamsara M (2016) Ovine fetal mesenchymal stem cell differentiation to cardiomyocytes, effects of co-culture, role of small molecules; reversine and 5-azacytidine. Cell Biochem Funct 34:250–261

    CAS  PubMed  Google Scholar 

  • Stewart MC (2011) Cell-based therapies: current issues and future directions. Vet Clin North Am Equine Pract 27(2):393–399

    PubMed  Google Scholar 

  • Tan L, Zhao B, Ge FT, Sun DH, Yu T (2017) Shockwaves inhibit chondrogenic differentiation of human mesenchymal stem cells in association with adenosine and A2B receptors. Sci Rep 7:1437

    Google Scholar 

  • Terraciano V, Hwang N, Moroni L, Park HB, Zhang Z, Mizrahi J, Seliktar D, Elisseeff J (2007) Differential response of adult and embryonic Mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25:2730–2738

    CAS  PubMed  Google Scholar 

  • Tjabringa GS, Zandieh-Doulabi B, Helder MN, Knippenberg M, Wuisman PIJM, Klein-Nulend J (2008) The polymine spermine regulates osteogenic differentiation in adipose stem cells. J Cell Mol Med 12(5A):1710–1717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toh WS, Lim TC, Kurisawa M, Spector M (2012) Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials 33:3835e3845

    Google Scholar 

  • Toh WS, Foldager CB, Olsen BR, Spector M (2013) Basement membrane molecule expression attendant to Chondrogenesis by nucleus Pulposus cells and Mesenchymal stem cells. J Orthop Res 31:1136–1143

    Article  CAS  PubMed  Google Scholar 

  • Topol L, Chen W, Song H, Day TF, Yang Y (2009) Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus. J Biol Chem 284(5):3323–3333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trindade AB, Therrien J, Garcia JM, Smith LC (2017) Mesenchymal-like stem cells in canine ovary show high differentiation potential. Cell Prolif 50(6):e12391

    Article  CAS  Google Scholar 

  • Varghese S, Hwang NS, Canver AC, Theprungsrikul P, Lin DW, Elisseeff J (2008) Chondroitin sulphate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol 27:12–21

    Article  CAS  PubMed  Google Scholar 

  • Versari S, Villa A, Helder MN, Doulabi BZ, van Loon J, Bradamante S (2007) Effects of gravity on proliferation and differentiation of adipose tissue-derived stem cells. J Gravit Physiol 14(1):P127–P128

    CAS  PubMed  Google Scholar 

  • Vickers SM, Gotterbarm T, Spector M (2010) Cross-linking affects cellular condensation and chondrogenesis in type II collagen-GAG scaffolds seeded with bone marrow-derived mesenchymal stem cells. J Orthop Res 28(9):1184–1192

    Article  CAS  PubMed  Google Scholar 

  • Volk SW, Wang Y, Hankenson KD (2012) Effects of donor characteristics and ex vivo expansion on canine mesenchymal stem cell properties: implications for MSC-based therapies. Cell Transplant 21(10):2189–2200

    Article  PubMed  Google Scholar 

  • Wang L, Gordon RA, Huynh L, Su X, Parkmin KY, Han J, Arthur JS, Kalliolias GD (2010) Ivashkiv L.B. indirect inhibition of toll-like receptor and type I interferon responses by ITAM-coupled receptors and integrins. Immunity 32:518–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Yuan Z, Ma N, Hao C, Guo W, Zou G, Zhang Y, Chen M, Gao S, Peng J et al (2017) Advances and prospects in stem cells for cartilage regeneration. Stem Cells Int 2017:4130607

    PubMed  PubMed Central  Google Scholar 

  • Wang Q, Wang X, Lai D, Deng J, Hou Z, Liang H, Liu D (2018) BIX-01294 promotes the differentiation of adipose mesenchymal stem cells into adipocytes and neural cells in Arbas cashmere goats. Res Vet Sci 119:9–18

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Fang J, Cai S, Lv C, Zhang S, Hua J (2016) Primordial germ cell-like cells derived from canine adipose mesenchymal stem cells. Cell Prolif 49(4):503–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Liu B, Liu G, Yang F, Cao F, Dou X (2019) Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats. Stem Cell Res Ther 10:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu KL, Gannon M, Peshavaria M, Offield MF, Henderson E, Ray M et al (1997) Hepatocyte nuclear factor 3beta is involved in pancreatic beta-cell-specific transcription of the pdx-1 gene. Mol Cell Biol 17(10):6002e13

    Google Scholar 

  • Xiong H, Bai C, Wu S, Gao Y, Lu T, Hu Q, Guan W, Ma Y (2014) Biological characterization of Mesenchymal stem cells from bovine umbilical cord. Anim Cells Syst 1(1):59–67

    Article  Google Scholar 

  • Yan G, Fan Y, Li P, Zhang Y, Wang F (2015) Ectopic expression of DAZL gene in goat bone marrow-derived mesenchymal stem cells enhances the trans-differentiation to putative germ cells compared to the exogenous treatment of retinoic acid or bone morphogenetic protein 4 signalling molecules. Cell Biol Int 39(1):74–83

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Wang Y, Sun Z, Sun X, Xu Y, Li P, Meng H, Yu X, Xiao B, Fan T, Wang Y, Xu W, Wang A, Guo Q, Peng J, Lu S (2016) Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomater 33:96–109

    Article  CAS  PubMed  Google Scholar 

  • Zeiter S, Lezuo P, Ito K (2009) Effect of TGF-β1, BMP-2 and hydraulic pressure on chondrogenic differentiation of bovine bone marrow mesenchymal stromal cells. Biorheology 46:45–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang XL, Jiang XQ (2006) Osteoblastic differentiation of goat bone marrow stromal cells after AdBMP-2 mediated transduction in vitro. Shanghai Kou Qiang Yi Xue 15(6):610–613

    PubMed  Google Scholar 

  • Zhang W, Huo Y, Wang X, Jia Y, Su L, Wang C, Li Y, Yang Y, Liu Y (2016) Decellularized ovine arteries as biomatrix scaffold support endothelial of mesenchymal stem cells. Heart Vessel 31(11):1874–1881

    Article  Google Scholar 

  • Zhang YL, Li PZ, Pang J, Wan YJ, Zhang GM, Fan YX, Wang ZY, Tao NH, Wang F (2019) Induction of goat bone marrow mesenchymal stem cells into putative male germ cells using mRNA for STRA8, BOULE and DAZL. Cytotechnology 71(2):563–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Hu J, Buckingham B, Pittenger MF, Wu ZJ, Griffith BP (2014) Pim-1 kinase cooperates with serum signals supporting Mesenchymal stem cell propagation. Cells Tissues Organs 199:140–149

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Zheng Q, Engin F, Munivez E, Chen Y, Sebald E, Krakow D, Lee B (2006) Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci U S A 103(50):19004–19009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu HB, Guo DZ, Yang SJ, Zhang YH, Wang H, Guo HT, Zhang Y, Cheng DC (2008) Osteogenic actions of the osteogenic growth peptide on bovine marrow mesenchymal stromal cells in culture. Vet Med 53(9):501–509

    Article  CAS  Google Scholar 

  • Zscharnack M, Poesel C, Galle J, Bader A (2009) Low oxygen expansion improves subsequent Chondrogenesis of ovine bone-marrow-derived Mesenchymal stem cells in collagen type I hydrogel. Cells Tissues Organs 190:81–93

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gugjoo, M.B., Pal, A. (2020). Mesenchymal Stem Cell Differentiation Properties and Available Microenvironment. In: Gugjoo, M.B., Pal, A. (eds) Mesenchymal Stem Cell in Veterinary Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-15-6037-8_5

Download citation

Publish with us

Policies and ethics