Skip to main content

Advertisement

Log in

Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) have the capacity to differentiate into germ cells (GCs). This research, for the first time, has evaluated the fate of in vitro MSC-derived GCs generated by three different induction methods and compared them after transplantation into the testes of rams. Passage-3 ram bone marrow (BM)-MSCs were divided into three treatment groups: (1) 14-d treatment with 10 μM retinoic acid (RA; RA14), (2) 21-d treatment with 10 μM RA (RA21), and (3) 21-d treatment with 10 ng/ml transforming growth factor beta-1 (TGFb1). After confirmation of the existence of germ-like cells in the culture, the treated cells were labeled and transplanted into the testes of ram lambs. After 2 mo, we conducted histological evaluations of the rams’ testes. Results showed that in vitro-derived GCs from all treatment groups survived in the testes. Some of these GCs homed at the basement membrane of seminiferous tubules and formed colonies. The homed cells and cell colonies were similar to testicular native spermatogonia and expressed PGP9.5. TGFb1 exhibited the highest efficiency for in vitro production of GCs as well as the highest capability for homing and colony formation in the testes. RA21 was less efficient than TGFb1, particularly in colony formation. RA14 was the weakest group. No further differentiation of the transplanted GCs was observed. From our results, it could be concluded that a 21-d treatment period of BM-MSCs with TGFb1 is the most efficient method for in vitro generation of spermatogonia-like cells that survive, home, and form colonies in the testes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Bowles J, Koopman P (2007) Retinoic acid, meiosis and germ cell fate in mammals. Development 134:3401–11

    Article  PubMed  CAS  Google Scholar 

  • Burks TN, Cohn RD (2011) Role of TGF-beta signaling in inherited and acquired myopathies. Skelet Muscle 1:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cakici C, Buyrukcu B, Duruksu G, Haliloglu AH, Aksoy A, Isik A, Uludag O, Ustun H, Subasi C, Karaoz E (2013) Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. Biomed Res Int 2013:529589

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Shao JZ, Xiang LX, Dong XJ, Zhang GR (2008) Mesenchymal stem cells: a promising candidate in regenerative medicine. Int J Biochem Cell Biol 40:815–20

    Article  PubMed  CAS  Google Scholar 

  • Chuva de Sousa Lopes SM, Roelen BAJ (2015) Current status of in vitro differentiation of stem cells into gametes. Anim Reprod 12:46–51

    Google Scholar 

  • Clagett-Dame M, Knutson D (2011) Vitamin A in reproduction and development. Nutrients 3:385–428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–13

    Article  PubMed  CAS  Google Scholar 

  • Dobrinski I, Avarbock MR, Brinster RL (2000) Germ cell transplantation from large domestic animals into mouse testes. Mol Reprod Dev 57:270–9

    Article  PubMed  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The Int Soc Cell Ther Position Statement Cytotherapy 8:315–7

    CAS  Google Scholar 

  • Drusenheimer N, Wulf G, Nolte J, Lee JH, Dev A, Dressel R, Gromoll J, Schmidtke J, Engel W, Nayernia K (2007) Putative human male germ cells from bone marrow stem cells. Soc Reprod Fertil Suppl 63:69–76

    PubMed  CAS  Google Scholar 

  • Ghasemzadeh-Hasankolai M, Batavani R, Eslaminejad MB, Sedighi-Gilani M (2012) Effect of zinc ions on differentiation of bone marrow-derived mesenchymal stem cells to male germ cells and some germ cell-specific gene expression in rams. Biol Trace Elem Res 150:137–46

    Article  PubMed  CAS  Google Scholar 

  • Ghasemzadeh-Hasankolaei M, Eslaminejad MB, Batavani R (2015) Male and female rat bone marrow-derived mesenchymal stem cells are different in terms of the expression of germ cell specific genes. Anat Sci Int 90(3):187–196

    Article  PubMed  CAS  Google Scholar 

  • Ghasemzadeh-Hasankolaei M, Eslaminejad MB, Batavani R, Sedighi-Gilani M (2014a) Comparison of the efficacy of three concentrations of retinoic acid for transdifferentiation induction in sheep marrow-derived mesenchymal stem cells into male germ cells. Andrologia 46:24–35

    Article  PubMed  CAS  Google Scholar 

  • Ghasemzadeh-Hasankolaei M, Sedighi-Gilani MA, Eslaminejad MB (2014b) Induction of ram bone marrow mesenchymal stem cells into germ cell lineage using transforming growth factor-beta superfamily growth factors. Reprod Domest Anim 49:588–98

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez CR, Calandra RS, Gonzalez-Calvar SI (2012) Influence of the photoperiod on TGF-beta1 and p15 expression in hamster Leydig cells. Reprod Biol 12:201–18

    Article  PubMed  Google Scholar 

  • Gudas LJ, Wagner JA (2011) Retinoids regulate stem cell differentiation. J Cell Physiol 226:322–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han SH, Yea SS, Jeon YJ, Yang KH, Kaminski NE (1998) Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells. J Pharmacol Exp Ther 287:1105–12

    PubMed  CAS  Google Scholar 

  • Heidari B, Rahmati-Ahmadabadi M, Akhondi MM, Zarnani AH, Jeddi-Tehrani M, Shirazi A, Naderi MM, Behzadi B (2012) Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers. J Assist Reprod Genet 29:1029–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrid M, Vignarajan S, Davey R, Dobrinski I, Hill JR (2006) Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction 132:617–24

    Article  PubMed  CAS  Google Scholar 

  • Horn MM, Paz AH, Duarte ME, Baldo G, Belardinelli MC, Matte U, Lima EO, Passos EP (2008) Germinative testicular cells and bone marrow mononuclear cells transplanted to a rat model of testicular degeneration. Cloning Stem Cells 10:543–6

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Pan S, Yang C, Dong W, Dou Z, Sidhu KS (2009a) Derivation of male germ cell-like lineage from human fetal bone marrow stem cells. Reprod Biomed Online 19:99–105

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Yu H, Dong W, Yang C, Gao Z, Lei A, Sun Y, Pan S, Wu Y, Dou Z (2009b) Characterization of mesenchymal stem cells (MSCs) from human fetal lung: potential differentiation of germ cells. Tissue Cell 41:448–55

    Article  PubMed  CAS  Google Scholar 

  • Huang P, Lin LM, Wu XY, Tang QL, Feng XY, Lin GY, Lin X, Wang HW, Huang TH, Ma L (2010) Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J Cell Biochem 109:747–54

    PubMed  CAS  Google Scholar 

  • Ingman WV, Robertson SA (2007) Transforming growth factor-beta1 null mutation causes infertility in male mice associated with testosterone deficiency and sexual dysfunction. Endocrinology 148:4032–43

    Article  PubMed  CAS  Google Scholar 

  • Itman C, Mendis S, Barakat B, Loveland KL (2006) All in the family: TGF-beta family action in testis development. Reproduction 132:233–46

    Article  PubMed  CAS  Google Scholar 

  • Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, Tschudy KS, Tilly JC, Cortes ML, Forkert R, Spitzer T, Iacomini J, Scadden DT, Tilly JL (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122:303–15

    Article  PubMed  CAS  Google Scholar 

  • Kaponis A, Yiannakis D, Tsoukanelis K, Tsalikis D, Tsabalas D, Baltogiannis D, Giannakopoulos X, Schrader M, Georgiou I, Yamamoto Y, Kanakas N, Miyagawa I, Loutradis D, Touloupidis S, Sofikitis N (2003) The role of ultrasonographically guided puncture of the human rete testis in the therapeutic management of nonobstructive azoospermia. Andrologia 35:85–92

    Article  PubMed  CAS  Google Scholar 

  • Kon Y, Endoh D, Iwanaga T (1999) Expression of protein gene product 9.5, a neuronal ubiquitin C-terminal hydrolase, and its developing change in sertoli cells of mouse testis. Mol Reprod Dev 54:333–41

    Article  PubMed  CAS  Google Scholar 

  • Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC (2006) Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci U S A 103:2474–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lassalle B, Mouthon MA, Riou L, Barroca V, Coureuil M, Boussin F, Testart J, Allemand I, Fouchet P (2008) Bone marrow-derived stem cells do not reconstitute spermatogenesis in vivo. Stem Cells 26:1385–6

    Article  PubMed  Google Scholar 

  • Li N, Pan S, Zhu H, Mu H, Liu W, Hua J (2014) BMP4 promotes SSEA-1 hUC-MSC differentiation into male germ-like cells in vitro. Cell Prolif 47(4):299–309

    Article  PubMed  CAS  Google Scholar 

  • Lue Y, Erkkila K, Liu PY, Ma K, Wang C, Hikim AS, Swerdloff RS (2007) Fate of bone marrow stem cells transplanted into the testis: potential implication for men with testicular failure. Am J Pathol 170:899–908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo J, Megee S, Rathi R, Dobrinski I (2006) Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev 73:1531–40

    Article  PubMed  CAS  Google Scholar 

  • Mazaheri Z, Movahedin M, Rahbarizadeh F, Amanpour S (2011) Different doses of bone morphogenetic protein 4 promote the expression of early germ cell-specific gene in bone marrow mesenchymal stem cells. In Vitro Cell Dev Biol Anim 47:521–5

    Article  PubMed  CAS  Google Scholar 

  • Monsefi M, Fereydouni B, Rohani L, Talaei T (2013) Mesenchymal stem cells repair germinal cells of seminiferous tubules of sterile rats. Iran J Reprod Med 11:537–44

    PubMed  PubMed Central  Google Scholar 

  • Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, Gromoll J, Engel W (2006) Derivation of male germ cells from bone marrow stem cells. Lab Investig 86:654–63

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Arechaga JM, Avarbock MR, Brinster RL (1997) Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol 41:111–22

    PubMed  CAS  Google Scholar 

  • Olaso R, Pairault C, Boulogne B, Durand P, Habert R (1998) Transforming growth factor beta1 and beta2 reduce the number of gonocytes by increasing apoptosis. Endocrinology 139:733–40

    PubMed  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Pountos I, Giannoudis PV (2005) Biology of mesenchymal stem cells. Injury 36:S8–S12

    Article  PubMed  Google Scholar 

  • Rentsch C, Hess R, Rentsch B, Hofmann A, Manthey S, Scharnweber D, Biewener A, Zwipp H (2010) Ovine bone marrow mesenchymal stem cells: isolation and characterization of the cells and their osteogenic differentiation potential on embroidered and surface-modified polycaprolactone-co-lactide scaffolds. In Vitro Cell Dev Biol Anim 46:624–34

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Sosa JR, Dobson H, Hahnel A (2006) Isolation and transplantation of spermatogonia in sheep. Theriogenology 66:2091–103

    Article  PubMed  Google Scholar 

  • Rodriguez-Sosa JR, Silvertown JD, Foster RA, Medin JA, Hahnel A (2009) Transduction and transplantation of spermatogonia into the testis of ram lambs through the extra-testicular rete. Reprod Domest Anim 44:612–20

    Article  PubMed  CAS  Google Scholar 

  • Shinohara T, Orwig KE, Avarbock MR, Brinster RL (2001) Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci U S A 98:6186–91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shirazi R, Zarnani AH, Soleimani M, Abdolvahabi MA, Nayernia K, Ragerdi Kashani I (2012) BMP4 can generate primordial germ cells from bone-marrow-derived pluripotent stem cells. Cell Biol Int 36:1185–93

    Article  PubMed  CAS  Google Scholar 

  • Silva RC, Costa GM, Lacerda SM, Batlouni SR, Soares JM, Avelar GF, Bottger KB, Silva SF Jr, Nogueira MS, Andrade LM, Franca LR (2012) Germ cell transplantation in felids: a potential approach to preserving endangered species. J Androl 33:264–76

    Article  PubMed  Google Scholar 

  • Sofikitis N, Kaponis A, Mio Y, Makredimas D, Giannakis D, Yamamoto Y, Kanakas N, Kawamura H, Georgiou J, Schrader M, Lolis E, Giannakopoulos X, Loutradis D, Tarlatzis V, Miyagawa I (2003) Germ cell transplantation: a review and progress report on ICSI from spermatozoa generated in xenogeneic testes. Hum Reprod Update 9:291–307

    Article  PubMed  CAS  Google Scholar 

  • Stukenborg JB, Schlatt S, Simoni M, Yeung CH, Elhija MA, Luetjens CM, Huleihel M, Wistuba J (2009) New horizons for in vitro spermatogenesis? An update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells. Mol Hum Reprod 15:521–9

    Article  PubMed  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–36

    Article  PubMed  CAS  Google Scholar 

  • von Kopylow K, Kirchhoff C, Jezek D, Schulze W, Feig C, Primig M, Steinkraus V, Spiess AN (2010) Screening for biomarkers of spermatogonia within the human testis: a whole genome approach. Hum Reprod 25:1104–12

    Article  CAS  Google Scholar 

  • Yoshida S (2008) Spermatogenic stem cell system in the mouse testis. Cold Spring Harb Symp Quant Biol 73:25–32

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S (2012) Elucidating the identity and behavior of spermatogenic stem cells in the mouse testis. Reproduction 144:293–302

    Article  PubMed  CAS  Google Scholar 

  • Zeng W, Snedaker AK, Megee S, Rathi R, Chen F, Honaramooz A, Dobrinski I (2009) Preservation and transplantation of porcine testis tissue. Reprod Fertil Dev 21:489–97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Hill J, Holland M, Kurihara Y, Loveland KL (2008) Bovine sertoli cells colonize and form tubules in murine hosts following transplantation and grafting procedures. J Androl 29:418–30

    Article  PubMed  Google Scholar 

  • Zhang D, Liu X, Peng J, He D, Lin T, Zhu J, Li X, Zhang Y, Wei G (2014) Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. Int J Mol Sci 15:13151–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their appreciation to Dr. Mohammadali Khalilifar, Dr. Mohammad Molazem, Dr. Mostafa Hajinasrollah, Mr. Alireza Ne’mati, Mr. Farhad Mostafaei, Mr. Rasool Akhavan, Mr. Abbas Zabetian, and Mr. Abolfazl Kheimeh for their critical assistance with the transplantation procedure. We also thank Dr. Molood Aghajani-Delavar for her helpful advice in the statistical analysis of this research. This study was supported financially by Royan Institute for Stem Cell Biology and Technology, Tehran, Iran (grant number 160).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Ghasemzadeh-Hasankolaei or Mohammadreza Baghaban Eslaminejad.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemzadeh-Hasankolaei, M., Eslaminejad, M.B. & Sedighi-Gilani, M. Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis. In Vitro Cell.Dev.Biol.-Animal 52, 49–61 (2016). https://doi.org/10.1007/s11626-015-9945-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-015-9945-4

Keywords

Navigation