Skip to main content

Transgenic Papaya

  • Chapter
  • First Online:
Genetically Modified Crops
  • 847 Accesses

Abstract

Papaya (Carica papaya), a member of the family Caricaceae, is mainly grown for its aromatic melon-like fruits. Papaya is rich in vitamins and a range of phytochemicals such as flavonoids, polyphenols, alkaloids and proteolytic enzymes. This dicotyledonous, semi-woody perennial, with a somatic chromosome number of 18, is widely cultivated in tropical and subtropical lowland regions. Its favourable nutritional profile, together with a fast maturation rate from seed and continuous fruit production thereafter, makes it a suitable cash crop for the fresh market and processed food industry. Disease resistance, increased yields and improved quality and storage traits are important objectives for breeding programmes of this crop. While significant improvements have been made with conventional hybridization techniques, programmes incorporating methods of genetic engineering offer opportunities for the transfer of genetic variability from other gene pools. This chapter provides an overview of papaya biotechnology. Much of the review addresses transgenic virus resistance, which is the major application. Approaches related to improved quality traits and pharmaceutical productions are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdulkadri A, Pinnock S, Tennant P (2004) Public perception of genetic engineering and the choice to purchase genetically modified food. J Food Agric Environ 5:8–12

    Google Scholar 

  • Abel PP, Nelson R, De B et al (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  CAS  PubMed  Google Scholar 

  • Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 15:1911

    Article  CAS  Google Scholar 

  • Alvarez D (2000) Connecting people to the promise of biotech: update of the ISAAA Fellowship Program in Africa and Southeast Asia. ISAAA briefs no. 14. ISAAA, Ithaca, NY. http://www.isaaa.org/Resources/publications/briefs/15/download/isaaa-brief-15-2000.pdf. Accessed 13 Nov 2019

  • Aravind G, Debjit B, Duraivel S et al (2013) Traditional and medicinal uses of Carica papaya. J Med Plant Stud 1:7–15

    Google Scholar 

  • Bau HJ, Cheng YH, Yu TA et al (2003) Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93:112–120

    Article  CAS  PubMed  Google Scholar 

  • Bau HJ, Cheng YH, Yu TA et al (2004) Field evaluation of transgenic papaya lines carrying the coat protein gene of Papaya ringspot virus in Taiwan. Plant Dis 85:594–599

    Article  Google Scholar 

  • Bau HJ, Kung YJ, Raja J (2008) Potential threat of a new pathotype of Papaya leaf distortion mosaic virus infecting transgenic papaya resistant to Papaya ringspot virus. Phytopathology 98:848–856

    Article  CAS  PubMed  Google Scholar 

  • Botella J, Tecson-Mendoza E, Leeton P et al (2005) Using genetic engineering to extend the life of papaya fruits. In: Chan YK, Paull RE (eds) Proceedings of the first international symposium on papaya, Malaysia, November 2005, pp 22–24

    Google Scholar 

  • Bruening G, Lyons J (2000) The case of the FLAVR SAVR tomato. Calif Agr 54:6–7

    Article  Google Scholar 

  • Cabanos CS, Sajise AG, Garcia RN et al (2013) Compositional analysis of transgenic papaya with delayed ripening trait. Philipp Agric Scientist 96:331–339

    Google Scholar 

  • Cabrera-Ponce JL, Vegas-Garcia A, Herrera-Estrella L (1995) Herbicide resistant transgenic papaya plants produced by an efficient particle bombardment transformation method. Plant Cell Rep 15:1–7

    Article  CAS  PubMed  Google Scholar 

  • Carvalho F, Renner S (2012) A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Mol Phylogenet Evol 65:46–53

    Article  PubMed  Google Scholar 

  • Chan Y (2002) Fruit breeding at MARDI: a retrospect over three decades. Acta Hortic 575:279–285

    Article  Google Scholar 

  • Chandra R, Mishra M (2010) Towards development of transgenic papaya (Carica papaya L.). Acta Hortic 851:173–178

    Article  CAS  Google Scholar 

  • Chandra R, Mishra M, Patil R et al (2010) Shoot tip transformation in papaya (Carica papaya L.). Acta Hortic 851:219–226

    Article  CAS  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D et al (2016) Development of broad virus resistance in nontransgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen NM, Paull RE (1986) Development and prevention of chilling injury in papaya fruit. J Amer Soc Hort Sci 111:639–643

    Article  Google Scholar 

  • Chen G, Ye CM, Huang JC et al (2001) Cloning of the Papaya ringspot virus (PRSV) replicase gene and generation of PRSV resistant papayas through the introduction of the PRSV replicase gene. Plant Cell Rep 20:272–277

    Article  CAS  Google Scholar 

  • Chiang CH, Wang JJ, Han FJ et al (2001) Comparative reactions of recombinant papaya ringspot viruses with chimeric coat protein (CP) genes and wild-type viruses on CP-transgenic papaya. J Gen Virol 82:2827–2836

    Article  CAS  PubMed  Google Scholar 

  • Conover R (1986) ‘Cariflora’ a papaya ringspot virus tolerant papaya for South Florida and the Caribbean. HortScience 21:1072

    Article  Google Scholar 

  • Davidson S (2008) Forbidden fruit: transgenic papaya in Thailand. Plant Physiol 147:487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis M, Ying Z (2004) Development of papaya breeding lines with transgenic resistance to Papaya ringspot virus. Plant Dis 88:352–358

    Article  CAS  PubMed  Google Scholar 

  • Davis M, White T, Crane J (2004) Resistance to Papaya ringspot virus in transgenic papaya breeding lines. Proc Fla State Hort Soc 117:241–245

    Google Scholar 

  • De la Fuente J, Ramirez-Rodriguez V, Cabrera-Ponce J et al (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  PubMed  Google Scholar 

  • Ding X, Gopalakrishnan G, Johnson L et al (1998) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res 7:77–84

    Article  CAS  PubMed  Google Scholar 

  • Dolores LM, Pinili MS, Retuta YM et al (2017) Occurrence of an emerging new potyvirus, Papaya leaf distortion mosaic virus (PLDMV): a potential threat to papaya industry in the Philippines. Philipp J Crop Sci 40:80

    Google Scholar 

  • Drew R, Siar S, O’Brien P et al (2006) Progress in backcrossing between Carica papaya × Vasconcellea quercifolia intergeneric hybrids and C. papaya. Aust J Exp Agr 46:419–424

    Article  Google Scholar 

  • Fang J, Lin A, Qiu W et al (2016) Transcriptome profiling revealed stress induced and disease resistance genes upregulated in PRSV resistant transgenic papaya. Front Plant Sci 7:855

    Article  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2017) FAO food and agriculture data. http://www.fao.ord/faostat/. Accessed 7 Jun 2019

  • Fermin G, Inglessis V, Garboza C et al (2004a) Engineered resistance against Papaya ringspot virus in Venezuelan transgenic papayas. Plant Dis 88:516–522

    Article  PubMed  Google Scholar 

  • Fermin G, Tennant P, Gonsalves C et al (2004b) Comparative development and impact of transgenic papayas in Hawaii, Jamaica and Venezuela. In: Pena L (ed) Transgenic plants: methods and protocols, methods in molecular biology, vol 286. Humuna Press, Totowa, pp 399–430

    Chapter  Google Scholar 

  • Fermin G, Castro L, Tennant P (2010) Virus resistant transgenic papaya: current opportunities and challenge. Transgenic Plant J 4:1–15

    Google Scholar 

  • Ferreira S, Pitz K, Manshardt R et al (2002) Virus coat protein transgenic papaya provides practical control of Papaya ringspot virus in Hawaii. Plant Dis 86:101–105

    Article  PubMed  Google Scholar 

  • Fitch M (2005) Carica papaya papaya. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publishing Wallingford, Oxon, pp 174–207

    Chapter  Google Scholar 

  • Fitch M (2010) Papaya ringspot virus (PRSV) coat protein gene virus resistance in papaya: update on progress worldwide. Transgenic Plant J 4:16–28

    Google Scholar 

  • Fitch M (2016) Update on gene transfer biotechnology of papaya. Acta Hortic 1111:7–18

    Article  Google Scholar 

  • Fitch M, Manshardt R, Gonsalves D et al (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9:189–194

    Article  CAS  PubMed  Google Scholar 

  • Fitch M, Manshardt R, Gonsalves D et al (1992) Virus resistant papaya derived from tissues bombarded with the coat protein gene of Papaya ringspot virus. Bio/Technology 10:1466–1472

    CAS  Google Scholar 

  • Fitch M, Manshardt R, Gonsalves D et al (1993) Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep 12:245–249

    Article  CAS  PubMed  Google Scholar 

  • Follett PA (2003) Arthropod pests of papaya in Hawaii. Chron Horticult 40:7–10

    Google Scholar 

  • Fragoso G, Hernández M, Cervantes-Torres J et al (2017) Transgenic papaya: a useful platform for oral vaccines. Planta 245:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Gauci C, Jayashi C, Lightowlers MW (2013) Vaccine development against the Taenia solium parasite: the role of recombinant protein expression in Escherichia coli. Bioengineered 4:343–347

    Article  PubMed  Google Scholar 

  • Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves D (2004) Transgenic papaya in Hawaii and beyond. Agbioforum 7:36–40

    Google Scholar 

  • Gonsalves D (2016) The Hawaiian transgenic papaya story: and the beat goes on. Acta Hortic 1111:19–24

    Article  Google Scholar 

  • Gonsalves C, Lee D, Gonsalves D (2004) Transgenic virus resistant papaya: the Hawaiian “Rainbow” was rapidly adopted by farmers and is of major importance in Hawaii today. APSnet Features. https://doi.org/10.1094/APSnetFeature-2004-0804

  • Gonsalves C, Lee D, Gonsalves D (2007) The adoption of genetically modified papaya in Hawaii and its implications for developing countries. J Dev Stud 43:177–191

    Article  Google Scholar 

  • Gumtow R, Wu D, Uchida J et al (2018) A Phytophthora palmivora extracellular cystatin-like protease inhibitor targets papain to contribute to virulence on papaya. Mol Plant Microbe Interact 31:363–373

    Article  CAS  PubMed  Google Scholar 

  • Hamim I, Borth W, Marquez J et al (2018) Transgene-mediated resistance to Papaya ringspot virus: challenges and solutions. Phytoparasitica 46:1–18

    Article  CAS  Google Scholar 

  • Hashim M, Osman M, Abdullah R et al (2002) Research and development of transgenic plants in Malaysia: an example from an Asian developing country. Food Nutr Bull 23:367–375

    Article  PubMed  Google Scholar 

  • Hautea R, Chan YK, Attathom S et al (1999) The papaya biotechnology network of Southeast Asia: biosafety considerations and papaya background information. ISAAA briefs no. 11. ISAAA, Ithaca. http://www.isaaa.org/Briefs/11/index.htm. Accessed 13 Nov 2019

  • Hernandez M, Cabrera-Ponce JL, Fragoso G et al (2007) A new highly effective anticysticercosis vaccine expressed in transgenic papaya. Vaccine 25:4252–4260

    Article  CAS  PubMed  Google Scholar 

  • Hill D (1983) Tetranychus cinnabarinus (Boisd.). In: Garget J (ed) Agricultural insect pests of the tropics and their control. Cambridge University Press, Cambridge, pp 501–502

    Google Scholar 

  • Hsieh YT, Pan TM (2006) Influence of planting Papaya ringspot virus resistant transgenic papaya on soil microbial biodiversity. J Agric Food Chem 54:130–137

    Article  CAS  PubMed  Google Scholar 

  • Huerta M, de Aluja AS, Fragoso G et al (2001) Synthetic peptide vaccine against Taenia solium pig cysticercosis: successful vaccination in a controlled field trial in rural Mexico. Vaccine 20:262–266

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Ocampo J, Osuna-Castro J, Lino-López G et al (2012) Proteomic analysis of differentially accumulated proteins during ripening and in response to 1-MCP in papaya fruit. J Proteomics 77:2160–2169

    Article  CAS  Google Scholar 

  • Jackson G (2017) Pacific pests and pathogens: papaya phytoplasmas (fact sheet). http://www.pestnet.org/fact_sheets/papaya_phytoplasmas_174.pdf. Accessed 3 Dec 2019

  • Jaffe G (2004) Regulating transgenic crops: a comparative analysis of different regulatory processes. Transgenic Res 13:5–19

    Article  CAS  PubMed  Google Scholar 

  • James C (2017) Global status of commercialized GM/Biotech crops. ISAAA, Ithaca. http://www.isaaa.org/resources/publications/briefs/53/download/isaaa-brief-53-2017.pdf. Accessed 9 Aug 2019

    Google Scholar 

  • Janick J, Paull R (2008) Cariacaceae, Carica papaya L. In: Janick J, Paull R (eds) The encyclopedia of fruits and nuts. Centre for Agriculture and Biosciences International, Wallingford, pp 237–429

    Chapter  Google Scholar 

  • Jia R, Zhao H, Huang J et al (2017) Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Sci Rep 7:12636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiao Z, Deng JH, Li GK (2010) Study on the compositional differences between transgenic and nontransgenic papaya (Carica papaya). J Food Compos Anal 23:640–647

    Article  CAS  Google Scholar 

  • Kertbundit S, Pongtanom N, Ruanjan P et al (2007) Resistance of transgenic papaya plants to Papaya ringspot virus. Biol Plant 51:333–339

    Article  CAS  Google Scholar 

  • Knott GJ, Doudna J (2018) CRISPR-Cas guides the future of genetic engineering. Science 361:866–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna K, Paridhavi M, Patel J (2008) Review on nutritional, medicinal and pharmacological properties of papaya (Carica papaya Linn). Nat Prod Rad 7:364–373

    Google Scholar 

  • Kung YJ, Bau HJ, Wu Y et al (2009) Generation of transgenic papaya with double resistance to Papaya ringspot virus and Papaya leaf-distortion mosaic virus. Phytopathology 99:1312–1320

    Article  CAS  PubMed  Google Scholar 

  • Kung YJ, You BJ, Raja J et al (2015) Sequence-homology-independent breakdown of transgenic resistance by more virulent virus strains and a potential solution. Sci Rep 5:9804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaPlante A, Sherman M (1976) Carmine spider mite. Cooperative Extension Service, College of Tropical Agriculture. Insect pest series no. 3

    Google Scholar 

  • Lawas T, Magalita P (2007) Biotech papaya resistant to PRSV now under confined trials. ABSPII Newslett 3:1

    Google Scholar 

  • Li HP, Zhang XG, Rao XQ (2007) Biosafety evaluation of transgenic papaya cultivar Huanong No. 1 resistant to Papaya ringspot virus. In: Peng YL, Kang ZS (eds) Proceedings of the annual meeting of the Chinese Society for Plant Pathology, Yangling, Shanxi, China, pp 209–212

    Google Scholar 

  • Lin C, Su H, Wang D (1989) The control of papaya ringspot virus in Taiwan ROC. Food and Fertilizer Technology Center. Tech Bull 114:1–13

    Google Scholar 

  • Lin HT, Yen GC, Lee WL et al (2015) Repeated dose 90-day feeding study of whole fruits of genetically modified papaya resistant to Papaya ringspot virus in rats. J Agric Food Chem 63:1286–1292

    Article  CAS  PubMed  Google Scholar 

  • Lines R, Persley D, Dale J et al (2002) Genetically engineered immunity to Papaya ringspot virus in Australian papaya cultivars. Mol Breed 10:119–129

    Article  CAS  Google Scholar 

  • Lius S, Manshardt R, Fitch M et al (1997) Pathogen-derived resistance provides papaya with effective protection against Papaya ringspot virus. Mol Breed 3:161–168

    Article  Google Scholar 

  • López-Gómez R, Cabrera-Ponce J, Saucedo-Arias L et al (2009) Ripening in papaya fruit is altered by ACC oxidase cosuppression. Transgenic Res 18:89–97

    Article  PubMed  CAS  Google Scholar 

  • Magdalita PM, Laurena AC, Yabut-Perez BM et al (2002) Progress in the development of transgenic papaya: transformation of Solo papaya using ACC synthase antisense construct. Acta Hort 575:171–176

    Article  CAS  Google Scholar 

  • Magdalita PM, Laurena AC, Yabut-Perez BM et al (2003) Towards transformation, regeneration and screening of papaya containing antisense ACC synthase gene. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Kluwer Academic Publishers, Amsterdam, pp 323–327

    Chapter  Google Scholar 

  • Magdalita P, Valencia L, Mercado C et al (2007) Recent developments in papaya breeding in the Philippines. Acta Hortic 740:49–60

    Article  CAS  Google Scholar 

  • Maktar N, Kamis S, Mohd Yusof F, Hussain N (2008) Erwinia papayae causing papaya dieback in Malaysia. Plant Pathol 57:774

    Article  Google Scholar 

  • Manshardt R (1992) Papaya. In: Hammerschlag F, Litz R (eds) Biotechnology of perennial fruit crops. Cambridge University Press, Oxford, pp 489–511

    Google Scholar 

  • Manshardt R (1998) ‘UH Rainbow’ papaya. Germplasm: G-1. University of Hawaii, College of Tropical Agriculture and Human Resources, Honolulu, 2 pp

    Google Scholar 

  • Manshardt R (2012) The papaya in Hawaii. Hortscience 47:1399–1404

    Article  Google Scholar 

  • Manshardt R, Wenslaff T (1989a) Interspecific hybridization of papaya with other Carica species. J Amer Soc Hort Sci 114:689–694

    Article  Google Scholar 

  • Manshardt R, Wenslaff T (1989b) Zygotic polyembryonic in interspecific hybrids of Carica papaya and C. cauliflora. J Am Soc Hort Sci 114:468–479

    Article  Google Scholar 

  • Maoka T, Hataya T (2005) The complete nucleotide sequence and biotype variability of Papaya leaf distortion mosaic virus. Phytopathology 95:128–135

    Article  CAS  PubMed  Google Scholar 

  • Maoka T, Kashiwazaki S, Tsuda S et al (1996) Nucleotide sequence of the capsid protein gene of papaya leaf-distortion mosaic potyvirus. Arch Virol 141:197–204

    Article  CAS  PubMed  Google Scholar 

  • Mat Amin N, Bunawan H, Redzuan R et al (2011) Erwinia mallotivora sp., a new pathogen of papaya (Carica papaya) in Peninsular Malaysia. Int J Mol Sci 12:39–45

    Article  CAS  Google Scholar 

  • McCafferty H, Moore P, Zhu Y (2006) Improved Carica papaya tolerance to carmine spider mite by the expression of Manduca sexta chitinase transgene. Transgenic Res 15:337–347

    Article  CAS  PubMed  Google Scholar 

  • McCafferty H, Moore P, Zhu Y (2008) Papaya transformed with the Galanthus nivalis GNA gene produces a biologically active lectin with spider mite control activity. Plant Sci 175:385–393

    Article  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales J, Martinez JJ, Manoutcharian K et al (2008) Inexpensive anti-cysticercosis vaccine: S3Pvac expressed in heat inactivated M13 filamentous phage proves effective against naturally acquired Taenia solium porcine cysticercosis. Vaccine 26:2899–2905

    Article  CAS  PubMed  Google Scholar 

  • Morales J, de Aluja AS, Martinez JJ et al (2011) Recombinant S3Pvac-phageanticysticercosis vaccine: simultaneous protection against cysticercosis and hydatid disease in rural pigs. Vet Parasitol 176:53–58

    Article  CAS  PubMed  Google Scholar 

  • Mutsuga M, Ohta H, Toyoda M et al (2001) Comparison of carotenoid components between GM and non-GM papaya. J Food Hygiene Soc Japan 42:367–373

    Article  CAS  Google Scholar 

  • Nakasone H, Aragaki M (1975) Tolerance to Phytophthora fruit and root rot in Carica papaya L. Proc Am Soc Horticult Sci Trop Reg 17:176–185

    Google Scholar 

  • Neupane KR, Mukatira UT, Kato C et al (1998) Cloning and characterization of fruit-expressed ACC synthase and ACC oxidase from papaya (Carica papaya L.). Acta Hortic 461:329–338

    Article  CAS  Google Scholar 

  • Nishijima W (1994) Papaya. In: Ploetz RC (ed) Compendium of tropical fruit disease. APS, St. Paul, pp 56–70

    Google Scholar 

  • Nishina M, Zee F, Ebesu R et al (2000) Papaya production in Hawaii. Fruits Nuts 3:1–8

    Google Scholar 

  • Noriha M, Rahim M, Yunus A et al (2013) Identification of quorum quenching N-Acyl homoserine lactonases from Bacillus sp. isolated from papaya and tomato rhizosphere soil in Malaysia. In: Proceedings of the international congress of Malaysian Society for Microbiology 2013, Langkawi Lagoon Resort, Kedah

    Google Scholar 

  • Office of the Gene Technology Regulator (2003) Risk assessment and risk management plan for intentional release of GMOS into the environment: application no dir 026/2002. http://ogtr.gov.au/internet/ogtr/publishing.nsf/Content/dir026-3/$FILE/dir026finalrarmp.pdf. Accessed 12 Nov 2019

  • Ollitrualt P, Bruyere J, Ocampo L et al (2005) Papaya breeding for tolerance to bacterial decline (Erwinia sp.) in the Caribbean region. Acta Hortic 740:79–91

    Google Scholar 

  • Osborn R, De Samblanx G, Thevissen K et al (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262

    Article  CAS  PubMed  Google Scholar 

  • Pantoja A, Follet P, Villanueva-Jimenez A (2002) Pests of papaya. In: Ploetz R (ed) Tropical fruits and pollinators: biology, economic importance, natural enemies and control. Centre for Agriculture and Biosciences International, Wallingford, pp 373–412

    Google Scholar 

  • Paull R, Nishijima W, Reyes M (1993) Papaya postharvest losses during marketing. In: Proceedings 29th annual Hawaii Papaya Industry Association, Hilo, Hawaii, 1993

    Google Scholar 

  • Paull RE, Nishijima W, Marcelino R et al (1997) Postharvest handling and losses during marketing of papaya (Carica papaya L.). Postharvest Biol Technol 11:165–179

    Article  Google Scholar 

  • Phironrit N, Chowpongpang S, Warin N et al (2007) Small scale field testing of PRSV resistance in transgenic papaya line KN116/5. Acta Hortic 740:169–176

    Article  CAS  Google Scholar 

  • Phironrit N, Phuangrat B, Burns P et al (2010) Resistance of coat protein transgenic papaya and development of homozygous transgenic papaya line 116/5 resistant to Papaya ringspot virus (PRSV) under screenhouse conditions in Thailand. Transgenic Plant J 4:90–93

    Google Scholar 

  • Powell M, Wheatley A, Omoruyi F et al (2008) Effects of subchronic exposure to transgenic papayas (Carica papaya L.) on liver and kidney enzymes and lipid parameters in rats. J Sci Food Agr 88:2638–2647

    Article  CAS  Google Scholar 

  • Proulx E, Nunes MCN, Emond JP et al (2005) Quality attributes limiting papaya postharvest life at chilling and non-chilling temperatures. Proc Fla State Hort Soc 118:389–395

    Google Scholar 

  • Rao XQ, Li HP (2005) Construction of plant expression vector containing Papaya ringspot virus fusion gene. J Huazhong Agric Univ 24:325–329

    CAS  Google Scholar 

  • Rao XQ, Li HP (2007) Establishment of Agrobacterium-mediated transformation system of somatic embryos of papaya cultivar Meizhonghong. J Huazhong Agric Univ 26:293–296

    CAS  Google Scholar 

  • Retuta A, Magdalita P, Aspuria E (2012) Evaluation of selected transgenic papaya (Carica papaya L.) lines for inheritance of resistance to Papaya ringspot virus and horticultural traits. Plant Biotechnol 29:339–349

    Article  Google Scholar 

  • Roberts M, Minott D, Tennant P et al (2008) Assessment of compositional changes during ripening of transgenic papaya modified for protection against Papaya ringspot virus. J Sci Food Agric 88:1911–1920

    Article  CAS  Google Scholar 

  • Rosa C, Kuo YW, Wuriyanghan H, Falk BW (2018) RNA interference mechanisms and applications in Plant Pathology. Annu Rev Phytopathol 56:581–610

    Article  CAS  PubMed  Google Scholar 

  • Rosado A, Craig W (2017) Biosafety regulatory systems overseeing the use of genetically modified organisms in the Latin America and Caribbean region. AgBioForum 20:120–132

    Google Scholar 

  • Ruan X, Zhou H, Rao XQ (2001) Resistance evaluation of transgenic papaya with PRSV replicase gene. J Fujian Agric Univ 30:218–221

    Google Scholar 

  • Ruan X, Li H, Zhou G (2004) Evaluation of PRSV resistance of T2 transgenic papaya with replicase gene. J South China Agric Univ 25:12–15

    CAS  Google Scholar 

  • Ruan XL, Wang JF, Li HP (2009) Virus-induced gene silencing-mediated viral resistance of transgenic papaya to Papaya ringspot virus (PRSV). J Huazhong Agric Univ 28:418–422

    CAS  Google Scholar 

  • Ruanjan P, Kerbundt S, Juricek M (2007) Post-transcriptional gene silencing is involved in resistance of transgenic papayas to Papaya ringspot virus. Biol Plant 51:517–520

    Article  CAS  Google Scholar 

  • Sakuanrungsirikul S, Sarindu N, Prasartsee V et al (2005) Update on the development of virus-resistant papaya: virus-resistant transgenic papaya for people in rural communities of Thailand. Food Nutr Bull 26:422–426

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Rupesh KK, Singh V (2013) Designing of putative siRNA against geminiviral suppressors of RNAi to develop geminivirus resistant papaya crop. Int J Bioinform Res Appl 9:3–12

    Article  CAS  PubMed  Google Scholar 

  • Sciutto E, Fragoso G, de Aluja AS et al (2008) Vaccines against cysticercosis. Curr Top Med Chem 8:415–423

    Article  CAS  PubMed  Google Scholar 

  • Sekeli R, Janna A, Muda P et al (2013) 1-aminocyclopropane-1-carboxylate oxidase 2 reduction effects on physical and physiological responses of ‘Eksotika’ papaya. J Crop Improv 27:487–506

    Article  CAS  Google Scholar 

  • Sekeli R, Abdullah J, Namasivayam P et al (2014) RNA interference of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1 and ACO2) genes expression prolongs the shelf life of Eksotika (Carica papaya L.) fruit. Molecules 19:8350–8362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sekeli R, Nazaruddin N, Tamizi A (2019) Enhancing Eksotika papaya resistance to dieback disease through quorum quenching. J Trop Plant Physiol 11:1–9

    Google Scholar 

  • Shen W, Tuo D, Yang Y et al (2014) First report of mixed infection of Papaya ringspot virus and Papaya leaf distortion mosaic virus on Carica papaya L. J Plant Pathol S4:121

    Google Scholar 

  • Silva-Rosales L, Gonzalez-de-Leon D, Guzman-Gonzalez S et al (2010) Why there are no transgenic papaya in Mexico. Transgenic Plant J 4:45–51

    Google Scholar 

  • Singh-Pant P, Pant P, Mukherjee SK et al (2012) Spatial and temporal diversity of begomoviral complexes in papayas with leaf curl disease. Arch Virol 157:1217–1232

    Article  CAS  PubMed  Google Scholar 

  • Souza M, Tennant P, Gonsalves D (2005) Influence of coat protein transgene copy number on resistance in transgenic line 63-1 against Papaya ringspot virus isolates. HortScience 40:2083–2087

    Article  Google Scholar 

  • Tarora K, Shudo A, Kawano S et al (2016) Development of plants resistant to Papaya leaf distortion mosaic virus by intergeneric hybridization between Carica papaya and Vasconcellea cundinamarcensis. Breed Sci 66:734–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tecson Mendoza EM, Laurena AC, Botella JR (2008) Recent advances in the development of transgenic papaya technology. Biotechnol Annu Rev 14:423–462

    Article  PubMed  CAS  Google Scholar 

  • Tennant P, Fermin G, Fitch M et al (2001) Papaya ringspot virus resistance of transgenic Rainbow and SunUp is affected by gene dosage, plant development, and coat protein homology. Eur J Plant Pathol 107:645–653

    Article  CAS  Google Scholar 

  • Tennant P, Ahmad MH, Gonsalves D (2002) Transformation of Carica papaya L. with virus coat protein gene for studies on resistance to Papaya ringspot virus from Jamaica. Trop Agric 79:105–113

    Google Scholar 

  • Tennant P, Ahmad MH, Gonsalves D (2005a) Field resistance of coat protein transgenic papaya to Papaya ringspot virus in Jamaica. Plant Dis 89:841–847

    Article  CAS  PubMed  Google Scholar 

  • Tennant P, Souza M, Gonsalves D et al (2005b) Line 63-1, a new virus-resistant transgenic papaya for Hawaii. HortScience 40:1196–1199

    Article  Google Scholar 

  • Tennant P, Fermin G, Roye M (2007) Viruses infecting papaya (Carica papaya L.): etiology, pathogenesis, and molecular biology. Plant Viruses 1:178–188

    Google Scholar 

  • Thevissen K, Ghazi A, De Samblanx G et al (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271:15018–15025

    Article  CAS  PubMed  Google Scholar 

  • Thomson AK, Lee GR (1971) Factors affecting the storage behaviour of papaya. J Hort Sci 46:511–516

    Article  Google Scholar 

  • Tripathi S, Suzuki J, Ferreira S et al (2008) Papaya ring spot virus –p: characteristics, pathogenicity, sequence variability and control. Mol Plant Pathol 9:269–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi S, Suzuki JY, Carr J et al (2011) Nutritional composition of Rainbow papaya, the first commercialized transgenic fruit crop. J Food Compos Anal 24:140–147

    Article  CAS  Google Scholar 

  • Trujillo E, Schroth M (1982) Two bacterial diseases of papaya trees caused by Erwinia species in the Northern Mariana Island. Plant Dis 66:116–120

    Article  Google Scholar 

  • Tuo D, Shen W, Yang Y et al (2014) Development and validation of a multiplex reverse transcription PCR assay for simultaneous detection of three papaya viruses. Viruses 6:3893–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A, Malathi V (2003) Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142(2):145–164

    Article  CAS  Google Scholar 

  • Wang W, Pan Q, He F et al (2018) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1(1):65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb R (1985) Epidemiology and control of bacterial canker of papaya caused by an Erwinia sp. on St. Croix, U.S. Virgin Island. Plant Dis 69:305–309

    Google Scholar 

  • Wei XD, Zou HL, Chu LM et al (2006) Field released papaya affects microbial communities and enzyme activities in soil. Plant Soil 285:347–358

    Article  CAS  Google Scholar 

  • Wei JY, Liu DB, Zhou P (2007) Transient expression of dsRNA-mediated 3’ end homologous segment of PRSV-CP gene and influence with virus infection. Chinese J Trop Crops 28:78–82

    Google Scholar 

  • Wei JY, Liu DB, Chen YY (2008) Transformation of PRSV-CP dsRNA into papaya by pollen tube pathway technique. Acta Botanica Boreali Occidentalia Sinica 28:2159–2163

    CAS  Google Scholar 

  • Wu Z, Mo C, Zhang S et al (2018) Characterization of Papaya ringspot virus isolates infecting transgenic papaya ‘Huanong No. 1’ in South China. Sci Rep 8:8206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye C, Li H (2010) 20 years of research in China for resistance to Papaya ringspot virus. Transgenic Plant J 4:58–63

    Google Scholar 

  • Ye CM, Chen G, Huang JC (1996) Cloning and sequencing of replicase gene from Papaya ringspot virus. Acta Scientiarum Naturalium Universitatis Sunyastseni 35:125–127

    CAS  Google Scholar 

  • Yu M, Ye CM, Li BJ (2001) A study of transformation PRSV CP gene into Carica papaya L. genome. J Foshan Univ 19:59–62

    Google Scholar 

  • Zhang GL, Zhou Z, Guo AP, Shen WT et al (2003) An initial study of transgenic Carica papaya used as a kind of vaccine for anti-tuberculosis. Acta Botanica Yunnanica 2:223–229

    Google Scholar 

  • Zhu Y, Jia R (2016) Papaya genome analysis for disease resistance genes and molecular markers in Carica papaya and wild relative Vasconcellea goudotiana. Acta Hortic 1111:1–6

    Article  Google Scholar 

  • Zhu Y, Agbayani R, Jackson M et al (2005) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220:241–250

    Article  CAS  Google Scholar 

  • Zhu Y, Agbayani R, Moore P (2007) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87–97

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman JL, St. Brice N (2007) Development and selection for homozygous transgenic papaya seedling. Acta Hortic 740:177–182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Tennant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Randle, M., Tennant, P. (2021). Transgenic Papaya. In: Kavi Kishor, P.B., Rajam, M.V., Pullaiah, T. (eds) Genetically Modified Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-5932-7_6

Download citation

Publish with us

Policies and ethics