Skip to main content

Facing Lethal Impacts of Industrialization via Green and Sustainable Microbial Removal of Hazardous Pollutants and Nanobioremediation

  • Chapter
  • First Online:
Removal of Emerging Contaminants Through Microbial Processes
  • 741 Accesses

Abstract

Industrialization exert a negative impact to the surrounding environment by causing pollution to soil, air, and water supplies in addition to its hazardous effect on human health because of the generated toxic by-products. Environment became polluted with heavy metals, pathogenic microorganisms, toxic industrial effluents, pharmaceutical compounds, and dyestuffs. Currently, several strategies have been employed for the removal of these hazardous substances involving physical and chemical technologies. Yet, these technologies have high operation costs as well as high consumption of energy and chemicals. Hence, development of green, low-cost, and sustainable treatment procedures is the need of the hour. Employing biological entities such as fungal, bacterial, and algal isolates is an interesting bioremediation approach which has proved its high efficacy. This bio-process is affected by diverse biotic and abiotic parameters. This chapter reviews the most prevailing treatment methodologies employed for removing heavy metals and other contaminants such as physical, chemical, physiochemical, and biological methodologies. It mainly focuses on bioremediation, its mechanism, and the employment of nanotechnology in bioremediation as an emerging strategy to reduce the hazardous effects of toxic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

4-AP:

4-Aminophenol

4-NP:

4-Nitrophenol

AFM:

Atomic force microscope

AgNPs:

Silver nanoparticles

AOP:

Advanced oxidation process

AuNPs:

Gold nanoparticles

AYR:

Alizarin Yellow R

BET:

Brunauer-Emmett-Teller

CLC:

Cnidium monnieri (L.) Cuss

CMC:

Carboxymethyl cellulose

CNTs:

Carbon nanotubes

CuNPs:

Copper nanoparticles

CuO NPs:

Copper oxide nanoparticles

DNA:

Deoxyribonucleic acid

DTPA:

Diethylenetriaminepentaacetic acid

EDTA:

Ethylenediaminetetraacetic acid

EDX:

Energy dispersive X-ray

Eh:

Redox potential

EPA:

Environmental protection agency

FESEM:

Field emission scanning electron microscopy

IONPs:

Iron oxide nanoparticles

MISFNPs:

Magnetic inverse spinel iron oxide nanoparticles

MNMs:

Magnetic nanomaterials

MNPs:

Magnetic nanoparticles

MWCNTs:

Multi-walled carbon nanotubes

NB:

Nile blue

NBR:

Nanobioremediation

nm:

Nanometer

NMs:

Nanomaterials

NPs:

Nanoparticles

PCBs:

Polyvinyl biphenyls

PRB:

Permeable reactive barriers

QDs:

Quantum dots

RhB:

Rhodamine B

RO:

Reverse osmosis

RY160:

Reactive Yellow 160

SWCNTs:

Single-walled carbon nanotubes

TCE:

Tetrachloroethylene

TEM:

Transmission electron microscopy

UV/Vis:

Ultraviolet-visible

VSM:

Vibrating sample magnetometry

WHO:

World Health Organization

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

ZVI NPs:

Zerovalent iron nanoparticles

References

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3:74–102

    Google Scholar 

  • Abdi O, Kazemi M (2015) A review study of biosorption of heavy metals and comparison between different biosorbents. J Mater Environ Sci 6:1386–1399

    Google Scholar 

  • Acosta Rodríguez I, Martínez-Juárez VM, Cárdenas-González JF et al (2013) Biosorption of arsenic (III) from aqueous solutions by modified fungal biomass of Paecilomyces sp. Bioinorg Chem Appl 2013:376780, 5 p. https://doi.org/10.1155/2013/376780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahemad M (2014) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem 12:1365–1377

    Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    CAS  PubMed  Google Scholar 

  • Ahmed KBA, Subramanian S, Sivasubramanian A et al (2014) Preparation of gold nanoparticles using Salicornia brachiataplant extract and evaluation of catalytic and antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 130:54–58

    Google Scholar 

  • Ahuti S (2015) Industrial growth and environmental degradation. Int Educ Res J 1:5–7

    Google Scholar 

  • Ali H, Khan E, Anwar M (2013) Chemosphere phytoremediation of heavy metals — concepts and applications. Chemosphere 91:869–881

    CAS  PubMed  Google Scholar 

  • Anastasi A, Tigini V, Varese GC (2013) The bioremediation potential of different ecophysiological groups of fungi. In: Fungi as bioremediators. Springer, Berlin, pp 29–49

    Google Scholar 

  • Arivalagan P, Singaraj D, Haridass V, Kaliannan T (2014) Removal of cadmium from aqueous solution by batch studies using Bacillus cereus. Ecol Eng 71:728–735

    Google Scholar 

  • Asia E, Jain CK, Singh RD (2012) Technological options for the removal of arsenic with special reference to South. J Environ Manage 107:1–18

    Google Scholar 

  • Babák L, Å upinova P, Zichova M et al (2013) Biosorption of Cu, Zn and Pb by thermophilic bacteria–effect of biomass concentration on biosorption capacity. Acta Univ Agric Silvic Mendelianae Brun 60:9–18

    Google Scholar 

  • Bachate SP, Nandre VS, Ghatpande NS, Kodam KM (2013) Simultaneous reduction of Cr (VI) and oxidation of As (III) by Bacillus firmus TE7 isolated from tannery effluent. Chemosphere 90:2273–2278

    CAS  PubMed  Google Scholar 

  • Baker S (2012) Endophytes : toward a vision in synthesis of nanoparticle for future therapeutic agents. Int J Bioinorg Hybrid Nanomater 1:67–77

    Google Scholar 

  • Ballester A, Bla ML, Mun JA et al (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353

    PubMed  Google Scholar 

  • Banerjee S, Datta S, Chattyopadhyay D et al (2011) Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J Environ Health Sci Eng 46:1736–1747

    CAS  Google Scholar 

  • Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159(12):2437–2443

    CAS  PubMed  Google Scholar 

  • Behrens S, Appel I (2016) Magnetic nanocomposites. Curr Opin Biotechnol 39:89–96

    CAS  PubMed  Google Scholar 

  • Berge ND, Ramsburg CA (2010) Iron-mediated trichloroethene reduction within nonaqueous phase liquid. J Contam Hydrol 118:105–116

    CAS  PubMed  Google Scholar 

  • Bunluesin S, Kruatrachue M, Pokethitiyook P (2007) Batch and continuous packed column studies of cadmium biosorption by Hydrilla verticillata biomass. J Biosci Bioeng 103:509–513

    CAS  PubMed  Google Scholar 

  • Cantrell KJ, Kaplan DI, Wietsma W (1995) Zero-valent iron for the in situ remediation of selected metals in groundwater. J Hazard Mater 42:201–212

    CAS  Google Scholar 

  • Carolin CF, Kumar PS, Saravanan A et al (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5:2782–2799

    CAS  Google Scholar 

  • Carpenter AW, Laughton SN, Wiesner MR (2015) Enhanced biogas production from nanoscale zero valent iron-amended anaerobic bioreactors. Environ Eng Sci 32:647–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Mahanty S, Das P et al (2020) Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr (VI) from aqueous solution. Chem Eng J 385:123790

    Google Scholar 

  • Chauhan NS, Ranjan R, Purohit HJ et al (2009) Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. FEMS Microbiol Ecol 67:130–139

    CAS  PubMed  Google Scholar 

  • Chen M, Xu P, Zeng G et al (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33:745–755

    CAS  PubMed  Google Scholar 

  • Chen A, Shang C, Shao J et al (2017) Science of the total environment the application of iron- based technologies in uranium remediation : a review. Sci Total Environ 575:1291–1306

    CAS  PubMed  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J et al (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    CAS  PubMed  Google Scholar 

  • Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals–an overview

    Google Scholar 

  • Dey U, Chatterjee S, Mondal NK (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep 10:1–7

    Google Scholar 

  • Dhanarani S, Viswanathan E, Piruthiviraj P et al (2016) Comparative study on the biosorption of aluminum by free and immobilized cells of Bacillus safensis KTSMBNL 26 isolated from explosive contaminated soil. J Taiwan Inst Chem Eng 69:61–67

    CAS  Google Scholar 

  • Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251

    CAS  PubMed  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    CAS  Google Scholar 

  • Durairaj P, Malla S, Nadarajan SP et al (2015) Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω -hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb Cell Fact 14:45–61

    PubMed  PubMed Central  Google Scholar 

  • El-Gendy NS, Omran BA (2019) Green synthesis of nanoparticles for water treatment. In: Nano Bio-based technology wastewater treatment: prediction and control tools for the dispersion of pollutants in the environment. Scrivener Publishing, Beverly, pp 205–263

    Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:1–19

    Google Scholar 

  • Fernanda E, Cecchin I, Reddy KR, Schnaid F (2017) Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeter Biodegr 119:419–428

    Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. Calif Inst Technol Eng Sci Mag 23(5):22–36

    Google Scholar 

  • Finocchio E, Lodi A, Solisio C, Converti A (2010) Chromium (VI) removal by methylated biomass of Spirulina platensis: the effect of methylation process. Chem Eng J 156:264–269

    CAS  Google Scholar 

  • Flores-Chaparro CE, Ruiz LFC, de la Torre MCA et al (2017) Biosorption removal of benzene and toluene by three dried macroalgae at different ionic strength and temperatures: algae biochemical composition and kinetics. J Environ Manage 193:126–135

    CAS  PubMed  Google Scholar 

  • Francová A, Chrastný V, Å illerová H et al (2017) Evaluating the suitability of different environmental samples for tracing atmospheric pollution in industrial areas. Environ Pollut 220:286–297

    PubMed  Google Scholar 

  • Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205

    CAS  PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    CAS  PubMed  Google Scholar 

  • Gao R, Wang Y, Zhang Y et al (2017) Cobalt (II) bioaccumulation and distribution in Rhodopseudomonas palustris. Biotechnol Biotechnol Equip 31:527–534

    Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    CAS  PubMed  Google Scholar 

  • Gillham RW, Robert W, Stephanie F (1994) Enhanced degradation of halogenated aliphatic by zero-valent iron. Groundwater 32:958–967

    CAS  Google Scholar 

  • Gokhale SV, Jyoti KK, Lele SS (2008) Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour Technol 99:3600–3608

    Google Scholar 

  • Gómez-Pastora J, Bringas E, Ortiz I (2014) Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem Eng J 256:187–204

    Google Scholar 

  • Govarthanan M, Mythili R, Selvankumar T et al (2016) Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech 6:242–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Mishra A (2011) Sustainable water remediation. Encycl Inorg Bioinorg Chem 21:1-16

    Google Scholar 

  • Gupta VK, Rastogi A (2008) Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153:759–766

    CAS  PubMed  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Narayan J, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manage 92:2355–2388

    CAS  PubMed  Google Scholar 

  • Huang W, Liu Z (2013) Biosorption of Cd (II)/Pb (II) from aqueous solution by biosurfactant- producing bacteria: isotherm kinetic characteristic and mechanism studies. Colloids Surf B Biointerfaces 105:113–119

    CAS  PubMed  Google Scholar 

  • Huang K, Park Y, Ewh A et al (2012) Interdiffusion and reaction between uranium and iron. J Nucl Mater 424:82–88

    CAS  Google Scholar 

  • Hussein H, Farag S, Moawad H (2003) Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Arab J Biotechnol 7:13–22

    Google Scholar 

  • Ilaiyaraja P, Kumar A, Deb S et al (2013) Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene. J Hazard Mater 250–251:155–166

    PubMed  Google Scholar 

  • Javaid A, Bajwa R (2007) Biosorption of Cr (III) ions from tannery wastewater by Pleurotus ostreatus. Mycopathologia 5:71–79

    Google Scholar 

  • Jencarova J, Luptakova A (2012) The elimination of heavy metal ions from waters by biogenic iron sulphides. Chem Eng 28:205–2010

    Google Scholar 

  • Jiemvarangkul P, Zhang W, Lien H (2011) Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem Eng J 170:482–491

    CAS  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Biodegradation-life of science. InTech, Rijeka, pp 289–320

    Google Scholar 

  • Kang C-H, So J-S (2016) Heavy metal and antibiotic resistance of ureolytic bacteria and their immobilization of heavy metals. Ecol Eng 97:304–312

    Google Scholar 

  • Karakagh RM, Chorom M, Motamedi H (2012) Biosorption of Cd and Ni by inactivated bacteria isolated from agricultural soil treated with sewage sludge. Ecohydrol Hydrobiol 12:191–198

    CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:805187

    PubMed  PubMed Central  Google Scholar 

  • Karimi Z, Karimi L, Shokrollahi H (2013) Nano-magnetic particles used in biomedicine: core and coating materials. Mater Sci Eng C 33:2465–2475

    CAS  Google Scholar 

  • Karthik C, Barathi S, Pugazhendhi A et al (2017a) Evaluation of Cr (VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. J Hazard Mater 333:42–53

    CAS  PubMed  Google Scholar 

  • Karthik C, Ramkumar VS, Pugazhendhi A et al (2017b) Biosorption and biotransformation of Cr (VI) by novel Cellulosimicrobium funkei strain AR6. J Taiwan Inst Chem Eng 70:282–290

    CAS  Google Scholar 

  • Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T (2015) Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci 5:499–504

    CAS  Google Scholar 

  • Khan FU, Chen Y, Khan NU et al (2016a) Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longanseed extract as a reducing and stabilizing agent. J Photochem Photobiol B Biol 164:344–351

    Google Scholar 

  • Khan SB, Marwani HM, Asiri AM, Bakhsh EM (2016b) Exploration of calcium doped zinc oxide nanoparticles as selective adsorbent for extraction of lead ion. Desalination Water Treat 57:19311–19320

    Google Scholar 

  • Kirschling TL, Gregory KB, Minkley EG et al (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44:3474–3480

    CAS  PubMed  Google Scholar 

  • Kostal J, Yang R, Nu CH et al (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar JIN, Oommen C (2012) Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. J Environ Biol 33:27–31

    CAS  PubMed  Google Scholar 

  • Kumar SR, Packirisamy G (2016) Applications of nanotechnology for bioremediation. In: Handbook of advanced industrial and hazardous wastes management. CRC Press, pp 27–48

    Google Scholar 

  • Kumar P, Kim K-H, Bansal V et al (2017) Progress in the sensing techniques for heavy metal ions using nanomaterials. J Ind Eng Chem 54:30–43

    CAS  Google Scholar 

  • Kuppusamy S, Thavamani P, Venkateswarlu K et al (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968

    CAS  PubMed  Google Scholar 

  • Liang L, Yang W, Guan X et al (2013) Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron. Water Res 47:5846–5855

    CAS  PubMed  Google Scholar 

  • Lingamdinne LP, Chang YY, Yang JK et al (2017) Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem Eng J 307:74–84

    CAS  Google Scholar 

  • Mahmoud ME, Yakout AA, Abdel-Aal H, Osman MM (2011) Enhanced biosorptive removal of cadmium from aqueous solutions by silicon dioxide nano-powder, heat inactivated and immobilized Aspergillus ustus. Desalination 279:291–297

    CAS  Google Scholar 

  • Majumder A, Ghosh S, Saha N et al (2013) Arsenic accumulating bacteria isolated from soil for possible application in bioremediation. J Environ Biol 34:841–846

    PubMed  Google Scholar 

  • Malini S, Vignesh Kumar S, Hariharan R et al (2020) Antibacterial, photocatalytic and biosorption activity of chitosan nanocapsules embedded with Prosopis juliflora leaf extract synthesized silver nanoparticles. Mater Today Proc 21:828–832

    CAS  Google Scholar 

  • Mamisahebei S, Khaniki GRJ, Torabian A et al (2007) Removal of arsenic from an aqueous solution by pretreated waste tea fungal biomass. J Environ Health Sci Eng 4:85–92

    CAS  Google Scholar 

  • Manafi Z, Abdollahi H, Majd MZ et al (2012) Isolation and identification of microorganisms causing microbial degradation of organic phase of the solvent extraction unit in the copper industries. Int J Miner Process 112:43–48

    Google Scholar 

  • Mary J, Karthik C, Ganesh R et al (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manage 217:56–70

    Google Scholar 

  • Martinez-Juarez VM, Cárdenas-González JF, Torre-Bouscoulet ME et al (2012) Biosorption of mercury (II) from aqueous solutions onto fungal biomass. Bioinorg Chem Appl 2012:156190, 5 p. https://doi.org/10.1155/2012/156190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mgbemene CA, Nnaji CC, Nwozor C (2016) Industrialization and its backlash: focus on climate change and its consequences. J Environ Sci Technol 9:301–316

    CAS  Google Scholar 

  • Misal SA, Lingojwar DP, Shinde RM, Gawai KR (2011) Purification and characterization of azoreductase from alkaliphilic strain Bacillus badius. Process Biochem 46:1264–1269

    CAS  Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 137:464–479

    CAS  PubMed  Google Scholar 

  • Morel M, Meux E, Mathieu Y et al (2013) Xenomic networks variability and adaptation traits in wood decaying fungi. J Microbial Biotechnol 6:248–263

    Google Scholar 

  • Mukherjee T, Chakraborty S, Ali A, Kumar T (2017) Bioremediation potential of arsenic by non- enzymatically biofabricated silver nanoparticles adhered to the mesoporous carbonized fungal cell surface of Aspergillus foetidus MTCC8876. J Environ Manage 201:435–446

    CAS  PubMed  Google Scholar 

  • Murugesan K, Bokare V, Jeon J et al (2011) Bioresource technology effect of Fe – Pd bimetallic nanoparticles on Sphingomonas sp. PH-07 and a nano-bio hybrid process for triclosan degradation. Bioresour Technol 102:6019–6025

    CAS  PubMed  Google Scholar 

  • Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13:169–189

    CAS  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Khalaj M (2014) Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L and their catalytic activity for ligand-free Ullmann-coupling reaction and reduction of 4-nitrophenol. RSC Adv 4:47313–47318

    CAS  Google Scholar 

  • O’Carroll D, Sleep B, Krol M et al (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

    Google Scholar 

  • Omran BA, Nassar HN, Fatthallah NA et al (2018) Characterization and antimicrobial activity of silver nanoparticles mycosynthesized by Aspergillus brasiliensis. J Appl Microbiol 125:370–382

    CAS  PubMed  Google Scholar 

  • Park JK, Choi SB (2001) Metal recovery using immobilized cell suspension from a brewery. Korean J Chem Eng 19:68–74

    Google Scholar 

  • Ponder SM, Darab JG (2000) Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    CAS  Google Scholar 

  • Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    CAS  PubMed  Google Scholar 

  • Rafique M, Shafiq F, Ali Gillani SS et al (2020) Eco-friendly green and biosynthesis of copper oxide nanoparticles using Citrofortunella microcarpa leaves extract for efficient photocatalytic degradation of Rhodamin B dye form textile wastewater. Optik  208:164053–164061

    Google Scholar 

  • Raghunandan K, Kumar A, Kumar S et al (2018) Production of gellan gum, an exopolysaccharide, from biodiesel-derived waste glycerol by Sphingomonas spp. 3 Biotech 8:71–84

    PubMed  PubMed Central  Google Scholar 

  • Raja CP, Jacob JM, Balakrishnan RM (2015) Selenium biosorption and recovery by marine Aspergillus terreus in an upflow bioreactor. J Environ Eng 142:C4015008

    Google Scholar 

  • Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water–a comprehensive review. Resour Technol 2:175–184

    Google Scholar 

  • Rao CNR, Thomas PJ, Kulkarni GU (2007) Basics of nanocrystals. In: Nanocrystals synthesis, properties and applications. Springer, Berlin, pp 1–23

    Google Scholar 

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878

    CAS  PubMed  Google Scholar 

  • Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly application of nanomaterials: nanobioremediation. J Nanoparticles 2014:1–7

    Google Scholar 

  • Roberts TL (2014) Cadmium and phosphorous fertilizers: the issues and the science. Proc Eng 83:52–59

    CAS  Google Scholar 

  • Samarth DP, Chandekar CJ, Bhadekar RK (2012) Biosorption of heavy metals from aqueous solution using Bacillus Licheniformis. Int J Pure Appl Sci Technol 10:12–19

    CAS  Google Scholar 

  • Saratale G, Kalme S, Bhosale S, Govindwar S (2007) Biodegradation of kerosene by Aspergillus ochraceus NCIM-1146. J Basic Microbiol 47:400–405

    CAS  PubMed  Google Scholar 

  • Saratale RG, Sivapathan SS, Woo JJ et al (2016) Preparation of activated carbons from peach stone by H4P2O7 activation and its application for the removal of Acid Red 18 and dye containing wastewater. J Environ Sci Heal Part A 51:164–177

    CAS  Google Scholar 

  • Schaider LA, Senn DB, Estes ER et al (2014) Sources and fates of heavy metals in a mining- impacted stream: temporal variability and the role of iron oxides. Sci Total Environ 490:456–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnug E, Lottermoser BG (2013) Fertilizer derived uranium and its threat to human health. Environ Sci Technol 47: 2433–2434

    Google Scholar 

  • Sethi BK, Kanungo S, Rout JR et al (2010) Effect of chromium on Mucor species and optimization of growth conditions. Nat Sci 8:29–32

    Google Scholar 

  • Å evců A, El-Temsah YS, Filip J et al (2017) Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms. Environ Sci Pollut Res 24:21191–21202

    Google Scholar 

  • Sheng G, Shao X, Li Y et al (2014) Enhanced removal of Uranium (VI) by nanoscale zerovalent iron supported on na − bentonite and an investigation of mechanism. J Phys Chem A 16:2952–2958

    Google Scholar 

  • Shamim S, Rehman A, Qazi MH (2014) Cadmium-resistance mechanism in the bacteria Cupriavidus metallidurans CH34 and Pseudomonas putida mt2. Arch Environ Contam Toxicol 67:149–157

    CAS  PubMed  Google Scholar 

  • Shipra J, Dikshit SN, Pandey G (2012) Comparative study of growing/immobilized biomass verses resting biomass of A. lentulus for the effect of pH on Cu metal removal. Res J Pharm Biol Chem Sci 3:421–427

    Google Scholar 

  • Silva A, Delerue-Matos C, Figueiredo SA, Freitas OM (2019) The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: a review. Water (Switzerland) 11:1555–1591

    CAS  Google Scholar 

  • Singh J, Kumar V, Kim K, Rawat M (2019) Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environ Res 177:108569–108581

    CAS  PubMed  Google Scholar 

  • Srivastava NK, Majumder CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151:1–8

    CAS  PubMed  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S et al (2011a) Science of the total environment biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442

    CAS  PubMed  Google Scholar 

  • Srivastava S, Shrivastava M, Suprasanna P, Souza SFD (2011b) Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecol Eng 37:1937–1941

    Google Scholar 

  • Stoliker DL, Campbell KM, Fox PM et al (2013) Evaluating chemical extraction techniques for the determination of uranium oxidation state in reduced aquifer sediments. Environ Sci Technol 16:9225–9232

    Google Scholar 

  • Sutherland C, Venkobachar C (2010) A diffusion-chemisorption kinetic model for simulating biosorption using forest macro-fungus, fomes fasciatus. Int Res J Plant Sci 1:107–117

    Google Scholar 

  • Subhashini SS, Kaliappan S, Velan M (2011) Removal of heavy metal from aqueous solution using Schizosaccharomyces pombe in free and alginate immobilized cells. In: 2nd international conference on environmental science and technology, pp 108–111

    Google Scholar 

  • Taiwo AM, Gbadebo AM, Oyedepo JA et al (2016) Bioremediation of industrially contaminated soil using compost and plant technology. J Hazard Mater 304:166–172

    CAS  PubMed  Google Scholar 

  • Taniguchi N, Arakawa C, Kobayashi T (1974) On the basic concept of ‘nano-technology’. In: Proceedings of the international conference on production engineering, pp 18–23

    Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164

    PubMed  PubMed Central  Google Scholar 

  • Thatoi H, Das S, Mishra J et al (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manage 146:383–399

    CAS  PubMed  Google Scholar 

  • Thomé A, Reddy KR (2015) Review of nanotechnology for soil and groundwater remediation: Brazilian Perspectives. Water Air Soil Pollut 226:121–141

    Google Scholar 

  • Thomson B, Hepburn CD, Lamare M, Baltar F (2017) Temperature and UV light affect the activity of marine cell-free enzymes. Biogeosciences 14:3971–3977

    CAS  Google Scholar 

  • Tosco T, Petrangeli M, Cruz C, Sethi R (2014) Nanoscale zerovalent iron particles for groundwater remediation : a review. J Clean Prod 77:10–21

    CAS  Google Scholar 

  • Ullah A, Heng S, Munis MFH et al (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    CAS  Google Scholar 

  • Usman M, Ahmed A, Yu B et al (2019) Photocatalytic potential of bio-engineered copper nanoparticles synthesized from Ficus carica extract for the degradation of toxic organic dye from waste water: Growth mechanism and study of parameter affecting the degradation performance. Mater Res Bull 120:110583–110594

    CAS  Google Scholar 

  • Verma S, Kuila A (2019) Bioremediation of heavy metals by microbial process. Environ Technol Innov 14:100369–100380

    Google Scholar 

  • Vijayaraghavan K, Yun Y (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    CAS  PubMed  Google Scholar 

  • Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38:2242–2247

    PubMed  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    PubMed  Google Scholar 

  • Weerasundara L, Amarasekara RWK, Magana-Arachchi DN et al (2017) Microorganisms and heavy metals associated with atmospheric deposition in a congested urban environment of a developing country: Sri Lanka. Sci Total Environ 584:803–812

    PubMed  Google Scholar 

  • Wei Y, Wu S, Chou C et al (2010) Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: a field case study. Water Res 44:131–140

    CAS  PubMed  Google Scholar 

  • Xu C, Sun S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65:732–743

    CAS  PubMed  Google Scholar 

  • Xu Y, Seshadri B, Bolan N et al (2019) Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environ Int 125:478–488

    CAS  PubMed  Google Scholar 

  • Yadav KK, Singh JK, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8:740–757

    CAS  Google Scholar 

  • Yan L, Yin H, Zhang S et al (2010) Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3. J Hazard Mater 178:209–217

    CAS  PubMed  Google Scholar 

  • Zanetti MC, Fiore S (2005) Evaluation of mutual connections between zero-valent iron reactivity and groundwater composition in trichloroethylene degradation. Ann Chim 95:779–789

    CAS  PubMed  Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF et al (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage 181:817–831

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basma A. Omran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omran, B.A. (2021). Facing Lethal Impacts of Industrialization via Green and Sustainable Microbial Removal of Hazardous Pollutants and Nanobioremediation. In: Shah, M.P. (eds) Removal of Emerging Contaminants Through Microbial Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-5901-3_7

Download citation

Publish with us

Policies and ethics